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TECHNION—Israel Institute of Technology, Faculty of Mechanical Engineering

Introduction to Control (034040)

tutorial 6
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Fig. 1: Unity feedback closed-loop system

Question 1. Consider the unity feedback system in Fig. 1. Sketch (qualitatively) the root-loci of the fol-

lowing systems with respect to the gain k. Is it possible to stabilize the system with k > 0?

1. P.s/ D s C 1

.s � 1/.s � 2/.s C 5/
and C.s/ D k

2. P.s/ D .s � 1/.s C 1/

.s � 3/.s � 5/
and C.s/ D k

3. P.s/ D 1

.s � 1/3 and C.s/ D k
s � 3

s � 7

4. P.s/ D 1

s2
and C.s/ D s C k

s C 2

Solution. To sketch root-locus plots, we can use the following guidelines:

� construct the transfer function Gk.s/ of the root locus form Gk.s/ D �1=k;

� place poles and zeros of Gk.s/ on the pole-zero map;

� draw the loci on the real axis (to the left of an odd number of real poles and zeros of Gk.s/;

� if m is the number of zeros of Gk.s/, m loci end in these zeros, so sketch this connection (the others

will go to infinity via asymptotes);

� find the center of gravity and and angles of the asymptotes and sketch the loci that go to infinity

along with the asymptotes.

Now let us study the given systems

1. In this case

Gk.s/ D P.s/ D s C 1

.s � 1/.s � 2/.s C 5/

and it has three poles (at s D �5, s D 1, and s D 2), a zero (at s D �1), and a pole excess of 2.

Thus, the real-axis loci are in Œ�5;�1� (this is the whole locus, it starts at a pole and ends at a zero)

and Œ1; 2� (this contains 2 loci, each starts at the corresponding pole). There are two loci going to

infinity with two asymptotes. Their angles are

�l D �� C 2�l

2
; l D 0; 1 H) �1 D ��

2
and �2 D �

2
:
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(a) Item 1 (b) Item 2

Fig. 2: Root locus plots for Question 1

The center of gravity is

�c D .C1C 2 � 5/ � .�1/
2

D �1
2
:

This results in the root locus given in Fig. 2(a).

We can see that this closed-loop system (which is unstable in open loop) can be stabilized in closed

loop with a proportional controller C.s/ D k for a sufficiently high gain k.

Note that in more complicated cases, with a nontrivial combination and proximity of poles and

zeros, these rules do not always determine the shape of the root loci unambiguously. In such cases

a numerical study will be required. We’ve actually seen it for a very similar case to item 1 in the

lecture. Yet, in many cases the approach described above could help us quickly acquire an intuition

regarding the root locus plot and system stability.

2. In this case

Gk.s/ D P.s/ D .s � 1/.s C 1/

.s � 3/.s � 5/
and it has two poles (at s D 3 and s D 5), two zero (at s D �1 and s D 1), and a pole excess of 0.

Thus, the real-axis loci are in Œ�1; 1� (this is where two loci end) and Œ3; 5� (this is where two loci

start). There are no loci going to infinity. The loci start at the poles, approach each other along the

real axis, then break away at some point in Œ3; 5�. They then meet again at a break-in point in Œ�1; 1�
and approach the zeros along the real axis. To calculate the breakaway and break-in points, we need

to find real solutions to

0 D dGk.s/

ds
D � 8.s2 � 4s C 1/

.s � 5/2.s � 3/2
D �8.s � 2�

p
3/.s � 2C

p
3/

.s � 5/2.s � 3/2
:

Hence, the breakaway point is s D 2 C
p
3 � 3:73205 (the one in Œ3; 5�) and the break-in point is

s D 2 �
p
3 � 0:267949 (the one in Œ�1; 1�). This results in the root locus given in Fig. 2(b).

We can see that this closed-loop system cannot be stabilized by a proportional controller C.s/ D k,

because at every k one locus is always in the RHP.

3. In this case

Gk.s/ D 1

.s � 1/3 � s � 3
s � 7 D s � 3

.s � 1/3.s � 7/
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(a) Item 3 (b) Item 4

Fig. 3: Root locus plots for Question 1

and it has four poles (three at s D 1 and one at s D 7), a zero (at s D 3), and a pole excess of 3.

