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Fig. 1: Open-loop control system

Question 1. Consider the open-loop control system in Fig. 1 for the plant
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1. Can this plant be controlled via the use of a reference model? If it can, what conditions must be met
by the reference model to guarantee the internal stability of the control system?

2. Consider a second-order reference model Tier : r — y with the transfer function
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(this is the second-order low-pass Butterworth filter, whose magnitude frequency response satisfies
|Tret(jw)| = 1/4/1 + 0*/w} and whose bandwidth wp, = w,). What will be the resulting Co1? Is it
admissible?

3. Plot the step responses of y and u and the magnitude bode plots of the reference model and the plant
itself for w, € {0.4, 1, 3, 10}.

Fig. 2: Unity feedback closed-loop system

Question 2. A plant with the transfer function
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is controlled in the unity feedback scheme with static (proportional) controllers of the form C(s) = kp, see
Fig.2.

1. Derive the four closed-loop transfer functions (the Gang of Four) for this system. What signals
in Fig. 2 each of them connects? What is the closed-loop characteristic polynomial? Under what
controller gains the closed-loop system is internally stable?

2. Let kp € {1,4,7}. Plot the responses of each closed-loop system to a unit step. Explain the differ-
ences between the responses for different values of k.



Fig. 3: Inverted pendulum on a cart

Question 3. Consider an inverted pendulum which consists of a point mass m on a mass-less rod of length
[ installed on a cart of mass M. An external force u is acting on the cart. The equations of motion of this
system (see the Linear Systems M course notes) are

(M + m)2(t) + ml6(t) cos 0(1) — m16(1) sin 6(¢) = u(r) (1a)
2(t) cos O(1) + 16(t) — g sinO(r) = 0 (1b)

where 6 is the angle of the pendulum and z is the position of the cart. The parameters are m = 5 [kg],
M = 10[kg], / = 1[m], and the standard gravity is taken g = 9.8 [m/sec?]

0. Derive the linearized state-space model of the system (in the “up” position) and the transfer function
P(s) with u as its input and the car acceleration y = Z as its output.

1. The system is controlled in a standard unity feedback closed-loop scheme, like that in Fig. 2. Can it
be controlled (that is, stabilized) by the controller

10(s2 — 14.7)

Cls) = —> — %1
©) = T8

2

Check that both via the stability of the closed-loop transfer functions 7'(s), S(s), Ta(s), and T.(s)
and via the characteristic polynomial of the closed-loop system.

2. Analyze the step responses of the system r +— y under the controller above and no disturbances if
the standard gravity is actually g = 9.80665 [m/sec?] (~ 0.07% deviation from the assumed g).
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Fig. 4: System for Question 4

Question 4 (self study). Fig.4 depicts a vehicle of mass m = 1000 [kg] driving uphill with the slope
0 = 12°. The driving force f generated by the engine is the control signal, whose goal is to maintain the
car velocity v at a pre-specified level. The resistance force has three major components: f, = mg sin 0, the



forces due to gravity; f,, the aerodynamic drag; and f;, the forces due to rolling friction. Assuming that the
velocity of the car is always positive, the rolling resistance f; = mgc; cos 6, where the rolling resistance
coefficient ¢; = 0.01. The aerodynamic drag is proportional to the square of the speed, i.e. f, = %avz,
where o &~ 1 [kg/m] is a constant depending on the density of air, the frontal area of the car, and a shape-
dependent aerodynamic drag coefficient. As shown in Tutorial 3, the nonlinear motion equation of this
system is

1 1
0(t) = —F(t) — —av?(t) — g(sin 6 + ¢, cos 6)
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and linearized motion equation around the equilibrium velocity veq = 80 [km/h] = 200/9 ~ 22.22 [m/sec]
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where the deviation variables y := v — veqand u := f — O.Savgq —mg(sin 6 + ¢, cos 6).

1. Consider the unity feedback closed-loop control strategy in which a proportional controller C(s) =
ky generates the control signal u(7) from the mismatch between the reference velocity signal r, ()
and the measured deviation from the equilibrium velocity y(¢). Draw the block-diagram of this
system. Under what values of k;, the closed-loop system is stable?

2. Consider the reference signal r, such that
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for the peak acceleration amax = 0.5 [m/s?] and ypew = 10 [km/h] = 25/9 ~ 2.78 [m/sec]. How the
choice of k;, affects the steady-state error in general? Simulate the response of the linearized system
under kp’s for which the steady-state error is eg; = |lim; 00 1(f) — y ()| € {2, 1, 0.1} [km/h].

3. How does the steady-state error of the previous item change if the road slope changes? Simulate
with the change from Tutorial 3, & = 13°, under the controller gains obtained in the previous item.
How does it differ from the open-loop results of Tutorial 3?

4. Analyze the nonlinear system with the unity feedback closed-loop controller as in item 1. What is
its steady-state response to the reference signal in (3)?

Question 5 (self study). Consider the unity feedback closed-loop system in Fig. 2. Let

s+1 k(ts + 1)

P(S) = m and C(S) = S(S n 1) .

Determine and draw the closed-loop stability area in the (z, k)-plane.



