Things you must remember (or know how to derive)

Include but not limited to:

- 1. Block-diagram manipulation rules
- 2. DC motor modeling and connection with a general load
- 3. Open-loop plant inversion with $C(s) = T_r(s)/P(s)$: what are conditions on the plant P(s) and the reference model $T_r(s)$ for which this is possible
- 4. BIBO stability: definition and criterion
- 5. Steady-state specifications (steady-state error and how to compute it in the s-domain)
- 6. Transient specifications (definitions of overshoot, undershoot, rise time, settling time)
- 7. Main parameters of 1st and 2nd order systems (static gain, time constant, natural frequency, damping factor) and their *qualitative* relations with steady-state and transient characteristics
- 8. Understanding of the effect of additional poles and zeros on transient responses of 1st and 2nd order systems
- 9. Transient specs and pole location (*qualitatively*) with "good" areas in the s-plane
- 10. Frequency-domain properties of signal and systems (spectrum, energy, power, bandwidth, resonant peak), connections with time-domain properties, like "fast" / "slow", oscillatory (*qualitatively*)
- 11. Closed-loop vs. open-loop strategies: advantages and disadvantages
- 12. Closed-loop transfer functions in the unity-feedback configuration
- 13. Internal stability of feedback systems: definition and criteria
- 14. Steady-state performance of feedback systems: number of integrators and their location (on $P(s)$ or in $C(s)$) required to zero steady-state errors from r / d in the unity feedback configuration (not the table), types of feedback systems
- 15. Root-locus method for $b_m > 0$: definition and meaning, number of branches, where each branch starts and ends, the gain and phase rules, the center of gravity and asymptotes angles, j ω -axis crossings, high-gain feedback insight
- 16. Simple root-locus design to satisfy requirements on steady-state errors and dominant pole properties
- 17. Loop shaping requirements (in low- and high-frequency ranges)
- 18. The argument principle
- 19. The Nyquist stability criterion (with and without integrators in $L(s)$), crossover frequency ω_c , phase crossover frequency ω_{ϕ} , stability margins (both on Nyquist and Bode diagrams)
- 20. The delay element, its effect on the frequency response and the Nyquist criterion, the delay margin
- 21. Connections between root locus and Nyquist plot (no. of integrators, $j\omega$ -axis crossings, stability/instability)
- 22. Lead and lag controllers (*qualitatively*) and their use to achieve required phase margin and static gains
- 23. Ziegler-Nichols procedure and its connection with properties of $L(s)$
- 24. 2DOF controllers: why to use them

25. Bode and Nyquist plots of elementary transfer functions: $\frac{1}{x}$ $\frac{1}{s^n}$ (n = 1, 2, ...), $\frac{k}{\tau s + 1}$, $\frac{k \omega_n^2}{s^2 + 2\zeta \omega_n}$ $s^2 + 2\zeta \omega_n s + \omega_n^2$ $, e^{-sh}$

Perhaps I forgot something, so learn more to be on the safe side...