Thus, the real-axis loci are in .�1; 1� (this is the whole locus, it starts at a pole and ends at �1)

and Œ3; 7� (this is also the whole locus, starting at a pole and ending at a zero). There are three loci

that go to infinity with three asymptotes. Their angles are

�l D �� C 2�l

3
; l D 0; 1; 2 H) �1 D ��

3
; �2 D �

3
; and �3 D �:

The center of gravity is

�c D .C1C 1C 1C 7/ � .C3/
3

D 7

3
� 2:333:

This results in the root locus given in Fig. 3(a).

Again, we see that at least tree loci (i.e. at least 3 closed-loop poles) will stay in the RHP for any

k > 0.

4. To derive the root-locus form in this case, consider the closed-loop characteristic polynomial

�cl.s/ D s C k C s2.s C 2/ D s.s C 1/2 C k:

Hence, �cl.s/ D 0 reads Gk.s/ D �1=k for

Gk.s/ D 1

s.s C 1/2
;

having three poles (two at s D �1 and one at s D 0), no zeros, and a pole excess of 3. In this case

the real-axis loci are in the whole non-positive semi-axis .�1; 0� (one whole locus, in .�1;�1�,
and parts of two others in Œ�1; 0�). All loci go to infinity along with asymptotes with the angles

�l D �� C 2�l

3
; l D 0; 1; 2 H) �1 D ��

3
; �2 D �

3
; and �3 D �:

(as in the previous item) and the center of gravity

�c D .�1� 1C 0/

3
D �2

3
� �0:667:
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The breakaway point in this case can be calculated as

0 D dGk.s/

ds
D � .3s C 1/.s C 1/

s2.s C 1/4
D � 3s C 1

s2.s C 1/3
” s D �1

3
� �0:333:

Two loci that go along the asymptotes with angles ˙�=3 end up in the RHP. Hence, they cross the

imaginary axis at some finite k. This happens at the points ˙j!0, where !0 is determined via the

phase rule as follows:

argGk.j!/ D ��
2

� 2 arctan.!0/ D �� ” arctan.!0/ D �

4
” !0 D 1:

The resulting root-locus plot is presented in Fig. 3(b).

We can clearly see that all loci are in the LHP for sufficiently small k’s, up to the point where the

imaginary axis is crossed. This is the point where (by the gain rule)

k D 1

jGk.j/j
D jj.1C j/2j D 2:

Thus, the closed-loop system is stable iff k 2 .0; 2/.

That’s all . . . O
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Question 2. Consider the system P.s/ D .s � 1/=.s � 2/ controlled in closed loop with unity feedback.

1. Can the system be stabilized by a proportional controller of the form C.s/ D kp for some kp > 0?

2. Can the system be stabilized by a stable controller, i.e. C.s/ D kpNC .s/=DC .s/ for some Hurwitz

DC .s/ ?

3. Discuss the requirements for a controller of the form C.s/ D kp
QC.s/ for stabilizing the system.

Considering the controller C.s/ D kp=.s � a/, for some kp > 0, find the requirements on a

(a) by analyzing roots of the closed-loop characteristic polynomial,

(b) by using root-locus principles.

4. Find the range of kp for which the closed-loop system is stable for the controller in the previous item.

Solution.

1. The root locus form of this case is that with Gk.s/ D P.s/ and k D kp. It has a RHP pole and and

a RHP zero, so by the real axis rule, the whole locus should be located between them (see Fig. 4).

Therefore the closed loop is unstable for any kp > 0, meaning the system cannot be stabilized by a

proportional controller.

Fig. 4: Root locus for C.s/ D kp

2. It is convenient to consider the root locus with respect to the gain kp. In this case

Gk.s/ D P.s/
NC .s/

DC .s/
D .s � 1/NC .s/

.s � 2/DC .s/
and k D kp

This transfer function still has RPH pole (at s D 2) and zero (at s D 1). Thus, to stabilize the

system we have to break the locus in Fig. 4. This could be done by placing real poles or zeros of the

controller to the right of s D 1. But the roots ofDC .s/ are assumed to lie in the LHP. Hence, we can

only manipulate RHP zeros of the controller, i.e. RPH roots of NC .s/. Our options are

(i) place zeros in s 2 .1; 2/: this won’t help, because then we will still have the whole locus in the

RHP, starting at s D 2 and going left to the closest zero;

(ii) place an even number zeros in s 2 .2;1/: this won’t help, because this does not break the

locus 2 ! 1;
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(iii) place an odd number zeros in s 2 .2;1/: this won’t help either, because this creates a locus

from s D 2 to the closest zero to the right of it.

