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TECHNION—Israel Institute of Technology, Faculty of Mechanical Engineering

Introduction to Control (034040)

tutorial 7
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Fig. 1: Unity feedback closed-loop system

Question 1 (self-study). A process with the transfer function P.s/ D 1=..s C 1/.s C 2// is controlled in

closed loop with unity feedback as in Fig. 1.

1. Sketch the root locus of the system under a proportional (P) controller, i.e. C.s/ D kp > 0.

2. Find regions of the P controller gain kp for which the closed-loop response r 7! y satisfies the

following specifications:

(a) the overshoot OS � 10%,

(b) the natural frequency !n 2 Œ5=3; 8=3� [rad/sec].

3. Calculate the steady-state errors to step r and d as functions of the P controller gain kp. What are

the smallest errors under admissible controllers from the previous item?

4. Consider now a proportional-integral (PI) controller of the form C.s/ D kp.1 C ki=s/ for some

kp > 0 and ki > 0. Calculate the steady-state errors to step r and d as functions of the PI controller

parameters kp and ki.

Solution.

1. In this case

Gk.s/ D P.s/ D 1

.s C 1/.s C 2/
:

It has two poles (at s D �2 and s D �1) and no zeros. As the pole excess is 2, there are two

asymptotes with �1 D ��=2 and �2 D �=2 and with the center of gravity at �c D .�2 � 1/=2 D
�3=2. The loci are shown by the red and blue lines in Fig. 2.

2. First, the closed-loop system has a second-order transfer function with no zeros. Hence, requirements

on the overshoot and the natural frequency can be expressed as appropriate (see Lecture 4) areas on

the complex plane. The overshoot depends only on the ratio of the real and imaginary parts of the

poles at ��r ˙ j�i. Namely,

OS D e���r=�i � 0:1 ” �i

�r
� �

ln 10
� 1:36438:

Hence, the poles must lie within the sector bounded by radial lines with the slope 1:36438, marked by

green dashed line in Fig. 2. The natural frequency !n is the absolute value of a root, i.e.
p

�2
r C �2

i .

Thus, the requirement !n 2 Œ5=3; 8=3� is translated to a ring between the two green circles in Fig. 2.

The region that satisfies both requirements (the overlap between these two areas) is the gray shaded

area in Fig. 2.
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Fig. 2: Root locus plot for Question 1

It can be seen that for small kp the blue locus is outside the shaded area (as kp increases, red locus

exits it as well). Both loci enter the area at their intersection with the circle of radius 5=3. The point

of this intersection can be calculated by Pythagoras,

�2
i D 25

9
� �2

r D 25

9
� 9

4
D 181

9 � 4
” �i D

p
19

6
� 0:726483:

As kp further increases, the loci exit the shaded area after intersecting the green dashed radial line.

This happens as
�i

�r
D �

ln 10
” �i D 3�

2 ln 10
� 2:04656:

The corresponding gains kp can then be calculated by the gain rule:

kp,min D 1

jGk.�1:5 C j0:726483/j D 7

9
� 0:777778

kp,max D 1

jGk.�1:5 C j2:04656/j D 1

4
C

�

3�

2 ln 10

�2

� 4:43843

Thus, the closed-loop system satisfies the specifications iff

0:777778 � kp � 4:43843:

3. We know that

e D Sr � Tdd:

Hence, the steady-state error to a step reference signal is

ess D jS.0/j D 1

j1 C P.0/kpj D 2

2 C kp

and that with respect to a step disturbance is

ess D j�Td.0/j D jP.0/j
j1 C P.0/kpj D 1

2 C kp
:
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They are obviously both decreasing functions of kp. Hence, the smallest errors are attained under

the largest possible kp, which is kp D 4:43843. The corresponding errors under step r and d are then

ess � 0:310635 and ess � 0:155317;

respectively.

4. We should know that the presence of an integral action in the controller guarantees zero steady-state

errors under step r and d whenever the controller stabilizes the closed-loop system. Thus, all we

need is to determine under which combination of kp and ki the closed-loop system is stable. To this

end, write the characteristic polynomial

�cl.s/ D .s C 1/.s C 2/s C kp.s C ki/ D s3 C 3s2 C .kp C 2/s C kikp:

Assuming kp > 0 and ki > 0, this polynomial is Hurwitz iff

3.kp C 2/ > kikp ” .ki � 3/kp < 6

If ki 2 .0; 3�, this condition holds true for all kp > 0. If ki > 3, the closed-loop system is stable iff

0 < kp < 6=.ki � 3/. Thus, the steady-state error

ess D

˚
0 if kp <

6

maxf3; kig � 3

1 otherwise

That’s all . . . O
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Fig. 3: Root locus system 1

Question 2. Fig. 3 depicts the root-locus of a plant P controlled in the unity-feedback configuration in

Fig. 1 with a proportional controller, C.s/ D kp.

