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Fig. 1: Unity-feedback control system

Question 1. Consider the unity-feedback system in Fig. 1. Are the requirements below contradictory?

|E,(jw)| < 0.1|R(jw)| forallw < 10
|E,(jw)| < 0.1|N(jw)| forallw > 1

|E;(jo)| < 0.1|R(jw)| forallw < 1
|E,(jw)| < 0.1|N(jw)| forall w > 10

where e, is the effect of the reference signal r on the tracking error e := r — y, e, is the effect of the
measurement noise n on it, and X (jw) stands for the value of the spectrum of a signal x at a frequancy w.

Solution. We know that

- N _ __POCO)
E.(s) = S()R(s) = T POICH) R(s) and E,(s) =T(s)N(s) = T PGICH) N(s).
Hence,
|Er(jo)| < a|R(jo)| <= [S(jw)| <a
and

|En(jo)| < @|N(jo)| <= |T(jw)| <«
at every given w. Now, because S(s) + 7' (s) = 1, by the triangle inequality we have that
IS+ T (jo) =1, Vo.
Thus,
1. there is a contradiction, because it requires |S(jw)| 4+ |T (jw)| < 0.2 < 1 for all w € (1, 10);

2. there is no contradiction, because constraints on S and 7 are imposed over non-overlapping fre-
quency ranges.

That’s all ... \%



. = 0.808

Li(jo) Ls(jo) Ly(jo) La(jo)

Fig. 2: Polar plots of L; (jw) for Question 2

Question 2. Fig.2 depicts the polar plots of four loop frequency responses L;(jw) = P;(jw)C;(jw) for
i =1,...,4. These systems are controlled in the standard unity-feedback configuration in Fig. 1.

1. Fig. 3 depicts the Bode plots of the closed-loop complementary sensitivity functions T,k = 1,...,4.
Relate between k and i.

2. Fig. 4 depicts the step responses of the closed-loop sensitivity functions S;(s), / = 1,...,4. Relate
between [ and i.

Solution. This question is based on the following relations between open-loop and closed-loop frequency
and time responses:

e The open-loop crossover frequency w is related to the closed-loop bandwidth wy (of 7). Namely,
the larger w. is, the wider wy, is.

o The bandwidth of T is related to the speed of transients of its step response and, then to speed of the
step response of § = 1 —T'. Namely, the wider wy, is, the faster the step response of S, i.e. e, decays.

e The proximity of the frequency response of L to the critical point —1 + 0j is related to the height
of resonant peaks of |7 (jw)|. Namely, the closer L(jw) to the critical point is, the higher resonant
peaks of | T (jw)| are.

e Resonant peaks of |7 (jw)| are related to oscillations / overshoot of its step response. Namely, the
sharper resonant peaks of |7 (jw)| are, the shakier the step response of 7', and hence of S, is.

e The loop static gain L(0) is related to the closer-loop steady-state errors to a step reference. Namely,
the larger |L(0)| is, the smaller egs = |.S(0)] for the unit step is.

Because both L3 and L4 have at least one integrator (|L(0)| — o0), the corresponding closed-loop
static gains Tx(0) = 1 (true for k = 1 and k = 4) and steady-state error ess = 0 (true for / = 2 and
[ = 4). To select between them, note that L3 is much closer to the critical point than L4. Hence, the
corresponding complementary sensitivity should have a smaller resonance peak and the corresponding
sensitivity function should have a less oscillatory step response. Hence, we end up with

L3 <> T4 <> Sz and L4 <> Tl <> S4.

Now we need to differentiate between the closed-loop responses corresponding to L; and L,. Both
systems have L;(0) = 1 (so the same steady state errors) and similar proximity to the critical point (so
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Fig. 3: Bode magnitude plots of 7% (jw) for Question 2

Step response of S;
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Fig. 4: Step responses of S; for Question 2

compatible oscillations). At the same time, the crossover frequency of L;(jw) is an order of magnitude
larger than that of L (jw). Hence, we expect from the closed-loop systems corresponding to L, to have a
wider bandwidth and a faster time response. This yields

L1<—>T3<—>S3 and L2<—>T2<—>S1.

