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INTRODUCTION TO CONTROL (034040)

TUTORIAL 6

Fig. 1: Unity feedback closed-loop system

Question 1. Consider the unity feedback system in Fig. 1. Sketch (qualitatively) the root-loci of the fol-
lowing systems with respect to the gain k. Is it possible to stabilize the system with k£ > 0?
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Question 2. Consider the system P(s) = (s — 1)/(s — 2) controlled in closed loop with unity feedback.

1. Can the system be stabilized by a proportional controller of the form C(s) = k, for some k, > 0?

2. Can the system be stabilized by a stable controller, i.e. C(s) = kpNc(s)/Dc (s) for some Hurwitz
Dc(s)?

3. Discuss the requirements for a controller of the form C(s) = kpC‘(s) for stabilizing the system.
Considering the controller C(s) = kp/(s — a), for some k;, > 0, find the requirements on a

(a) by analyzing roots of the closed-loop characteristic polynomial,
(b) by using root-locus principles.

4. Find the range of k, for which the closed-loop system is stable for the controller in the previous item.

Question 3 (self-study). Consider an inverted pendulum which consists of a point mass m on a mass-less
rod of length / installed on a cart of mass M. An external force u(¢) is acting on the cart. The controlled
output is assumed to be the acceleration of the cart, y(¢) = Z(¢). We know from Tutorial 6 that the transfer
function of this system, linearized around the pendulum “up” position is (here g is the standard gravity)
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y:=\/§>0 and ,u::,/l—l—%>1.

Consider the control of this system by the unity-feedback system like that in Fig. 1.

P(s) =

where



Fig. 2: Inverted pendulum on a cart for Question 3

. Is it possible to stabilize this system by a proportional controller, i.e. by C(s) = k, for some k, > 0?
Explain via root-locus arguments.

. Is it possible to stabilize this system by a stable controller having the positive high-frequency gain,
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for m < n, k, > 0, and Hurwitz D¢ (s) ? Explain via root-locus arguments. What property this

controller lacks to stabilize the system?

. Consider now
_kp(s o —py)(s + py)
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for k, > 0 and o > wy (it cancels stable pole and zero of P(s) and has a LHP zero at s = —a + uy
and a RHP pole at s = « + y). Under what conditions on kj, and « this controller stabilizes the
plant? Explain via analyzing roots of the closed-loop characteristic polynomial.
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. Do the same, but using root-locus arguments. Find then kj, and o such that the closed-loop system
has all its poles at s = —y.

. Simulate the closed-loop system under the the pulse input disturbance d(¢) = 1(t —0.5) — 1(t —2.5)
withm = 5[kg], M = 10[kg],/ = 1[m], and g = 9.8 [m/sec?] for the parameters k;, and o chosen
in the previous item.

. Simulate the closed-loop system in the case when the standard gravity in the plant model is actu-
ally is g = 9.80665 [m/sec?] (affecting y), whereas the controller is still designed assuming g =
9.8 [m/sec?] (i.e. pole-zero cancellations between the plant and the controller are not exact).