1. Can P.s/ be determined unambiguously?

2. Assuming that the leading coefficient of the numerator of P.s/ is positive (the denominator is monic),

determine the sign of kp in Fig. 3 and sketch the root-locus plot for the complementary region.

3. Fig. 4 presents the closed-loop step responses for kp D 0:093, kp D �0:008, and kp D 1:885. Match

the time-domain response to each of these controller gains. What are the steady-state frequencies of

the oscillating responses?

Fig. 4: Step responses of the closed-loop system for different kp

Solution.

1. We observe that 4 loci are leaving the pole at s D �1 and 3 loci are entering the zero at s D �5.

Since the controller is C.s/ D kp, we determine that the transfer function of the plant is of the form

P.s/ D k.s C 5/3

.s C 1/4

Because the root-locus is plotted for gains kp 2 Œ0; 1/, we cannot tell the plant gain k from that of

the controller. Hence, we can only determine the locations of poles and zeros of P.s/, but not its

gain, from root-locus plots.
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Fig. 5: Root locus for negative gains, kp < 0

2. To tell apart positive and negative gains, we first look at loci on the real axis. Negative gain root-

locus will always have a branch going to C1 (since in that case loci are to the left of an even number

of poles and zeros), hence the root-locus in Fig. 3 corresponds to positive gains kp.

To sketch the root-locus for negative gains, we go through standard steps. First, we determine that

still Gk.s/ D P.s/. Then we place 4 poles at s D �1 and 3 zeros at s D �5. We draw the loci on the

real axis to the left of an even number of poles and zeros. In our case we have zero (which is even)

poles and zeros to the left of points in .�1; 1/, 4 poles to the left of .�5; �1/, and 7 poles and zeros

to the left of .�1; �5/. Hence, the loci on the real axis will be in .�5; 1/.

The next step is to determine the behavior as kp ! �1. The pole excess is 1, so 3 poles will end

up in the zeros (we shall now draw two more branches additionally to the one on the real axis), and

one pole will go to infinity along with the asymptote at the positive real axis (�1 D 0). The resulting

plot is shown in Fig. 5.

3. First, remember that for each gain kp the 4 poles of the closed loop are positioned in a specific 4

points on each loci. Next, studying the time-responses we recognize that y1 is the step response of

a system containing an integrator (a pole at the origin), while y2 and y3 are the step responses of

systems containing imaginary-axis poles (non-decaying oscillations). In all cases, the other poles of

closed-loop systems must be stable, as their contributions to time responses vanish with time.

Comparing the root-locus plots in Figs. 3 and 5, we can see that a pole at the origin is only possible

for negative controller gains. Hence, we have that

y1 $ kp D �0:008:

The positive gain root-locus in Fig. 3 has two imaginary-axis crossings: at some lower gain its loci

cross at s1;2 � ˙j1:64 and then at some higher gain they cross again at s3;4 � ˙j5. When we

have one of those critical gains, two poles of the closed-loop system are positioned on the imaginary

axis, while the other loci are in the LHP. Hence, the response (in steady state) will oscillate without

decay at a frequency corresponding to the crossing point. As slower oscillations (those with a lower

imaginary part) occur at a lower gain and faster oscillations occur at a higher gain, we must have that

y2 $ kp D 1:885 and y3 $ kp D 0:093

(their frequencies are ! � 5 [rad/sec] and ! � 1:64 [rad/sec], respectively).