In fact, what we need is an additional pole at, say, s D a > 1, to break that locus. Then two loci will

start at s D a and s D 2, meet at some breakaway point between them, and leave the positive real

axis. We shall then endeavor to direct those two loci to the LHP by placing a zero there (although it

might not be clear yet where exactly and where exactly to put the additional RHP pole).

3. We saw in the previous item that a RHP pole is required in the controller to break the pole-zero

sequence, i.e. in the range s 2 .1;1/. For the proposed controller structure this reads a > 1. The

root locus form is

Gk.s/ D s � 1
.s � 2/.s � a/ and k D kp:

We sketch the loci on the real axis between the two poles and from the RHP zero at s D 1 to �1.

The two loci will start at the poles s D a and s D 2, meet at some breakaway point between them

and leave the positive real axis. These loci then return to the real axis at some break-in point and

split, one towards the zero and the other towards �1. For some choices of a the break-in point is

located in the RHP, see Fig. 5(a), in which case one of the loci remains in the RHP for all kp and the

(a) incorrect choice of a (b) correct choice of a

Fig. 5: Root locus for C.s/ D kp=.s � a/

closed-loop system is always unstable. We should aim at choosing a so that the break-in point is in

the LHP, like that depicted in Fig. 5(b). Below two approaches to this choice are considered:

(a) The (second-order) characteristic polynomial is

�cl.s/ D .s � 2/.s � a/C kp.s � 1/ D s2 C .kp � 2� a/s C 2a � kp

giving kp > 2 C a and kp < 2a. These inequalities are feasible iff 2 C s < 2a, which yields

a > 2.

(b) Using root locus rules, we can parametrically find the break-in point and require it to be in the

LHP from the relation

d

ds
Gk.s/ D 1.s2 � .a C 2/s C 2a/ � .s � 1/.2s � a � 2/

.s � 2/2.s � a/2
D 0:
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This quadratic equation has two solutions p1;2 D 1 ˙
p

�1C a. First, note that breakaway /

break-in points exist only if a > 1, as expected. We then require that the leftmost point, which

must correspond to the break-in in Fig. 5(b), satisfies 1 �
p

�1C a < 0 giving a > 2, i.e. to

the right of the plant pole at s D 2.

4. We now in the position to find the critical gains kcr1 < kp < kcr2 for which the closed loop is stable.

The maximal gain kcr2 corresponds to the gain for which one locus crosses the origin from left to

right in Fig. 5(b). This corresponds to the closed-loop root at s D 0. We can then apply the gain rule

to find the gain for which a locus crosses the origin:

1

kp
D jGk.0/j D

ˇ

ˇ

ˇ

ˇ

�1
.�2/.�a/

ˇ

ˇ

ˇ

ˇ

D 1

2a

hence kp < 2a D kcr2.

The minimal gain corresponds to the points at which two loci cross the imaginary axis, say at s D
˙j!0. This gives 2 unknowns: the crossing frequency !0 and the critical gain for which the root

locus reaches these poles kcr1 (a is a parameter). To find these unknowns we first use the phase rule,

to find !0 (since the phase does not depend on the gain) and then substitute this !0 into the gain rule

to find kcr1. The phase rule reads

argGk.j!0/ D � � arctan !0 �
�

� � arctan
!0

2
C � � arctan

!0

a

�

D �� � arctan !0 C arctan
!0

2
C arctan

!0

a
D �� C 2�n:

For a given a we could solve this equation numerically. To solve it analytically for a parametric a we

shall use (twice) the arctangent summation formula

arctan ˛ ˙ arctan ˇ D arctan
˛ ˙ ˇ

1� ˛ˇ
;

which will eventually give !0 D ˙
p
a � 2. The gain rule reads then

1

kp

D jGk.j
p
a � 2/j D

ˇ

ˇ

ˇ

ˇ

j
p
a � 2� 1

.j
p
a � 2 � 2/.j

p
a � 2 � a/

ˇ

ˇ

ˇ

ˇ

D
p
a � 2C 1

p
a � 2C 4

p
a � 2C a2

D
p
a � 1

p

.aC 2/2.a � 1/
D 1

aC 2
;

whence the minimal critical gain kp > a C 2 D kcr1.

