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InTRODUCTION TO CONTROL (034040)

TUTORIAL 1

Question 1. Draw the asymptotic Bode magnitude plots of the transfer function

k

Glo) = (t1s + D(ts + 1)’

where 7; > 0 and 5, > 0.

Solution. Let us factor G(s) as

1 1

G(s) =k - )
715+ 1 ms+1

=: Go(5)G1(5)Ga(s),

The transfer function Go(s) = k is static, whose magnitude bode diagram is the straight horizontal like at
the level 20 log k (remember, the Bode plot is in dB), see Fig. 1(a). The two other transfer functions are
first-order transfer functions with the unit static gain of the form 1/(ts + 1). The asymptotic magnitude
Bode plots of this kind of transfer functions comprises two straight lines: a horizontal one at 0 dB in the
low-frequency range, up to the cutoff frequency w. = 1/7, and a straight line starting at w. and decaying
with the slope of —20deg/dec (sometimes referred to as having a rolloff of 1), see Fig. 1(b). Now, we
know (from the Linear Systems course) that the Bode magnitude plot of the cascade of systems is the
superposition of their individual Bode magnitude plots. We then end up with the diagram presented by the
solid line in Fig. 1(c). \Y
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Fig. 1: Asymptotic Bode magnitude diagrams (here k > 1); dotted lines correspond to actual Bode plots



Question 2. Draw the Bode and polar plots for the following transfer functions:

1
1. G = —f( 0;
1(5) T P12 or v >
k
2. Ga(s) = ———fort > 0and k > 0;
s(ts + 1)
s + 1 1 5 5 1
3. Gi(s) = for 7y = 3 and rp = 3 and then for 7y = 3 and 7o = 3.

718 + 1

Solution. We shall follow the following procedure: first, draw asymptotic Bode plots, then actual Bode
plots (via “rounding corners”), then present frequency responses at several frequency on the polar plot plane
(from Bode), and then actual polar plots via connecting those points. The magnitude and the phase at the
chosen points can be evaluated via the analytic expressions for the corresponding frequency responses.

1. This G1(s) can be presented as the cascade of two identical systems with the transfer function 1/(zs+
1). The asymptotic plots for G (jw) can be presented, following the steps of Question 1, as in Fig. 2(a).
The actual Bode plots are then shown by the solid lines in Fig.2(b). Analytic expression for the
frequency response is

1 1 2 ) 1 )
G1( = = j2arg(1/(jor+1)) — - —j2arctan(zw)
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Fig. 2: Frequency response plots of Gy (s)



The frequency responses at the frequencies w;, i = 1,2, 3, are marked by large dots in Fig. 2(b).
The corresponding points at the complex plane, which is the plane of the polar plot, are presented in
Fig. 2(c). Connecting these dots we end up with the polar plot in Fig. 2(d), where the arrow shows
the direction of the plot as w increases. Note that as w 1 oo, the plot approaches the origin along the
negative real axis, because the argument of G (jw) approaches —180° then.

2. The steps here are similar to those taken in the previous system. The asymptotic and actual Bode
diagrams are then presented in Figs. 3(a) and 3(c), respectively. The frequency response
k B k
jo(jto +1) w202 +1

from which the frequency responses at the chosen points are

G, (jo) = e~ i(m/2+arctan (rw)) 7
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The only nontrivial difference is that due to the presence of an integrator in G, (s), |G»(0)| = co. To
understand the behavior of the hodograph at small frequencies, rewrite

k B kt ) k
jo(jtw +1) 1202 +1 Jw(r%ﬂ +1)

Gy (jow) =
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Fig. 3: Frequency response plots of G,(s) (here k = 1/4/2 and 7 = 1)



It is now seen that while the imaginary part goes to —oo, the real part approaches a finite value, —kt
(in fact, the real part belongs to (—kt, 0) for all ). This yields the polar plot in Figs. 3(d).

. This transfer function can be presented as

o8 + 1
Gi(s) = s £ 1

= S—|—1. ,
(12 ) s + 1

which is the cascade of a first-order system and the inverse of another first-order system. The asymp-
totic plots of the former are as the dashed lines in Fig. 2(a) and those of the latter—are the same plots
modulo the opposite signs (inversion of a transfer function means sign inversion on Bode). The form
of the convolution of such plots depends on the relation between t; and 7.
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o If % =171 <71 = g the effect of the zero precedes that of the pole (as w increases). Hence,

the magnitude starts at 0 bB (this is the static gain), then gets up at w., := 1/1, = 0.6 and then
becomes flat again at w.; := 1/7; = 3. This is what we can see in Fig. 4(a). The actual Bode
diagram is presented in Fig. 4(b). To construct the polar plot, pick the following frequencies:

o || 0] 0 =01342 | 0, =1342 | 3 =1342 | 00
|G3(jw)| || 1 1.02 2.2361 ~ 4.88 ‘ 5

~ ~
~ ~
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arg(G;(jo)) || 0° 10.04° 41.81 ~ 10.04 | 0°

