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TECHNION—Israel Institute of Technology, Faculty of Mechanical Engineering

Introduction to Control (034040)

tutorial 3

ruy
P.s/ Col.s/

Fig. 1: Open-loop control system

Question 1. Consider the following plants controlled in open loop as illustrated in Fig. 1:

1. P.s/ D 1
sC1

2. P.s/ D s�2
sC1

3. P.s/ D sC2
s�1

Can these plants be controlled by the controller Col D P �1?

Solution.

1. This process is stable (P.s/ is proper and has no poles in the RHP). The transfer function of the

controller is

Col.s/ D
1

P.s/
D s C 1:

This transfer function is non-proper (numerator order is 1 and denominator order is 0). In the time

domain, it determines the control law u.t/ D Pr.t/ C r.t/. Hence, it can be implemented only if we

can measure both r and Pr and, in addition, if j Prj is bounded.

2. This process is stable but has a RHP zero. The resulting controller has the transfer function

Col.s/ D
1

P.s/
D

s C 1

s � 2

This controller is proper but has a RHP pole and is therefore unstable, resulting in unbounded control

signal u. For example, for a bounded input r.t/ D 21.t / we end up with u.t/ D .3e2t �1/1.t /. Thus,

although we seem to get a perfect inversion Tyr D P Col D 1, it will demand an unrealistic control

effort. Moreover, if the are any inaccuracies in the model, the unstable pole won’t cancel and Tyr

will be unstable. Thus, the system is not internally stable and cannot be used.

3. This process is unstable. The required controller for plant inversion has

Col.s/ D
1

P.s/
D

s � 1

s C 2
;

which is stable and non-minimum phase (has a RHP zero). Although we seem to have a perfect

inversion, Tyr D 1, any external disturbance or inaccuracy in the model will result in an unbounded

output. This is also a sign of internal instability.

As a matter of fact, there is no open-loop controller that can fix this issue, i.e. unstable processes

cannot be controlled in open loop.

That’s all . . . O
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Fig. 2: System for Question 2

Question 2. Fig. 2 depicts a vehicle of mass m D 1000 [kg] driving uphill with the slope � D 12ı. The

driving force f generated by the engine is the control signal, whose goal is to maintain the car velocity

v at a prespecified level. The resistance force has three major components: fg D mg sin � , the forces

due to gravity; fa, the aerodynamic drag; and fr, the forces due to rolling friction. Assuming that the

velocity of the car is always positive, the rolling resistance fr D mgcr cos � , where the rolling resistance

coefficient cr D 0:01. The aerodynamic drag is proportional to the square of the speed, i.e. fa D 1
2
˛v2,

where ˛ � 1 [kg/m] is a constant depending on the density of air, the frontal area of the car, and a shape-

dependent aerodynamic drag coefficient.

1. Derive the equation of motion of the system and linearize it around the speed equilibrium point

veq D 80 [km/h] D 80�1000
3600

D 200
9

� 22:22 [m/sec] (denote the the control input and the regulated

output in terms of deviation variables by u and y, respectively).

2. Consider the open-loop control strategy in which a controller Col generates the control signal u from

a reference velocity signal rv. Draw the block-diagram of this system. Design Col by plant inversion.

When can this controller be implemented? Simulate the response of the linearized system under

rv.t / D

8

ˆ

<

ˆ

:

0 if t � 0

amaxt if 0 � t � ynew=amax

ynew if t � ynew=amax

D

t0 ynew=amax

ynew

(1)

for the peak acceleration amax D 0:5 [m/s2] and ynew D 10 [km/h] D 25
9

� 2:78 [m/sec].

3. Assume that the road slope is actually different from the slope at which we modeled the car and

designed our controller, viz. it equals N� D 13ı. Write the new equation of motion in this case and

and simulate the linearized response to the saturated ramp in (1). What is the settling time (to the

settling level 5%) in this case?

4. To cope with slope uncertainty, a slope sensor can be installed in the vehicle. Suggest an open-

loop control strategy, which exploits the information about the actual slope and guarantees that the

regulated output y D rv for all t under any change in � .

5. Assume now that the slope is as expected, but a passenger weighing 70g [N] entered the vehicle,

so that its actual vehicle mass becomes Nm D 1070 [kg]. Find the actual linearized dynamics and

simulate the linearized response to the saturated ramp in (1). What is the settling time (to the settling

level 5%) in this case?

6. Analyze the nonlinear system with the open-loop controller as in item 2. What is its steady-state

response to the reference signal in (1)?