Note that the derived kcr1 and kcr2 agree with the bounds on the stabilizing kp derived via the analysis

of the characteristic polynomial above.

That’s all . . . O
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Fig. 6: Inverted pendulum on a cart for Question 3

Question 3 (self-study). Consider an inverted pendulum which consists of a point mass m on a mass-less

rod of length l installed on a cart of mass M . An external force u.t/ is acting on the cart. The controlled

output is assumed to be the acceleration of the cart, y.t/ D Ŕ.t /. We know from Tutorial 6 that the transfer

function of this system, linearized around the pendulum “up” position is (here g is the standard gravity)

P.s/ D ls2 � g
Mls2 � .M Cm/g

D 0:1.s � 3:13/.s C 3:13/

.s � 3:834/.s C 3:834/
; P.s/ D ls2 � g

Mls2 � .M Cm/g
D 1

M

s2 � 
2

s2 � �2
2
;

where


 ´
r

g

l
> 0 and � ´

r

1C m

M
> 1:

Consider the control of this system by the unity-feedback system like that in Fig. 1.

1. Is it possible to stabilize this system by a proportional controller, i.e. by C.s/ D kp for some kp > 0?

Explain via root-locus arguments.

2. Is it possible to stabilize this system by a stable controller having the positive high-frequency gain,

i.e. such that

C.s/ D
kpNC .s/

DC .s/
D
kp.s

m C Cbm�1s
m�1 � � � C b1s C b0/

sn C an�1sn�1 C � � � C a1s C a0

(1)

for m � n, kp > 0, and Hurwitz DC .s/ ? Explain via root-locus arguments. What property this

controller lacks to stabilize the system?

3. Consider now

C.s/ D
kp.s C ˛ � �
/.s C �
/

.s � ˛ � 
/.s C 
/
(2)

for kp > 0 and ˛ > �
 (it cancels stable pole and zero of P.s/ and has a LHP zero at s D �˛C�


and a RHP pole at s D ˛ C 
). Under what conditions on kp and ˛ this controller stabilizes the

plant? Explain via analyzing roots of the closed-loop characteristic polynomial.

4. Do the same, but using root-locus arguments. Find then kp and ˛ such that the closed-loop system

has all its poles at s D �
 .

5. Simulate the closed-loop system under the the pulse input disturbance d.t/ D 1.t � 0:5/� 1.t � 2:5/
with m D 5 [kg], M D 10 [kg], l D 1 [m], and g D 9:8 Œm/sec2� for the parameters kp and ˛ chosen

in the previous item.

6. Simulate the closed-loop system in the case when the standard gravity in the plant model is actu-

ally is g D 9:80665 Œm/sec2� (affecting 
), whereas the controller is still designed assuming g D
9:8 Œm/sec2� (i.e. pole-zero cancellations between the plant and the controller are not exact).
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Fig. 7: Root locus for the proportional C.s/

Solution. The root-locus form, which is the basis for all constructions / reasonings, is

ˇms
m C � � � C ˇ1s C ˇ0

sn C ˛n�1sn�1 C � � � C ˛1s C ˛0

D Gk.s/ D � 1
k
; (rlf)

where k is a parameter running from 0 to C1 and Gk.s/ is a given proper transfer function. Below we use

arguments corresponding to the case ˇm > 0.

1. The root locus form (rlf) in this case is that with Gk.s/ D P.s/ and k D kp. It has two real poles

and two real zeros, see Fig. 7. By the real axis rule, the loci will be located between the RHP pole and

zero and between the LHP pole and zero (starts at poles and ends at zeros, as always). It is clearly

seen that one locus (the red one) is located entirely in the RHP. Hence, the closed-loop system is

stable for no kp, i.e. the pendulum cannot be stabilized by a proportional controller.