That’s all . . . O
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Fig. 6: System for Question 3

Question 3. Consider again the problem of cruise control for a vehicle, like that depicted in Fig. 6. The

problem here is to maintain the vehicle velocity v at prespecified levels by changing the driving force

f generated by the engine. As we already know (Tutorials 3 and 5), the linearized (around some given

velocity veq) model of this system is

y D 1

ms C ˛veq

.u C d/;

where m is the actual mass of the vehicle, ˛ is a constant depending on the density of air, the frontal area of

the car, and a shape-dependent aerodynamic drag coefficient, and the deviation variables y ´ v � veq and

u ´ f � 0:5˛v2
eq � m0g.sin �0 C Cr cos �0/, where Cr is the (dimensionless) rolling resistance coefficient,

m0 is the assumed mass of the vehicle and �0 is the assumed slope angle of the road. The disturbance

signal, which accounts for inaccuracies in the assumed mass and angle, satisfies

d.t/ D d0 ´ m0g.sin �0 C Cr cos �0/ � mg.sin � C Cr cos �/;

where � is the actual road slope. In all numerical calculations of what follows we assume the following

numerical values:

˛ Cr g m0 �0 veq

1 [kg/m] 0:01 9:8 [m/sec2] 1000 [kg] 12ı � 0:20944 [rad] 80 [km/h] � 22:2222 [m/sec]

Assume that the system is controlled by in the unity-feedback scheme, like that in Fig. 1. We saw in

Tutorial 6 that a proportional controller is not capable to attain a required new velocity vnew. Consider now

another controller, PI:

C.s/ D kp

�

1 C ki

s

�

(1)

for some parameters kp > 0 and ki > 0.

1. Sketch the root-locus plot for the system with respect to the proportional gain kp. How the choice of

ki affects it? Under what kp and ki the closed-loop system is stable?

2. What is the steady-state velocity in this case under

rv.t / D

�
0 if t � 0

amaxt if 0 � t � ynew=amax

ynew if t � ynew=amax

D
t0 ynew=amax

ynew

(2)

for the peak acceleration amax D 0:5 [m/s2] and ynew D 10 [km/h] D 25=9 � 2:78 [m/sec] under

m D m0 and � D �0?

3. How the choices of kp and ki affect the steady-state error in general, under m ¤ m0 and � ¤ �0?

Simulate the response of the linearized closed-loop system to r as in (2) under the nominal car

mass and a step change of the road slope at t D 13 [sec] to � D 13ı � 0:2269 [rad] under kp 2
f500; 1000; 5000g and ki 2 f0:0222; 0:1331g.
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4. Analyze the nonlinear system with the unity feedback closed-loop PI controller as in (1) (the nonlin-

ear plant dynamics are m Pv D f � 0:5˛v2 � mg.sin � C Cr cos �/). What is its steady-state response

to the reference signal in (2)?

Solution.

1. The root-locus form in this case has

Gk.s/ D 1

ms C ˛veq
� s C ki

s
D s C ki

s.ms C ˛veq/
:

It has two real poles (at s D 0 and s D �˛veq=m) and one real zero (at s D �ki). There is one

asymptote with �0 D � , which goes to infinity along the negative real axis. The loci occupy the

following parts of the real axis:

�

�1; � maxfki; ˛veq=mg
�

[
�

� minfki; ˛veq=mg; 0
�

;

all in its negative part. Then the following situations are possible:

(a) If ki D ˛veq=m, the root-locus plot effectively coincides with that of a single integrator, 1=s.

The only difference is that we always have an additional closed-loop pole at s D �˛veq=m

(canceled pole of the plant). In this case, the closed-loop system is stable for all kp > 0.

(b) If 0 < ki < ˛veq=m, the interval .�ki; 0/ contains the whole locus, as it has a pole at one its

end, and a zero at the other. Then the interval .�1; �˛veq=m/ is also the whole locus, starting

at �˛veq=m and going to �1. The resulting plot is presented in Fig. 7(a). As all loci are in

the LHP, the closed-loop is stable for all such ki under all kp > 0.

(c) If ki > ˛veq=m, the interval .�˛veq=m; 0/ contains two loci (poles at both its ends), as so does

the interval .�1; �ki/ (zero at one and and asymptote at the other). The loci must then connect

through the “non-real” parts of the complex plane. In other words, we must have breakaway

and break-in points. To calculate them, we need real points s belonging to the root-locus plot

such that
d

ds
Gk.s/ D �ms2 C 2mkis C ˛veqki

s2.ms C ˛veq/2
D 0:

The solutions to this equation are

s1;2 D �ki ˙ ki

p

1 � ˛veq=.mki/:

