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TECHNION—Israel Institute of Technology, Faculty of Mechanical Engineering

Introduction to Control (034040)

tutorial 2

Question 1. Fig. 1 depicts a system for controlling the angle �a.t / of an antenna. The antenna, having

�m.t/

�m.t/=n

k

v.t/
C �

Km; Kb; R

Ja; ca

�a.t/

Fig. 1: Antenna actuated via a DC motor

moment of inertia Ja and balanced with respect to the vertical axis, is rotated by a DC motor with torque

constant Km, back emf constant Kb, armature resistance R and negligible inertia and armature inductance.

The transmission system comprises two meshing gears, having a ratio of 1 W n and negligible inertia,

a flexible rod with torsion coefficient (spring constant) k and negligible viscous friction, and a bearing

system with viscous friction coefficient ca. The control input is the voltage v applied to the DC motor.

1. Derive motion equations of the system.

2. Construct the block-diagram of the system and calculate the transfer function of the system v 7! �a.

Solution.

1. First, consider the DC motor. Let �m denote the angle of its shaft. With neglected inductance L, the

armature circuit satisfies

Ri.t/ D v.t/ � vb.t /;

where i is the armature current and vb is the back emf voltage, which is proportional to the angular

velocity !m D P�m of the motor,

vb.t / D Kb
P�m.t /:

The torque generated by the motor is proportional to its armature current,

�m.t / D Kmi.t /:

Combining the three displayed equations above, we end up with the following torque equation:

�m.t / D Km

R

�

v.t/ � Kb
P�m.t /

�

or, equivalently, Tm.s/ D Km

R

�

V.s/ � Kb s�m.s/
�

: (1)
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While v is the external input, �m is an internal signal in the system, which depends on the dynamics

of the load and thus leads to an additional coupling between the motor and its load.

Consider now the load (i.e. the transmission and the antenna). We use Newtonian arguments to

model it, by splitting to simpler free-body diagrams and formulating balances of momenta. To this

end, note that there are two torques acting on the large gear: one is applied by the flexible rod, �rod,

and another one—by the motor via the gear system (which merely amplifies it by a factor of n). Since

the moment of inertia of the gear is assumed to be negligible, we have the following static torque

equilibrium:

0 D �rod.t / C n�m.t /: (2)

The antenna then experiences the reaction torque applied by the spring and the torque of viscous

friction in the bearing, �fric. The moment of inertia of the antenna is non-negligible, hence the

balance of angular momenta at the antenna reads

Ja
R�a.t / D ��rod.t / � �fric.t /: (3)

The torque applied by the flexible rod is proportional to the torsion of the spring, i.e. to the difference

between the gear angle and the antenna angle �a. As the angle of the axis of the large gear is related

to the motor angle via the transmission ratio, the rod torque verifies

�rod.t / D k
�

�a.t / � 1

n
�m.t /

�

: (4)

The torque generated by the viscous friction in the bearing system is then

�fric.t / D ca
P�a.t /: (5)

Combining (2) and (4), we get the following equation for the motor shaft angle:

�m.t / D n�a.t / C n2

k
�m.t /: (6a)

Substituting (4) and (5) into (3), we get Ja
R�a.t / D �k

�

�a.t / � 1
n
�m.t /

�

� ca
P�a.t /. The first term in

the right-hand side of this equation equals, via (2), n�m.t /, so we end up with the following antenna

dynamics:

Ja
R�a.t / C ca

P�a.t / D n�m.t /: (6b)

Equations (6) define the dynamics of the load with the motor torque �m as its input. In the Laplace

domain these equation read

�m.s/ D n�a.s/ C n2

k
Tm.s/ and �a.s/ D n

s.Jas C ca/
Tm.s/: (7)

2. The block diagram corresponding to equations (1) and (7) is presented in Fig. 2, where the “black”

blocks represent (1) and the “blue” blocks—(7).

The derivation of the transfer function of the system v 7! �a is easier to do by tracing signals in this

case. Namely, it is readily seen (cf. (7)) that

�m.s/ D
�

n2

k
C n2

s.Jas C ca/

�

Tm.s/ D n2.Jas
2 C cas C k/

ks.Jas C ca/
Tm.s/

and then

Tm.s/ D Km

R

�

V.s/ � n2Kb s.Jas
2 C cas C k/

ks.Jas C ca/
Tm.s/

�
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Fig. 2: Block-diagram of the system in Question 1

or, equivalently,
�

1 C n2KmKb s.Jas
2 C cas C k/

kRs.Jas C ca/

�

Tm.s/ D Km

R
V.s/:

Thus,

Tm.s/ D Kmks.Jas C ca/

kRs.Jas C ca/ C n2KmKb s.Jas2 C cas C k/
V .s/

and then

�a.s/ D nKmk

kRs.Jas C ca/ C n2KmKb s.Jas2 C cas C k/
V .s/:

Thus, we end up with the third-order transfer function of the system v 7! �m

nKmk

s.n2KmKb Jas2 C .kRJa C n2KmKb ca/s C .Rca C n2KmKb /k/
:

As a matter of fact, this transfer function has one pole at the origin (s D 0) and two poles in the open

left-half place (because this is the case with any second-order polynomial with positive coefficients).