2. It is convenient to consider root locus with respect to the gain kp. In this case

Gk.s/ D P.s/
NC .s/

DC .s/
D 1

M

.s2 � 
2/NC .s/

.s2 � �2
2/DC .s/
and k D kp:

This transfer function still has RPH pole (at s D �
) and zero (at s D 
). Thus, to stabilize the

system we have to break the red locus in Fig. 7. This could be done by placing real poles or zeros

of the controller to the right of s D 
 . But the roots of DC .s/ are assumed to lie in the LHP. Hence,

we can only manipulate RHP zeros of the controller, i.e. RPH roots of NC .s/. Our options are

(a) place zeros in s 2 .
; �
/: this won’t help, because then we will still have the whole locus in

the RHP, starting at s D �
 and going left to the closest zero;

(b) place an even number zeros in s 2 .�
;1/: this won’t help, because this does not break the

locus �
 ! 
 ;

(c) place an odd number zeros in s 2 .�
;1/: this won’t help either, because this creates a locus

from s D �
 to the closest zero to the right of it.

In fact, what we need is an additional pole at, say, s0 > 
 , to break that locus. Then two loci will

start at s D s0 and s D �
 , meet at some breakaway point between them, and leave the positive real

axis. We shall then endeavor to direct those two loci to the LHP by placing a zero there (although it

might not be clear yet where exactly and where exactly to put the additional RHP pole).

3. The characteristic polynomial in this case is

�cl.s/ D .s2 � 
2/ � kp.s C ˛ � �
/.s C �
/CM.s2 � �2
2/ � .s � ˛ � 
/.s C 
/

D .s C 
/.s C �
/
�

kp.s � 
/.s C ˛ � �
/CM.s � �
/.s � ˛ � 
/
�

D .s C 
/.s C �
/

�
�

.kp CM/s2 C ..˛ � 
 � �
/kp � .˛ C 
 C �
/M/s C ..˛ C 
/M� � .˛ � �
/kp/

�

It clearly has two stable roots at s D �
 and s D ��
 and two more roots of the polynomial

�1.s/ D .kp CM/s2 C ..˛ � 
 � �
/kp � .˛ C 
 C �
/M/s C ..˛ C 
/M� � .˛ � �
/kp/
;
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whose location we have to determine. Because the leading coefficient of �1.s/ is positive (under our

assumptions), the roots of �1.s/ are in the LHP iff the other coefficients are positive as well. In other

words, we have to guarantee that

.˛ � 
 � �
/kp > .˛ C 
 C �
/M and .˛ � �
/kp < .˛ C 
/M�:

The first inequality above requires ˛ > .�C 1/
 and then

˛ C 
 C �


˛ � 
 � �
 M < kp <
˛ C 


˛ � �
M�: (ƒ)

This condition is not empty iff

˛ C 
 C �


˛ � 
 � �
 <
˛ C 


˛ � �
 � ” ˛



>
�2 C 1

� � 1 > �C 1

(the last inequality is true because .�C 1/.� � 1/ D �2 � 1 < �2 C 1). Thus, there are stabilizing

kp and ˛ iff ˛ is sufficiently large, in a sense that

˛ >
�2 C 1

� � 1 
: (�)

Admissible kp’s are then easy to choose from (ƒ).

4. It is again convenient to consider root locus with respect to the gain kp. In this case

Gk.s/ D P.s/
.s C ˛ � �
/.s C �
/

.s � ˛ � 
/.s C 
/
D 1

M

.s C ˛ � �
/.s � 
/

.s � ˛ � 
/.s � �
/
and k D kp

(it should be remembered that there are two additional closed-loop poles, at s D �
 and s D ��
 ,

but they do not move as kp changes). From the reasonings of item 2, the controller pole should

be to the right of the plant unstable zero and the controller zero should be in the LHP. Hence, the

assumption ˛ > �
 . The root locus for this Gk.s/ should then look like that depicted in Fig. 8. We

can see that the zero of the controller is chosen to be at s D �
�˛ to keep symmetry in the pole-zero

map (which pays off in calculations below). The breakaway (s D s1) and break-in (s D s2) points

are the real solutions to

d

ds
Gk.s/ D �2s2 C 2.1C �/
s � .˛ C 
 � ˛�C 
�2/


M.s � ˛ � 
/2.s � 
�/2
˛ D 0:

