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TECHNION—Israel Institute of Technology, Faculty of Mechanical Engineering

Introduction to Control (034040)

tutorial 1

Question 1. Draw the asymptotic Bode magnitude plots of the transfer function

G.s/ D k

.�1s C 1/.�2s C 1/
;

where �1 > 0 and �2 > 0.

Solution. Let us factor G.s/ as

G.s/ D k � 1

�1s C 1
� 1

�2s C 1
µ G0.s/G1.s/G2.s/;

The transfer function G0.s/ D k is static, whose magnitude bode diagram is the straight horizontal like at

the level 20 log k (remember, the Bode plot is in dB), see Fig. 1(a). The two other transfer functions are

first-order transfer functions with the unit static gain of the form 1=.�s C 1/. The asymptotic magnitude

Bode plots of this kind of transfer functions comprises two straight lines: a horizontal one at 0 dB in the

low-frequency range, up to the cutoff frequency !c D 1=� , and a straight line starting at !c and decaying

with the slope of �20 deg/dec (sometimes referred to as having a rolloff of 1), see Fig. 1(b). Now, we

know (from the Linear Systems course) that the Bode magnitude plot of the cascade of systems is the

superposition of their individual Bode magnitude plots. We then end up with the diagram presented by the

solid line in Fig. 1(c). O

(a) G.s/ D k (b) G.s/ D 1=.�s C 1/ (c) G.s/ D G0.s/G1.s/G2.s/

Fig. 1: Asymptotic Bode magnitude diagrams (here k > 1); dotted lines correspond to actual Bode plots
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Question 2. Draw the Bode and polar plots for the following transfer functions:

1. G1.s/ D 1

.�s C 1/2
for � > 0;

2. G2.s/ D k

s.�s C 1/
for � > 0 and k > 0;

3. G3.s/ D �2s C 1

�1s C 1
for �1 D 1

3
and �2 D 5

3
and then for �1 D 5

3
and �2 D 1

3
.

Solution. We shall follow the following procedure: first, draw asymptotic Bode plots, then actual Bode

plots (via “rounding corners”), then present frequency responses at several frequency on the polar plot plane

(from Bode), and then actual polar plots via connecting those points. The magnitude and the phase at the

chosen points can be evaluated via the analytic expressions for the corresponding frequency responses.

1. This G1.s/ can be presented as the cascade of two identical systems with the transfer function 1=.�sC
1/. The asymptotic plots for G.j!/ can be presented, following the steps of Question 1, as in Fig. 2(a).

The actual Bode plots are then shown by the solid lines in Fig. 2(b). Analytic expression for the

frequency response is

G1.j!/ D 1

.j!� C 1/2
D

�

1p
�2!2 C 1

�2

ej2 arg.1=.j!�C1// D 1

�2!2 C 1
e�j2 arctan.�!/:

Let us pick the following frequency points:

! 0 !1 D 0:1=� !2 D 1=� !3 D 3=� 1
jG1.j!/j 1 � 0:99 0:5 0:1 0

arg.G1.j!// 0ı � �11ı �90ı � �143ı �180ı

(a) Asymptotic Bode diagram

 

(b) Actual Bode diagram
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(c) Several points of polar plot
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(d) Actual polar plot

Fig. 2: Frequency response plots of G1.s/
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The frequency responses at the frequencies !i , i D 1; 2; 3, are marked by large dots in Fig. 2(b).

The corresponding points at the complex plane, which is the plane of the polar plot, are presented in

Fig. 2(c). Connecting these dots we end up with the polar plot in Fig. 2(d), where the arrow shows

the direction of the plot as ! increases. Note that as ! " 1, the plot approaches the origin along the

negative real axis, because the argument of G1.j!/ approaches �180ı then.