where the values can be obtained from the frequency response

G3 (ja)) _ jfZa) +1 — 7:226‘) + 1 ej(arctan(rza))—arctan(na)))
jno +1 2w + 1

(with % =17, >17, = %, although it is also true for 7; > ). The polar plot is then as shown in
Fig. 4(d). Note that arg(G3(jw;)) = arg(Gs(jws)), so the corresponding points lie on the same
radial line in the complex plane.
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Fig. 4: Frequency response plots of G3(s) for % =7 <17 = %



o If % =1 > 1T = % the effect of the pole precedes that of the zero (as w increases). Hence,
the magnitude starts at 0 bB (this is the static gain), then gets down at w¢; := 1/7; = 0.6 and
then becomes flat again at w., := 1/t = 3. This is what we can see in Fig. 5(a). The actual
Bode diagram is presented in Fig. 5(b). To construct the polar plot, pick the same frequencies
as in the previous case. We then have:

o[ 0| w =01342 | w, =1.342 | w3 =13.42 | o0
|G3(jw)| H 1 ~ 0.98 ‘ ~ 0.45 ‘ ~ 0.2 ‘ 0.2
00

arg(G3(jw)) ~ —10.04° ~ —41.81 ~ —10.04 | 0°
The polar plot is then as shown in Fig. 5(d).

As a matter of fact, it can be verified that for all t; and t,, the real and imaginary parts of G3(jw),

: >+1 :
Rd@g@):% and  Im(Gs(jo)) =
1

(o — o
2w +1°

verify

(Re(Gs(je)) - %)2 + (Im(G3(ja))))2 = (“2;;2)2

This implies that whenever t; # t,, the polar plot of G3(jw) is a semi-circle centered at %(1 + %)

and having the radius %|1 — % . This is also true for the particular case when t, = 0, which is the

standard first-order transfer function.

That’s all ... \
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Fig. 5: Frequency response plots of G3(s) for % =17 >17 = %



Question 3. Simplify the block-diagram in Fig. 6 and find the transfer function 7),(s) from r to y and T, (s)
from r to u.

G;5(s)

Fig. 6: Block-diagram for Question 3

Solution. Finding T)(s) is a straightforward application of the cascade (for Ga(s) - G1(s)) and feedback
rules:
_ G(9)Gils)
1+ G3(S)G2(S)G1 (S‘) ’

To derive T, (s), rearrange the system as shown in Fig. 7 (all signal names remain unchanged). The resulting

Ty (s)

G3(s)
U

Gs(s) —2— Gs(s)

Gi(s)

u r

Fig. 7: Transformation of the block-diagram in Fig. 6

configuration is also standard, resulting in

Gi(s)
1+ G3(5)G2(5)G1(s)

That’s all ... \

Tu(s) =



Question 4. Simplify the block-diagram in Fig. 8 and find the transfer function P (s) from v, to y.

y [ es+io |6 |
l

| v i [ .
{ms2+cs+kJ J 7 L Km : v

L (J+p2m)s+ f

Ky

Fig. 8: Block-diagram for Question 4

Solution. A possible sequence of transformations is presented in Fig.9. The first transformation is the

poms?

1
s

y [ st |0 |
{msz-ﬁ-cs-‘rkj {

} 7 (J+p2m)s+f K = [ . -

(cs+k)p 0 1 K ia [ 1 Uy

ms2+cs+k s (J+p2m)s+f m L Lo+ Ry —
. Up

ms?+cs+k

(es+k)p 0 § © Ky

Yy
‘—Ai Gi(s) TaiT,
Khs(msz+cs+k)
(cs+k)p

Fig. 9: Simplifications of the block-diagram in Fig. 8

movement of the node of w to the output y. The second one just gathers the blocks, with

(cs+k)p 1 1
Gi(s) = msZtcs+k s (J+pim)stf B (es+k)p
1 — =
(cs+k)p 1 1 2 2 2 2
1 + P a— e T2t 7 - pms (ms +cs + k)S((J + P m)s + f) + pms (CS + k)p
1 (es+k)p

o sm(J + p2m)s3 + (cJ + fm~+2cp?m)s® + (cf + Jk + (1 + k)p2m)s + kf

Thus, we end up with

Py — G1<v) TiE - G1(5)Km(cs + k)p
1+ Gi(s) - g - KosOnbestl) ™~ (Lys + Ra)(es + k)p + Gi(s) KmKos(ms® + cs + k)’

which can be further simpliﬁed after substituting the formula for G (s), but such a simplification goes
beyond the scope of this question.
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Ky
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vl [ estip L0 [0 Lo [ 1] K [ -1 v,
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. Up
Ky
(3
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Kn
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Fig. 10: Simplifications of the block-diagram in Fig. 8, another take

This sequence of transformations is not unique. Another approach is presented in Fig. 10. Needless to
say, the resulted system P from v, to y does not depend on the sequence of block-diagram manipulations
(provided we do it right, of course). \Y%