Im
s

Re s�
 � ˛ 
 C ˛
 �


s2 s1

Fig. 8: Root locus for C.s/ in (2)
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This is a quadratic equation, with two solutions

s1;2 D 1

2

�

.1C �/
 ˙
p


.� � 1/.2˛ C 
 � 
�/
�

: (})

These solutions are real iff


.� � 1/.2˛ C 
 � 
�/ � 0 ” ˛ � � � 1

2

 (~)

(remember, 
 > 0 and � > 1). The break-in point is the smallest solution. In order to have loci in

the LHP, we need that smallest solution to be negative then. In other words, we need

.1C �/
 �
p


.� � 1/.2˛ C 
 � 
�/ < 0 ” ˛ >
�2 C 1

� � 1 
;

which is exactly (�). This condition implies (~), because

�2 C 1

� � 1 >
� � 1
2

” 2�2 C 2 > �2 C 1 � 2� ” �2 C 2�C 1 D .�C 1/2 > 0:

Our next step is to determine the minimal and the maximal admissible gains. The former is the gain

at which the loci in Fig. 8 cross the imaginary axis and the latter is the gain at which the red locus

crosses the origin. Crossing the origin is easy. Indeed, all we need is the gain rule

1

kp
D jGk.0/j D

ˇ

ˇ

ˇ

ˇ

� 1

M

.˛ � �
/


.˛ C 
/�


ˇ

ˇ

ˇ

ˇ

D ˛ � �

.˛ C 
/M�

;

which is the inverse of the upper bound in (ƒ). To calculate the gain at crossing the imaginary axis,

we need to calculate the point, say s D j!0, at which that happens. To this end, consider the pole-zero

map of the system in Fig. 9. The angles there verify

cot �1 D � 


!0

; cot 1 D ��

!0

; cot �2 D ˛ � �

!0

; and cot  2 D �˛ C 


!0

:

Hence,

cot.�1 �  2/ D 1C cot �1 cot  2

cot �1 � cot  2

D !2
0 C 
.˛ C 
/

˛!0

;

cot.�2 �  1/ D 1C cot �2 cot  1

cot �2 � cot  1

D !2
0 � �
.˛ � �
/

˛!0

and then

cot.�1 C �2 �  1 �  2/ D ˛2!2
0 � .!2

0 C 
.˛ C 
//.!2
0 � �
.˛ � �
//

!0˛.2!
2
0 C 
˛ C 
2 � �
˛ C �2
2/

:

Im
s

Re s�
 � ˛ 
 C ˛
 �
s2 s1sc

�
1  

1

 
2

�2

j!0

Fig. 9: Angles at root locus for C.s/ in (2)
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We know that at the imaginary axis the phase rule says that �1 C�2 � 1 � 2 � � .mod 2�/, which

implies that the denominator above must be zero. One possibility, !0 D 0, was already discussed.

The other possibility is

!2
0 D 
..� � 1/˛ � .�2 C 1/
/

2
> 0:

Then the magnitude

jGk.j!0/j2 D 1

M 2

.!2
0 C .˛ � �
/2/.!2

0 C 
2/

.!2
0 C .˛ C 
/2/.!2

0 C �2
2/
D

�

1

M

˛ � 
 � �

˛ C 
 C �


�2

;

from which the gain rule yields the lower bound in (ƒ).

Finally, it is quite evident from Fig. 8 that for every stabilizing kp there is only one LHP point where

two poles are equal. This happens in the break-in point, s D s2, where s2 is given by the “�” part of

(}). Thus, all we need is to resolve s2 D �
 in ˛, which yields

˛ D 
.�2 C 2�C 5/

� � 1 : (�)

The gain kp can then be determined from the gain rule:

1

kp
D jGk.s2/j D

ˇ

ˇ

ˇ

ˇ

1

M

.s2 C ˛ � �
/.s2 � 
/

.s2 � ˛ � 
/.s2 � �
/

ˇ

ˇ

ˇ

ˇ

D 4

M.�C 1/2
:

Hence, we end up with

kp D M.�C 1/2

4
: (��)

As a matter of fact, the controller in this case is

C.s/ D M.�C 1/2

4

.s C �
/.s C 
.3�C 5/=.� � 1//
.s C 
/.s � 
.�2 C 3�C 4/=.� � 1//

and the resulting closed-loop transfer functions are

T .s/ D .�C 1/2.� � 1/
�3 C �2 C 3� � 5

.s � 
/.s C 
.3�C 5/=.� � 1//

.s C 
/2
;