Solution.
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1. The standard (Newtonian) force balance for the car reads

m Pv.t/ D f .t/ � fr.t / � fg.t / � fa.t / D f .t/ �
1

2
˛v2.t / � mg sin � � mgcr cos �

This is a (nonlinear) first-order ODE, so the state can be chosen as x.t/ D v.t/. The state equation

reads then

Px.t/ D
1

m
f .t/ �

1

2m
˛x2.t / � g.sin � C cr cos �/ µ �.x; F /:

Equilibria should then verify Pxeq D �.xeq; feq/ � 0, i.e.

feq D
1

2
˛v2

eq C mg.sin � C cr cos �/: (ƒ)

There is a unique feq for any veq. In particular, with veq D 22:22 [m/sec] we have feq D 2382:09 [N].

Then, the parameters of the linearized system are

A D
@�

@v

ˇ

ˇ

ˇ

vDveq ;f Dfeq

D �
˛veq

m
� �0:022 and B D

@�

@f

ˇ

ˇ

ˇ

vDveq ;f Dfeq

D
1

m
D 0:001;

giving the state equation in terms of deviation variables

8

ˆ

<

ˆ

:

PQx.t/ D �
˛veq

m
Qx.t/ C

1

m
u.t/

y.t/ D Qx.t/
”

(

ms QX.s/ D �˛veq
QX.s/ C U.s/

Y.s/ D QX.s/

where Qx ´ x � veq, u ´ f � feq, and y ´ v � veq. The transfer function of the system u 7! y is

P.s/ D
1

ms C ˛veq
D

0:045

45:07s C 1
: (�)

This is a first-order system, whose time constant � D m=.˛veq/ depends on the equilibrium velocity.

In fact, � is a decreasing function of veq, meaning that the system responds faster at higher velocities.

2. The block-diagram of the open-loop control system is exactly as that in Fig. 1 modulo the replacement

of r with rv . The plant inversion controller has the transfer function

Col.s/ D
1

P.s/
D ms C ˛veq:

and generates

u.t/ D mPrv.t / C ˛veqrv.t /:

Although this Col is unstable (Col.s/ is non-proper), it generates an unbounded u only if rv or its

derivative Prv is unbounded (we assume that they are measurable). For the reference signal rv in (1),

u.t/ D mamax

�

1.t / � 1.t � ynew=amax/
�

C ˛veqrv.t /

� 500
�

1.t / � 1.t � 5:56/
�

C 22:19 rv.t / D

t0 5:56

61:6

500

(})

is actually bounded (rv is obviously bounded). Hence, we can safely implement Col above for this

class of reference signals (that might change for other choices of rv). Note that the pulse at the
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(a) Linearized model (b) Nonlinear model

Fig. 3: Velocity responses to rv from (1)

beginning has a substantially higher amplitude (500) than the saturated ramp (� 61:63). In other

words, the acceleration mode requires substantially higher force than cruise.

It is worth emphasizing that the actual driving force under this control law is u C feq, i.e.

f .t/ D m
�

Prv.t / C .sin � C cr cos �/g
�

C ˛veq.rv.t / C 0:5veq/;

and the actual velocity is y C veq.

The response of the vehicle to this input is presented in Fig. 3(a) by the blue line. As expected,

it perfectly matches the (shifted by veq) reference velocity rv.t /, raising linearly from 80 [km/h] to

90 [km/h] with the slope amax D 0:5 [m/sec2] in ynew

amax
� 5:56 sec and then staying at 90 [km/h].

3. If the road slope is N� ¤ � , the linearized model reads y D P Nu, where Nu is the deviation of the input

force F from its equilibrium feq given by (ƒ) modulo the replacement of � with N� (note that P.s/

in (�) does not depend on the slope angle �). Hence,

Nu.t/ D f .t/ � 0:5˛v2
eq � mg.sin N� C cr cos N�/ D u.t/ C mg.sin � � sin N� C cr.cos � � cos N�//

D u.t/ C 2mg
�

cos
� C N�

2
� cr sin

� C N�

2

�

sin
� � N�

2
:

This situation corresponds to the block-diagram in Fig. 4, where the “disturbance”

d.t/ D d N� ´ 2mg
�

cos
� C N�

2
� cr sin

� C N�

2

�

sin
� � N�

2
� �166:79 (~)

(not �166:791.t /, a constant for all t ). For this system

y D Pd C rv D rv C
1

ms C ˛veq

d N� :

rvuNu

d

y
P.s/ Col.s/

Fig. 4: Open-loop cruise control under uncertain road slope
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P.s/ Col.s/
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Fig. 5: Open-loop cruise control under uncertain road slope with slope measurements

In this case

lim
t!1

rv.t / � y.t/ D �
1

˛veq
d N� � 7:52[m/sec] � 27:06 [km/h];

which is about 34% of veq (the deviation of the slope is now more that 8% of its nominal value)..

