הטכניון – מכון טכנולוגי לישראל, הפקולטה להנדסת מכונות

TECHNION—Israel Institute of Technology, Faculty of Mechanical Engineering

INTRODUCTION TO CONTROL (034040) TUTORIAL 8

Fig. 1: Unity-feedback control system

Question 1. Consider the unity-feedback system in Fig. 1. Are the requirements below contradictory?

1.	$\begin{cases} E_r(j\omega) < 0.1 R(j\omega) \\ E_n(j\omega) < 0.1 N(j\omega) \end{cases}$	for all $\omega < 10$ for all $\omega > 1$
2.	$\begin{cases} E_r(j\omega) < 0.1 R(j\omega) \\ E_n(j\omega) < 0.1 N(j\omega) \end{cases}$	for all $\omega < 1$ for all $\omega > 10$

where e_r is the effect of the reference signal r on the tracking error e := r - y, e_n is the effect of the measurement noise n on it, and $X(j\omega)$ stands for the value of the spectrum of a signal x at a frequency ω .

Fig. 2: Polar plots of $L_i(j\omega)$ for Question 2

Question 2. Fig. 2 depicts the polar plots of four loop frequency responses $L_i(j\omega) = P_i(j\omega)C_i(j\omega)$ for i = 1, ..., 4. These systems are controlled in the standard unity-feedback configuration in Fig. 1.

- 1. Fig. 3 depicts the Bode plots of the closed-loop complementary sensitivity functions T_k , k = 1, ..., 4. Relate between k and i.
- 2. Fig. 4 depicts the step responses of the closed-loop sensitivity functions $S_l(s)$, l = 1, ..., 4. Relate between l and i.

Fig. 4: Step responses of S_l for Question 2

Question 3. Consider yet again the problem of cruise control for a vehicle, like that depicted in Fig. 5. The problem here is to maintain the vehicle velocity v at prespecified levels by changing the driving force f generated by the engine. As we already know (Tutorials 3 and 5), the linearized (around some given velocity v_{eq}) model of this system is

$$y = \frac{1}{ms + \alpha v_{\rm eq}} u$$

where m is the mass of the vehicle, α is a constant depending on the density of air, the frontal area of

Fig. 5: System for Question 3

the car, and a shape-dependent aerodynamic drag coefficient, and the deviation variables $y := v - v_{eq}$ and $u := f - 0.5\alpha v_{eq}^2 - mg(\sin \theta + C_r \cos \theta)$, where C_r is the (dimensionless) rolling resistance coefficient and θ is the actual road slope. In all numerical calculations of what follows we assume the following numerical values:

α	$C_{\rm r}$	g	m_0	θ_{0}	$v_{ m eq}$
1 [kg/m]	0.01	$9.8 [\mathrm{m/sec}^2]$	1000 [kg]	$12^{\circ} \approx 0.20944 [rad]$	$80 [\text{km/h}] \approx 22.2222 [\text{m/sec}]$

Assume that the system is controlled by in the unity-feedback scheme, like that in Fig. 1 by a proportional controller $C(s) = k_p > 0$

- 1. Normalize the control signal and the output such that the plant has the unit static gain.
- 2. Find the bandwidth of the normalized plant and of the closed-loop complementary sensitivity function T (as function of k_p).
- 3. Find the control effort at t = 0. Express the closed-loop bandwidth $\omega_{b,T}$ as a function of $\bar{u}(t \to 0)$ and the bandwidth of the normalized plant.
- 4. Draw the Bode plots of $\overline{T}(j\omega)$, $\overline{P}(j\omega)$, and $\overline{T}_{c}(j\omega)$ for $k_{p} \in \{500, 2000, 6000\}$. Explain the results of section 2 based on the resulting plots.