Td.s/ D 4.� � 1/
M.�3 C �2 C 3� � 5/

.s � 
/.s � 
.�2 C 3�C 4/=.� � 1//
.s C 
/.s C �
/

;

Tc.s/ D M.�C 1/2.� � 1/
�3 C �2 C 3� � 5

.s2 � �2
2/.s C 
.3�C 5/=.� � 1//
.s C 
/3

:

They are all stable, of course. Note that T .s/ is a second-order system (rather than forth), because

one plant pole at s D �
 is canceled by the controller, one controller pole at s D ��
 is canceled

by the plant, and these cancellations do not show up in T .s/. Then, Td.s/ is also a second-order

system, with one pole at s D �
 and another one at s D ��
 . The latter is the (stable) pole of the

plant, canceled by the controller. Still, plant poles canceled by the controller are present in Td.s/.

Two additional poles at s D �
 of the closed-loop characteristic polynomial are then canceled by

a zero of P.s/ and a pole of C.s/. This double cancellation is, in a sense, accidental. If we picked

other stable closed-loop poles, Td.s/would be a third-order transfer function. The control sensitivity,

Tc.s/, has a triple pole at s D �
 . The third one is the pole of C.s/, which cancels the zero of the

plant. This kind of cancellations is not visible in T .s/ and Td.s/, but does show up in Tc.s/.
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(a) Cart acceleration under nominal g (b) Mismatch in y due to mismatch in g

Fig. 10: Disturbance response of the cart acceleration, Ŕ.t /

5. Substituting our data to (�) and (��), we end up with ˛ � 12:3737 and kp � 124:658, so that the

controller from (2) is

P.s/ D 0:1.s � 3:1305/.s C 3:1305/

.s � 3:834/.s C 3:834/
and C.s/ D 12:3737.s C 3:834/.s C 120:824/

.s � 127:789/.s C 3:1305//
:

The disturbance sensitivity transfer function in this case is

Td.s/ D 0:044695.s � 127:789/.s � 3:13/
.s C 3:834/.s C 3:13/

;

as expected. Its response to the pulse d.t/ D 1.t � 0:5/ � 1.t � 2:5/ is presented in Fig. 10(a). We

can see that the response first raises a bit, then has an undershoot, then raises until t D 2:5, and

then mirrors the initial response in the other direction. The initial raise is worth emphasizing. It is

because there is an even number of RHP zeros (namely, 2).

6. Here we have

P.s/ D 0:1.s � 3:1316/.s C 3:1316/

.s � 3:835/.s C 3:835/
and C.s/ D 12:3737.s C 3:834/.s C 120:824/

.s � 127:789/.s C 3:1305//

(the controller remains the same, the plant changes a bit). We can see that there are no cancellations

now. Indeed, the disturbance sensitivity becomes

Td.s/ D 0:044695.s � 127:789/.s � 3:1316/.s C 3:132/.s C 3:1305/

.s C 4:21/.s C 2:569/.s2 C 6:446s C 10:88/
;

which is a fourth-order system (the order of the plant plus that of the controller). Yet its response to

the pulse disturbance is virtually indistinguishable from that in the nominal case. Fig. 10(b) presents

the mismatch (difference) between two responses. It is more than three orders of magnitude smaller

than the response of Ŕ.t /. In other words,

� feedback can render the system less sensitive to modeling inaccuracies

(open-loop control failed in this case, cf. Tutorial 6).
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(a) 4% increase of g
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(b) 10% increase of g

Fig. 11: Effect of the increase of g on root-locus plots

Just out of curiosity, the changes of the root locus with respect to slight increases of the standard

gravity are shown in Fig. 11. The changes are not negligible around the break-in points. This is

because the increase of g moves the stable zero of the plant to the left of the pole of the controller at

s D �
 (that attempted to cancel that zero). Then, the locus that went left along the real axis after

the break-in point in Fig. 8 can no longer do that, because it cannot end in a pole. To end in a zero,

the locus needs an additional “maneuver.” If the actual g slightly decreased, the plot in Fig. 8 would

remain virtually the same, with additions of two “holes” between each black poles-zero pair, which

would separate.

That’s all . . . O