The response of the vehicle is presented in Fig. 3(a) by the red line. We can see that the resulted

velocity is quite far from the expected one. After a fast raise in the right direction at the beginning

(when the driving force is rather large), the velocity starts to drop gradually to its steady state value

62:94 < 80. The dynamics of this drop is slow, because they are driven by the time constant � �

45:07 of the plant model. Hence, the settling time to the settling level 5% is

ts D
ynew

amax

C 3� � 140:77 [sec]:

4. To compensate the effect of slope variations, we need to compensate the effect of the constant distur-

bance d in Fig. 4. In fact, we can calculate this disturbance if we measure the actual slope angle, N� ,

via the formula in (~). Having d measured, the compensation scheme is presented in Fig. 5. Indeed,

the control signal generated by the controller is now

u D Colrv � d D Colrv � d N� ;

which results in

Nu D u C d D Colrv H) y D P Nu D rv;

as required.

5. The mass of the vehicle appears in our model in two places. It’s a part of the transfer function in (�),

affecting its time constant, and a part of the equilibrium driving force in (ƒ). In other words, if we

knew the mass, the model would be

NP .s/ D
1

Nms C ˛veq
D

0:045

48:23s C 1

under the input

Nu.t/ D f .t/ � 0:5˛v2
eq � Nmg.sin � C cr cos �/ D u.t/ C .m � Nm/g.sin � C cr cos �/:

Because the controller is “unaware” of this, it still generates u chosen on the basis of P.s/. This

situation can be described via the block diagram depicted in Fig. 6, where the “disturbance”

d.t/ D d Nm ´ .m � Nm/g.sin � C cr cos �/ � �149:49

(again, not �149:491.t /, a constant for all t ). Thus, the output (which itself is a deviation from veq)

is

y D NP .s/d C
NP .s/

P.s/
rv D

1

Nms C ˛veq
d Nm C

ms C ˛veq

Nms C ˛veq
rv D rv C

1

Nms C ˛veq
d Nm C

.m � Nm/s

Nms C ˛veq
rv

D rv C
1

Nms C ˛veq

�

.m � Nm/srv C d Nm

�

:
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Thus, the response deviated from the reference trajectory and the deviation is proportional to the

mismatch between the assumed and actual vehicle masses. This deviation even does not vanish in

steady state. Indeed, in the limit we have (substituting s ! 0) that

lim
t!1

rv.t / � y.t/ D
1

˛veq
d Nm � 6:74 [m/sec] � 24:26 [km/h];

which is almost a third of veq (30.3%, to be precise). This is a lot, taking into account that the mass

change is only 7% of the nominal mass.

The response of the vehicle is presented in Fig. 3(a) by the green line. Similarly to the slope change,

we can see that the resulted velocity is quite far from the expected one. After a fast raise in the right

direction at the beginning (when the driving force is rather large), the velocity starts to drop gradually

to its steady state value 65:74 < 80. The dynamics of this drop is slow, because they are driven by

the time constant � � 48:23 of the plant model. Hence, the settling time to the settling level 5% is

ts D
ynew

amax
C 3� � 150:25 [sec]:

6. The response of the nonlinear car dynamics to u C feq, where u is as in (}), will of course deviate

from the linearized response. The analysis of transients in this case is quite complicated. Still, we

can simulate the nonlinear system, obtaining the response presented by the cyan line in Fig. 3(b). It

deviates from the linear response, especially in its steady state.

Steady-state analysis is simpler, so we carry it out below. First, because the initial pulse does not

affect the steady-state level of the control signal in (}), we have that

uss D ˛veqynew:

Because f D u C feq, we have the following steady-state level of the driving force:

fss D ˛veqynew C feq D ˛veqynew C
1

2
˛v2

eq C mg.sin � C cr cos �/

(taking into account (ƒ)). But it follows from (ƒ) that the actual steady-state value of the vehicle

velocity (assuming its positivity) for a given steady-state level of F is

vss D

r

2.fss � mg.sin � C cr cos �//

˛
D

s

2˛veqynew C ˛v2
eq

˛
D

q

2veqynew C v2
eq

D
q

2veqvnew � v2
eq D

q

v2
new � .vnew � veq/2;

where vnew ´ veq C ynew is the required new steady-state velocity level. Thus, we always end up at

a lower steady-state velocity level with respect to the required vnew. This is consistent with what we

see in Fig. 3(b).

That’s all . . . O

rvuNu

d

y
NP .s/ Col.s/

Fig. 6: Open-loop cruise control under uncertain vehicle mass