2. The steps here are similar to those taken in the previous system. The asymptotic and actual Bode

diagrams are then presented in Figs. 3(a) and 3(c), respectively. The frequency response

G2.j!/ D k

j!.j�! C 1/
D k

!
p

�2!2 C 1
e�j.�=2Carctan.�!//;

from which the frequency responses at the chosen points are

! 0 !1 D 0:6=� !2 D 1=� !3 D 3=� 1
jG2.j!/j 1 � 1:43k� k�=

p
2 � 0:11k� 0

arg.G2.j!// �90ı � �121ı �135ı � �153ı �180ı

The only nontrivial difference is that due to the presence of an integrator in G2.s/, jG2.0/j D 1. To

understand the behavior of the hodograph at small frequencies, rewrite

G2.j!/ D k

j!.j�! C 1/
D � k�

�2!2 C 1
� j

k

!.�2!2 C 1/
:

(a) Asymptotic Bode diagram

 

(b) Actual Bode diagram
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(c) Several points of polar plot
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(d) Actual polar plot

Fig. 3: Frequency response plots of G2.s/ (here k D 1=
p

2 and � D 1)
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It is now seen that while the imaginary part goes to �1, the real part approaches a finite value, �k�

(in fact, the real part belongs to .�k�; 0/ for all !). This yields the polar plot in Figs. 3(d).

3. This transfer function can be presented as

G3.s/ D �2s C 1

�1s C 1
D .�2s C 1/ � 1

�1s C 1
;

which is the cascade of a first-order system and the inverse of another first-order system. The asymp-

totic plots of the former are as the dashed lines in Fig. 2(a) and those of the latter—are the same plots

modulo the opposite signs (inversion of a transfer function means sign inversion on Bode). The form

of the convolution of such plots depends on the relation between �1 and �2.

� If 1
3

D �1 < �2 D 5
3
, the effect of the zero precedes that of the pole (as ! increases). Hence,

the magnitude starts at 0 bB (this is the static gain), then gets up at !c2 ´ 1=�2 D 0:6 and then

becomes flat again at !c1 ´ 1=�1 D 3. This is what we can see in Fig. 4(a). The actual Bode

diagram is presented in Fig. 4(b). To construct the polar plot, pick the following frequencies:

! 0 !1 D 0:1342 !2 D 1:342 !3 D 13:42 1
jG3.j!/j 1 � 1:02 � 2:2361 � 4:88 5

arg.G3.j!// 0ı � 10:04ı � 41:81 � 10:04 0ı

where the values can be obtained from the frequency response

G3.j!/ D j�2! C 1

j�1! C 1
D

s

�2
2 ! C 1

�2
1 ! C 1

ej.arctan.�2!/�arctan.�1!//

(with 1
3

D �1 > �2 D 5
3
, although it is also true for �1 > �2). The polar plot is then as shown in

Fig. 4(d). Note that arg.G3.j!1// D arg.G3.j!3//, so the corresponding points lie on the same

radial line in the complex plane.

(a) Asymptotic Bode diagram

 

(b) Actual Bode diagram
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(c) Several points of polar plot
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Fig. 4: Frequency response plots of G3.s/ for 1
3

D �1 < �2 D 5
3
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� If 5
3

D �1 > �2 D 1
3
, the effect of the pole precedes that of the zero (as ! increases). Hence,

the magnitude starts at 0 bB (this is the static gain), then gets down at !c1 ´ 1=�1 D 0:6 and

then becomes flat again at !c2 ´ 1=�2 D 3. This is what we can see in Fig. 5(a). The actual

Bode diagram is presented in Fig. 5(b). To construct the polar plot, pick the same frequencies

as in the previous case. We then have:

! 0 !1 D 0:1342 !2 D 1:342 !3 D 13:42 1
jG3.j!/j 1 � 0:98 � 0:45 � 0:2 0:2

arg.G3.j!// 0ı � �10:04ı � �41:81 � �10:04 0ı

The polar plot is then as shown in Fig. 5(d).

As a matter of fact, it can be verified that for all �1 and �2, the real and imaginary parts of G3.j!/,

Re
�

G3.j!/
�

D �1�2!2 C 1

�2
1 !2 C 1

and Im
�

G3.j!/
�

D .�2 � �1/!

�2
1 !2 C 1

;

verify
�

Re
�

G3.j!/
�

� �1 C �2

2�1

�2

C
�

Im
�

G3.j!/
�

�2

D
��1 � �2

2�1

�2

:

This implies that whenever �1 ¤ �2, the polar plot of G3.j!/ is a semi-circle centered at 1
2
.1 C �2

�1
/

and having the radius 1
2
j1 � �2

�1
j. This is also true for the particular case when �2 D 0, which is the

standard first-order transfer function.