That’s all . . . O
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Question 2. Consider the magnetic levitation system described in Fig. 3. The electric current i running

C

�

v.t/

i.t/

R; L

m

y.t/

Fig. 3: Magnetic levitation system

through a coil, having resistance R and inductance L, creates a magnetic field, which attracts an iron ball

of mass m. The objective is to control the ball position y via the input voltage v. The electromagnetic force

applied by the magnetic field to the ball is

fem.t / D ˛
i2.t /

y2.t /
; (8)

where ˛ > 0 is constant.

1. Write dynamic equations of the systems and its state-space realization.

2. For a given equilibrium position of the ball, y.t/ � y0, find the state and input at the equilibrium, lin-

earize the system dynamics around that point, and derive the relation between the deviation variables

Qv and Qy in the Laplace transform domain (the s-domain).

3. Is the linearized system BIBO stable?

4. Assume that the model and the deviation variables are derived for some m, but the actual mass of

the ball is Nm ¤ m. How does this affect the linearized relation between Qv and Qy ?

Solution.

1. The force balance equation on the ball is m Ry.t/ D �fem.t /Cmg. Substituting (8) into this equation,

we obtain

m Ry.t/ D �˛
i2.t /

y2.t /
C mg:

The dynamics of the electric RL circuit are

d
dt

�

Li.t/
�

C Ri.t/ D v.t/:

The dynamics of the whole system is then a combination of the two differential equations above.

It is convenient to present these equation in the state-space form. As our system comprises the

second- and first-order dynamics, we may expect to have a 3-dimensional state vector. The following

choice for it might appear natural:

x.t/ D

2

4

x1.t /

x2.t /

x3.t /

3

5 ´

2

4

y.t/

Py.t/

i.t /

3

5 :
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Then the equations above can be rewritten as

Px.t/ D

2

4

Px1.t /

Px2.t /

Px3.t /

3

5 D

2

4

x2.t /

g � ˛
m

x2
3.t /=x2

1.t /
1
L

v.t/ � R
L

x3.t /

3

5 µ f .x; v/;

y.t/ D x1.t / µ h.x; v/:

(9)

which is indeed a first-order differential equation, as any state equation is supposed to be.

2. As we probably know (from “Linear Systems M”) the linearization procedure for the state equation

Px D f .x; v/ and the output equation y D h.x; u/ follows the following steps:

(a) find equilibria .xeq; veq/, which are the all points satisfying Px � 0, i.e. f .xeq; ueq/ D 0;

(b) at a chosen equilibrium point .xeq; ueq/, calculate the matrices

A ´ @f .x; u/

@x

ˇ

ˇ

ˇ

.x;u/D.xeq;ueq/
2 R

n�n; B ´ @f .x; u/

@u

ˇ

ˇ

ˇ

.x;u/D.xeq;ueq/
2 R

n�1;

C ´ @h.x; u/

@x

ˇ

ˇ

ˇ

.x;u/D.xeq;ueq/
2 R

1�n; D ´ @h.x; u/

@u

ˇ

ˇ

ˇ

.x;u/D.xeq;ueq/
2 R

1�1;

where the derivative of a vector � 2 R
n with respect to a vector � 2 R

m is defined as the n � m

matrix M , whose .i; j / entry equals @�i=@�j .

This procedure results in the linearized state and output equations PQx D A Qx CB Qu and Qy D C Qx CD Qu,

respectively, in terms of the deviation variables

Qx.t/ ´ x.t/ � xeq; Qu.t/ ´ u.t/ � ueq; and Qy.t/ ´ y.t/ � h.xeq; ueq/:

Applying this technique to (9), we have:

(a) An equilibrium point must satisfy (assuming that y and i are always positive)

2

4

xeq2

g � ˛
m

x2
eq3=x2

eq1
1
L

veq � R
L

xeq3

3

5 D 0 ”

8

ˆ

<

ˆ

:

xeq2 D 0
p

mgxeq1 D p
˛xeq3

Rxeq3 D veq

Thus, for any given ball position y0, we have xeq1 D y0 and the equilibrium equalities above

have a unique solution,

.xeq; veq/ D

0

@

2

4

y0

0
p

mg=˛y0

3

5 ; R

r

mg

˛
y0

1

A and then yeq D y0: (10)

