הטכניון – מכון טכנולוגי לישראל, הפקולטה להנדסת מכונות

TECHNION—Israel Institute of Technology, Faculty of Mechanical Engineering

INTRODUCTION TO CONTROL (034040)

TUTORIAL 7

Fig. 1: Unity feedback closed-loop system

Question 1 (self-study). A process with the transfer function P(s) = 1/((s + 1)(s + 2)) is controlled in closed loop with unity feedback as in Fig. 1.

- 1. Sketch the root locus of the system under a proportional (P) controller, i.e. $C(s) = k_p > 0$.
- 2. Find regions of the P controller gain k_p for which the closed-loop response $r \mapsto y$ satisfies the following specifications:
 - (a) the overshoot OS $\leq 10\%$,
 - (b) the natural frequency $\omega_n \in [5/3, 8/3]$ [rad/sec].
- 3. Calculate the steady-state errors to step r and d as functions of the P controller gain k_p . What are the smallest errors under admissible controllers from the previous item?
- 4. Consider now a proportional-integral (PI) controller of the form $C(s) = k_p(1 + k_i/s)$ for some $k_p > 0$ and $k_i > 0$. Calculate the steady-state errors to step *r* and *d* as functions of the PI controller parameters k_p and k_i .

Fig. 2: Root locus system 1

Question 2. Fig. 2 depicts the root-locus of a plant *P* controlled in the unity-feedback configuration in Fig. 1 with a proportional controller, $C(s) = k_p$.

1. Can P(s) be determined unambiguously?

- 2. Assuming that the leading coefficient of the numerator of P(s) is positive (the denominator is monic), determine the sign of k_p in Fig. 2 and sketch the root-locus plot for the complementary region.
- 3. Fig. 3 presents the closed-loop step responses for $k_p = 0.093$, $k_p = -0.008$, and $k_p = 1.885$. Match the time-domain response to each of these controller gains. What are the steady-state frequencies of the oscillating responses?

Fig. 3: Step responses of the closed-loop system for different k_p

Fig. 4: System for Question 3

Question 3. Consider again the problem of cruise control for a vehicle, like that depicted in Fig. 4. The problem here is to maintain the vehicle velocity v at prespecified levels by changing the driving force f generated by the engine. As we already know (Tutorials 3 and 5), the linearized (around some given velocity v_{eq}) model of this system is

$$y = \frac{1}{ms + \alpha v_{\rm eq}} \, (u + d),$$

where *m* is the actual mass of the vehicle, α is a constant depending on the density of air, the frontal area of the car, and a shape-dependent aerodynamic drag coefficient, and the deviation variables $y := v - v_{eq}$ and $u := f - 0.5\alpha v_{eq}^2 - m_0 g(\sin \theta_0 + C_r \cos \theta_0)$, where C_r is the (dimensionless) rolling resistance coefficient, m_0 is the *assumed* mass of the vehicle and θ_0 is the *assumed* slope angle of the road. The disturbance signal, which accounts for inaccuracies in the assumed mass and angle, satisfies

$$d(t) = d_0 := m_0 g(\sin \theta_0 + C_r \cos \theta_0) - mg(\sin \theta + C_r \cos \theta),$$

where θ is the actual road slope. In all numerical calculations of what follows we assume the following numerical values:

α	$C_{\rm r}$	g	m_0	θ_{0}	$v_{ m eq}$
1 [kg/m]	0.01	$9.8 [\mathrm{m/sec}^2]$	1000 [kg]	$12^{\circ} \approx 0.20944$ [rad]	$80 [\text{km/h}] \approx 22.2222 [\text{m/sec}]$

Assume that the system is controlled by in the unity-feedback scheme, like that in Fig. 1. We saw in Tutorial 6 that a proportional controller is not capable to attain a required new velocity v_{new} . Consider now another controller, PI:

$$C(s) = k_{\rm p} \left(1 + \frac{k_{\rm i}}{s} \right) \tag{1}$$

for some parameters $k_p > 0$ and $k_i > 0$.

- 1. Sketch the root-locus plot for the system with respect to the proportional gain k_p . How the choice of k_i affects it? Under what k_p and k_i the closed-loop system is stable?
- 2. What is the steady-state velocity in this case under

$$r_{v}(t) = \begin{cases} 0 & \text{if } t \leq 0 \\ a_{\max}t & \text{if } 0 \leq t \leq y_{\text{new}}/a_{\max} \\ y_{\text{new}} & \text{if } t \geq y_{\text{new}}/a_{\max} \end{cases} \xrightarrow{y_{\max}} (2)$$

for the peak acceleration $a_{\text{max}} = 0.5 \,[\text{m/s}^2]$ and $y_{\text{new}} = 10 \,[\text{km/h}] = 25/9 \approx 2.78 \,[\text{m/sec}]$ under $m = m_0$ and $\theta = \theta_0$?

- 3. How the choices of k_p and k_i affect the steady-state error in general, under $m \neq m_0$ and $\theta \neq \theta_0$? Simulate the response of the linearized closed-loop system to *r* as in (2) under the nominal car mass and a step change of the road slope at t = 13 [sec] to $\theta = 13^\circ \approx 0.2269$ [rad] under $k_p \in$ {500, 1000, 5000} and $k_i \in \{0.0222, 0.1331\}$.
- 4. Analyze the nonlinear system with the unity feedback closed-loop PI controller as in (1) (the nonlinear plant dynamics are $m\dot{v} = f 0.5\alpha v^2 mg(\sin\theta + C_r\cos\theta)$). What is its steady-state response to the reference signal in (2)?