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TECHNION—Israel Institute of Technology, Faculty of Mechanical Engineering

Introduction to Control (00340040)

tutorial 5
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Fig. 1: Open-loop control system

Question 1. Consider the open-loop control system in Fig. 1 for the plant

P.s/ D 0:2s C 1

.0:5s C 1/.s2 C 0:2s C 1/
:

1. Can this plant be controlled via the use of a reference model? If it can, what conditions must be met

by the reference model to guarantee the internal stability of the control system?

2. Consider a second-order reference model Tref W r 7! y with the transfer function

Tref.s/ D !2

n

s2 C
p

2!ns C !2
n

(this is the second-order low-pass Butterworth filter, whose magnitude frequency response satisfies

jTref.j!/j D 1=
p

1 C !4=!4
n and whose bandwidth !b D !n). What will be the resulting Col? Is it

admissible?

3. Plot the step responses of y and u and the magnitude bode plots of the reference model and the plant

itself for !n 2 f0:4; 1; 3; 10g.
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Fig. 2: Unity feedback closed-loop system

Question 2. A plant with the transfer function

P.s/ D 1

s.s C 1/.s C 2/

is controlled in the unity feedback scheme with static (proportional) controllers of the form C.s/ D kp, see

Fig. 2.

1. Derive the four closed-loop transfer functions (the Gang of Four) for this system. What signals

in Fig. 2 each of them connects? What is the closed-loop characteristic polynomial? Under what

controller gains the closed-loop system is internally stable?

2. Let kp 2 f1; 4; 7g. Plot the responses of each closed-loop system to a unit step. Explain the differ-

ences between the responses for different values of kp.
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Fig. 3: Inverted pendulum on a cart

Question 3. Consider an inverted pendulum which consists of a point mass m on a mass-less rod of length

l installed on a cart of mass M . An external force u is acting on the cart. The equations of motion of this

system (see the Linear Systems M course notes) are

.M C m/ Ŕ.t / C ml R�.t/ cos �.t/ � ml P�2.t / sin �.t/ D u.t/ (1a)

Ŕ.t / cos �.t/ C l R�.t/ � g sin �.t/ D 0 (1b)

where � is the angle of the pendulum and ´ is the position of the cart. The parameters are m D 5 [kg],

M D 10 [kg], l D 1 [m], and the standard gravity is taken g D 9:8 Œm/sec2�

0. Derive the linearized state-space model of the system (in the “up” position) and the transfer function

P.s/ with u as its input and the car acceleration y D Ŕ as its output.

1. The system is controlled in a standard unity feedback closed-loop scheme, like that in Fig. 2. Can it

be controlled (that is, stabilized) by the controller

C.s/ D 10.s2 � 14:7/

s2 C 4s C 11:8
(2)

Check that both via the stability of the closed-loop transfer functions T .s/, S.s/, Td.s/, and Tc.s/

and via the characteristic polynomial of the closed-loop system.

2. Analyze the step responses of the system r 7! y under the controller above and no disturbances if

the standard gravity is actually g D 9:80665 Œm/sec2� (� 0:07% deviation from the assumed g).
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Fig. 4: System for Question 4

Question 4 (self study). Fig. 4 depicts a vehicle of mass m D 1000 [kg] driving uphill with the slope

� D 12ı. The driving force f generated by the engine is the control signal, whose goal is to maintain the

car velocity v at a pre-specified level. The resistance force has three major components: fg D mg sin � , the
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forces due to gravity; fa, the aerodynamic drag; and fr, the forces due to rolling friction. Assuming that the

velocity of the car is always positive, the rolling resistance fr D mgcr cos � , where the rolling resistance

coefficient cr D 0:01. The aerodynamic drag is proportional to the square of the speed, i.e. fa D 1

2
˛v2,

where ˛ � 1 [kg/m] is a constant depending on the density of air, the frontal area of the car, and a shape-

dependent aerodynamic drag coefficient. As shown in Tutorial 3, the nonlinear motion equation of this

system is

Pv.t/ D 1

m
F.t/ � 1

2m
˛v2.t / � g.sin � C cr cos �/

and linearized motion equation around the equilibrium velocity veq D 80 [km/h] D 200=9 � 22:22 [m/sec]

is

Py.t/ D �
˛veq

m
y.t/ C 1

m
u.t/;

where the deviation variables y ´ v � veq and u ´ f � 0:5˛v2

eq � mg.sin � C cr cos �/.

1. Consider the unity feedback closed-loop control strategy in which a proportional controller C.s/ D
kp generates the control signal u.t/ from the mismatch between the reference velocity signal rv.t /

and the measured deviation from the equilibrium velocity y.t/. Draw the block-diagram of this

system. Under what values of kp the closed-loop system is stable?

2. Consider the reference signal rv such that

rv.t / D

�
0 if t � 0

amaxt if 0 � t � ynew=amax

ynew if t � ynew=amax

D
t0 ynew=amax

ynew

(3)

for the peak acceleration amax D 0:5 [m/s2] and ynew D 10 [km/h] D 25=9 � 2:78 [m/sec]. How the

choice of kp affects the steady-state error in general? Simulate the response of the linearized system

under kp’s for which the steady-state error is ess D jlim t!1 rv.t / � y.t/j 2 f2; 1; 0:1g [km/h].

3. How does the steady-state error of the previous item change if the road slope changes? Simulate

with the change from Tutorial 3, N� D 13ı, under the controller gains obtained in the previous item.

How does it differ from the open-loop results of Tutorial 3?

4. Analyze the nonlinear system with the unity feedback closed-loop controller as in item 1. What is

its steady-state response to the reference signal in (3)?

Question 5 (self study). Consider the unity feedback closed-loop system in Fig. 2. Let

P.s/ D s C 1

s.s2 C s C 1/
and C.s/ D k.�s C 1/

s.s C 1/
:

Determine and draw the closed-loop stability area in the .�; k/-plane.