That’s all ... \
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Fig. 5: System for Question 3

Question 3. Consider yet again the problem of cruise control for a vehicle, like that depicted in Fig. 5.
The problem here is to maintain the vehicle velocity v at prespecified levels by changing the driving force
f generated by the engine. As we already know (Tutorials 3 and 5), the linearized (around some given

velocity veq) model of this system is

1

y=————"u
ms =+ QVeq

where m is the mass of the vehicle, « is a constant depending on the density of air, the frontal area of
the car, and a shape-dependent aerodynamic drag coefficient, and the deviation variables y := v — veq and
u:= f—-0.5u vgq —mg(sin 84+ C, cos 6), where C; is the (dimensionless) rolling resistance coefficient and
0 is the actual road slope. In all numerical calculations of what follows we assume the following numerical
values:

« |G| & | m | 6 |
1[kg/m] | 0.01 | 9.8 [m/sec”] | 1000 [kg] | 12° s 0.20944 [rad] | 80 [km/h] a 22.2222 [m/sec]

Assume that the system is controlled by in the unity-feedback scheme, like that in Fig. 1 by a proportional
controller C(s) = kp > 0

1. Normalize the control signal and the output such that the plant has the unit static gain.

2. Find the bandwidth of the normalized plant and of the closed-loop complementary sensitivity func-
tion 7" (as function of kp).

3. Find the control effort at # = 0. Express the closed-loop bandwidth wy, 7 as a function of u(t — 0)
and the bandwidth of the normalized plant.

4. Draw the Bode plots of T (jw), P (jw), and Te(jw) for kp € {500, 2000, 6000}. Explain the results of
section 2 based on the resulting plots.

Solution.

1. A natural choice is to normalize y by its equilibrium value, veq, in which case the choice of the
normalization factor of u is unambiguous,

The normalized plant u +— y is then

_ 1 av
P(s) = — - P(s) -avgq = —
Veg ms + oVeq

Its static gain P(0) = 1, indeed. This shall facilitate a fair comparison between the bandwidths of
the plant and the closed-loop system 7. Because we normalized y and u, we must also normalize r



and thus C(s). The control signal has the same units as the output so we will normalize by the same
quantity:

1 - 1
ri=—r — C(S)=—2 -C(S)-vqu
Veq avg, U Veq

kp

. The bandwidth of a first-order system having no zeros is the inverse of its time constant, i.e.

1 A Veq
wp,p = = :
m/(QVeq) m

The complementary sensitivity function 7 +— y is

- k
T(s)=T()= —2——.
(s) (s) ms + aveq + kp

This is still a first-order system, but its static gain 7°(0) # 1. Hence, the bandwidth of the frequency
response of 7" is smaller than the reciprocal of its time constant. To find the bandwidth, note that

kz
T (jw)|* = P .
TG kg + 2kpaveq + a?vg, + m*w?

This is a monotonically decreasing function of w, so the bandwidth is the positive solution to the
equation |7 (jw)|?> = 1/2. Two situations are possible. It might happen that |T'(0)|*> < 1/2, for
which the bandwidth is obviously zero. This happens if k, < (1 + «/E)aveq ~ 53.649. For larger
gains |7(0)|? > 1/2 and the bandwidth is always nonzero. It can be verified that

1
Wy, T = —\/k2—2k AVeq — 02V2
m p p~req eq

in this case. Evidently, the increase of k, > 0 widens the controlled bandwidth. Moreover, it the
closed-loop bandwidth exceeds that of the open-loop plant under k;, > (1 + ﬁ)aveq ~ 60.712.

. The control sensitivity transfer function 7 + u is

kp/(@veq) (ms + atveq)
ms + aveq + kp

7_1c(s) =

By the Initial Value Theorem, the control effort at the initial time is

kp
AVeq

1
70) = lim 57200 =

Therefore, the closed loop bandwidth (we assume hereafter that #(0) = kp/(cveq) > 1+ V2, so that
the closed-loop bandwidth is nonzero) is

1 1 Z _
o1 = - \/kg — 2kpaveq — v, = P a?vZ [u(0)]* — 202vZu(0) — v,

= wp,p v/[1(0)]2 — 2i1(0) — 1 = wpp /(i1(0) — 1)2 -2,

whence
2
i(0) = 1+ 2+(M) .
Wy, P

Thus, the increase of the closed-loop bandwidth with respect to that of the plant itself gives rise to
an increase of the initial control amplitude, at + = 0. This is intuitive, if we want to get a wider
bandwidth for the closed-loop system, we should pay with a higher control effort.
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Fig. 6: Bode plots for Question 3

4. The results are presented in Fig. 6. Expectably, the further apart wp p and wp, 7 are, the higher the
magnitude of |7.(jw)| at high frequencies is. Not only does this give higher control effort at time
t = 0, it also creates a higher sensitivity to noise, which is typically concentrated in high frequencies.

That’s all ... \