Im
s

Re s�ki�˛veq=m

(a) The case 0 < ki < ˛veq=m

Im
s

Re s�ki �˛veq=m

s1 s2

(b) The case ki > ˛veq=m

Fig. 7: Root-locus plots for Question 3
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Because the discriminant is always positive in our case, there are two real solutions. The point

s1 (which corresponds to “�”) is clearly located to the left of �ki, so it belongs to the root-locus

and is a break-in point. The point s2 must be larger than �˛veq=m to belong to loci. We have:

s2 > �˛veq=m ”
p

1 � ˛veq=.mki/ > 1 � ˛veq=.mki/;

which is true because 1 � ˛veq=.mki/ 2 .0; 1/. Thus, s2 also belongs to the root locus plot and

is a breakaway point. The resulting plot is presented in Fig. 7(b). All loci are again in the LHP,

so the closed-loop is stable for all such ki under all kp > 0.

Thus, the closed-loop system is stable for all kp > 0 and ki > 0.

2. Because the closed-loop system is stable for all kp > 0 and ki > 0 and because we have an integral

action in the controller, the steady-state error must be zero, i.e. we must have

lim
t!1

v.t/ D lim
t!1

y.t/ C veq D ynew C veq µ vnew:

Of course, we may also show that via calculating steady-state values from the Final Value Theorem.

3. The situation here does not change. As the stability of the closed-loop system does not depend on m

and � , any kp > 0 and ki > 0 and the integral action in the controller yield the same result as above.

The simulations are presented in Figs. 8.

Note that ki D 0:0222 D ˛veq=m in this case, so we cancel the pole of the plant by a zero of

the controller. The velocity response to the reference signal is then driven by the complementary

sensitivity function, which is a first-order system in this case (with a pole at f�0:5; �1; �5g for

different kp’s). The disturbance response, on the other hand, is driven by Td, where the canceled

pole of the plant at s D �0:0222 is still a pole. This pole is slow, relatively to the other pole of the

closed-loop system. This is why the decay of the disturbance response is slow.

Then ki D 0:1331 D 6˛veq=m, which corresponds to the root locus in Fig. 7(b). As kp grows, one

closed-loop pole moves left and another one approaches the zero at s D �ki. The reference signal

response for kp’s around the break-in point s1 has a dominant zero, which gives rise to overshoot.

At larger kp’s this zero is effectively canceled by a closed-loop pole and its effect is negligible. The

disturbance response still decays slowly though, because the closed-loop pole approaching s D �ki

is not canceled there.

4. The PI controller of (1) in the time domain can be expressed as

(

Pxc.t / D kie.t/

u.t/ D kpxc.t / C kpe.t/;

where xc is the state vector of the controller (in fact, xc.t / D ki

R t

0
e.�/d� or Xc.s/ D .ki=s/E.s/).

Combining these equations with those of the car m Pv D f �0:5˛v2�mg.sin � CCr cos �/ and setting

f .t/ D u.t/ C ˛

2
v2

eq C m0g.sin �0 C Cr cos �0/ and e.t/ D r.t/ � v.t/ C veq;

we end up with the combined dynamics

�

m Pv.t/

Pxc.t /

�

D
�

u.t/ C ˛
2
v2

eq C m0g.sin �0 C Cr cos �0/ � ˛
2
v2.t / � mg.sin � C Cr cos �/

ki.r.t / C veq � v.t//

�

D
�

kpxc.t / � kp.v.t/ � r.t/ � veq/ � ˛
2
.v2.t / � v2

eq/ C d0

�ki.v.t/ � r.t/ � veq/

�
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(a) Vehicle velocities (b) Driving forces

(c) Vehicle velocities (d) Driving forces

Fig. 8: Velocity responses to rv from (2) under changed slope (“ideal” force is that under which v � rv)

The steady-state response (assuming stability1) under lim t!1 r.t/ D ynew corresponds to Pv D 0

and Pxc D 0, i.e.
�

kpxc � ˛
2
.v2 � v2

eq/ � kp.v � vnew/ C d0

�ki.v � vnew/

�

D 0;

where vnew D ynew C veq. Hence, the unique equilibrium of the closed-loop system is

v D vnew and kpxc D ˛

2

�

v2
new � v2

eq

�

� d0:

This implies that the equilibrium is always at the required v D vnew. As a matter of fact, the driving

force at the equilibrium is

f D ˛

2
v2

new C mg.sin � C Cr cos �/;

which is the equilibrium force in the open-loop analysis, exactly as it should be.

That’s all . . . O

1Although we have no tools to analyze stability of nonlinear systems, we assume that the closed-loop system is stable.