That’s all . . . O

(a) Asymptotic Bode diagram

 

(b) Actual Bode diagram

Re

Im 1 D G.0/�2

�1

D G.j1/

! D !1

arg.G.j!1// D arg.G.j!3//

! D !2

jG
.j!

2 /j

! D !3

(c) Several points of polar plot

 
Re

Im 10:2

G3.j!/

! D !1

! D !2
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(d) Actual polar plot

Fig. 5: Frequency response plots of G3.s/ for 5
3

D �1 > �2 D 1
3
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Question 3. Simplify the block-diagram in Fig. 6 and find the transfer function Ty.s/ from r to y and Tu.s/

from r to u.

ruy

G3.s/

G2.s/ G1.s/
�

Fig. 6: Block-diagram for Question 3

Solution. Finding Ty.s/ is a straightforward application of the cascade (for G2.s/ � G1.s/) and feedback

rules:

Ty.s/ D G2.s/G1.s/

1 C G3.s/G2.s/G1.s/
:

To derive Tu.s/, rearrange the system as shown in Fig. 7 (all signal names remain unchanged). The resulting

ruy

G3.s/

G2.s/ G1.s/
�

+

ru

y
G3.s/G2.s/

G1.s/
�

Fig. 7: Transformation of the block-diagram in Fig. 6

configuration is also standard, resulting in

Tu.s/ D G1.s/

1 C G3.s/G2.s/G1.s/
:

That’s all . . . O
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Question 4. Simplify the block-diagram in Fig. 8 and find the transfer function P.s/ from va to y.

vaia

vb

�� !y

�ms2

.csCk/�

ms2CcsCk

1

.J C�2m/sCf
1

s
Km

1

LasCRa

Kb

�

�

Fig. 8: Block-diagram for Question 4

Solution. A possible sequence of transformations is presented in Fig. 9. The first transformation is the

vaia

vb

�� !y

�ms2

.csCk/�

ms2CcsCk

1

.J C�2m/sCf
1

s
Km

1

LasCRa

Kb

�

�

+

vaia

� !

vb

�� !y

�ms2

.csCk/�

ms2CcsCk

1

.J C�2m/sCf
1

s
Km

1

LasCRa

ms2CcsCk

.csCk/�
s Kb

�

�

+

va

vb

�y
G1.s/ Km

LasCRa

Kbs.ms2
CcsCk/

.csCk/�

�

Fig. 9: Simplifications of the block-diagram in Fig. 8

movement of the node of ! to the output y. The second one just gathers the blocks, with

G1.s/ D
.csCk/�

ms2CcsCk
� 1

s
� 1

.J C�2m/sCf

1 C .csCk/�

ms2CcsCk
� 1

s
� 1

.J C�2m/sCf
� �ms2

D .cs C k/�

.ms2 C cs C k/s..J C �2m/s C f / C �ms2.cs C k/�

D 1

s

.cs C k/�

m.J C �2m/s3 C .cJ C f m C 2c�2m/s2 C .cf C Jk C .1 C k/�2m/s C kf
:

Thus, we end up with

P.s/ D
G1.s/ � Km

LasCRa

1 C G1.s/ � Km

LasCRa
� Kbs.ms2CcsCk/

.csCk/�

D G1.s/Km.cs C k/�

.Las C Ra/.cs C k/� C G1.s/KmKbs.ms2 C cs C k/
;

which can be further simplified after substituting the formula for G1.s/, but such a simplification goes

beyond the scope of this question.
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vaia

vb

�� !y

�ms2

.csCk/�

ms2CcsCk

1

.J C�2m/sCf
1

s
Km

1

LasCRa

Kb

�

�

+

va

vb

� !y

�ms2.LasCRa/

Km

.csCk/�

ms2CcsCk

1

.J C�2m/sCf
1

s
Km

1

LasCRa

Kb

�

�

+

va� !y

�ms2.LasCRa/

Km

.csCk/�

ms2CcsCk

Km

.LasCRa/..J C�2m/sCf /CKmKb

1

s

�

Fig. 10: Simplifications of the block-diagram in Fig. 8, another take

This sequence of transformations is not unique. Another approach is presented in Fig. 10. Needless to

say, the resulted system P from va to y does not depend on the sequence of block-diagram manipulations

(provided we do it right, of course). O