The corresponding deviation input and output variables satisfy then

Qu.t/ ´ u.t/ � R

r

mg

˛
y0 and Qy.t/ ´ y.t/ � y0: (11)

(b) Now,

@f .x; v/

@x
D

2

4

0 1 0

2˛x2
3=.mx3

1/ 0 �2˛x3=.mx2
1/

0 0 �R=L

3

5 ;
@f .x; v/

@v
D

2

4

0

0

1=L

3

5 ;

@h.x; v/

@x
D

�

1 0 0
�

;
@h.x; v/

@v
D 0:
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Substituting the equilibrium point (10) into these expressions, we end up with

�

A B

C D

�

D

2

6

6

4

0 1 0 0

2g=y0 0 �2
p

g˛=m=y0 0

0 0 �R=L 1=L

1 0 0 0

3

7

7

5

:

Note that the eigenvalues of the block-diagonal A are �1 D �R=L and �2;3 D ˙
p

2g=y0.

To derive the relation between v and y in the s-domain, note that the equation PQx D A Qx C B Qv reads

there as s QX.s/ D A QX.s/ C B QV .s/ or, equivalently,

QX.s/ D .sI � A/�1B QV .s/:

Then,

QY .s/ D C QX.s/ C D QV .s/ D
�

D C C.sI � A/�1B
� QV .s/

D
�

1 0 0
�

2

4

s �1 0

�2g=y0 s 2
p

g˛=m=y0

0 0 s C R=L

3

5

�1 2

4

0

0

1=L

3

5 QV .s/

D � 2
p

g˛=m

.Ls C R/.y0s2 � 2g/
QV .s/;

which is what we need.

Remark 1. A way to invert the 3 � 3 matrix sI � A is to split it into blocks as

sI � A D

2

4

s �1 0

�2g=y0 s 2
p

g˛=m=y0

0 0 s C R=L

3

5

and note that it is block lower triangular. We may then use the formula

�

A11 A12

0 A22

��1

D
�

A�1
11 �A�1

11 A12A�1
22

0 A�1
22

�

;

which requires inverting only 2 � 2 and 1 � 1 matrices,

�

s �1

�2g=y0 s

��1

D y0

y0s2 � 2g

�

s 1

2g=y0 s

�

and .s C R=L/�1 D L

Ls C R

which is simpler than the direct inversion of a 3�3 matrix. A yet simpler way is to use some symbolic

software, like Wolfram Mathematica. O

3. The transfer function of the linearized system Qv 7! Qy is obviously

P.s/ D � 2
p

g˛=m

.Ls C R/.y0s2 � 2g/
:

It is proper, but one of its poles is in xC0, viz. at
p

2g=y0. Therefore, the linearized system is unstable.

As a matter of fact, the fact that the “A” matrix of the linearized system has an eigenvalue in C0, at
p

2g=y0, implies that the nonlinear model (9) is not Lyapunov stable either (by Lyapunov’s indirect

method).
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4. The parameters of the linearized model under mass Nm are

� NA NB
NC ND

�

D

2

6

6

4

0 1 0 0

2g=y0 0 �2
p

g˛= Nm=y0 0

0 0 �R=L 1=L

1 0 0 0

3

7

7

5

;

which only changes one element of NA, and the corresponding equilibria are

. Nxeq; Nveq; Nyeq/ D

0

@

2

4

y0

0
p

Nmg=˛y0

3

5 ; R

r

Nmg

˛
y0; y0

1

A : (12)

The linearized model in the time domain can then be written as

PNx.t/ D NA Nx.t/ C NB.v.t/ � Nveq/ D NA Nx.t/ C NB.v.t/ � veq/ C NB.veq � Nveq/

y.t/ D NC Nx.t/ C y0;

where Nx.t/ ´ x.t/ � Nxeq. Note that because we do not see the state vector in the input/output

relation, there is no need to translate the deviation of the state from Nxeq to that from xeq. Because

Qv.t/ D v.t/ � veq and Qy.t/ D y.t/ � yeq D y.t/ � y0, the relation between these “old” deviation

signals reads

QY .s/ D � 2
p

g˛= Nm
.Ls C R/.y0s2 � 2g/

� QV .s/ C D.s/
�

;

where the disturbance

d.t/ ´ veq � Nveq D R

r

g

˛
.
p

m �
p

Nm/y0:

In other words, a miscalculation of the equilibrium points results not only in different parameters of

the plant transfer function (the gain, in this case), but also in a constant load disturbance.

That’s all . . . O


