הטכניון – מכון טכנולוגי לישראל, הפקולטה להנדסת מכונות

TECHNION—Israel Institute of Technology, Faculty of Mechanical Engineering

INTRODUCTION TO CONTROL (00340040)

PROJECT

1 Modeling

Consider a DC motor connected with a mechanical load. Let the load comprise a gearhead and a platform connected rigidly. The gearhead increases the torque generated at the motor shaft by its reduction ratio $n_g > 1$, i.e. its action can be described as

$$\tau_{\rm g}(t) = n_{\rm g} \tau_{\rm m}(t),$$

where τ_m and τ_g are the torques generated at the motor shaft and at the gearhead shaft, respectively. The dynamics of the whole mechanical load are

$$J\ddot{\theta}(t) + f\dot{\theta}(t) = \tau_{\rm g}(t),$$

where J and f are the load moment of inertia and viscous friction, respectively, and θ is the *load* shaft angle related to the motor shaft angle θ_m as $\theta_m = n_g \theta$. The motor is controlled via its armature voltage u.

- 1. Assuming that the armature inductance is negligible, present the block-diagram of the system. The block-diagram must explicitly contain the signals u, i (armature current), $\tau_m, \tau_g, \theta, \theta_m$, and $\omega := \dot{\theta}$.
- 2. Derive the transfer functions of the systems $P_{\theta} : u \mapsto \theta$ and $P_{\omega} : u \mapsto \omega$. What are the static gain and time constant of P_{ω} in terms of the problem data?
- 3. Are P_{ω} and P_{θ} stable? How do the answers depend on the parameters?

2 Closed-loop control

We are now in the position to design a controller for our DC motor P_{θ} to control the load angle. The ultimate goal is to track perfectly a constant reference signal *r* in steady state, while attenuating a constant disturbance signal *d*, also in steady state. In all items below assume the following choice of the parameters:

Parameter
$$K_{\rm m}$$
 [N m/A]
 $R_{\rm a}$ [Ω]
 J [kg m²]
 f [N m s/rad]
 $n_{\rm g}$

Value
0.0242
2.15
0.0047
0.004
4.85

where $K_{\rm m}$ is the motor torque constant (equals the backemf constant $K_{\rm m}$) and $R_{\rm a}$ is the resistance of the armature circuit.

All questions below are about the configuration in Fig. 1.

4. Consider first a P controller of the form $C(s) = k_p$.

- (a) In what range of k_p the closed-loop system is stable? Use *root-locus arguments* to justify.
- (b) What is the range of k_p for which the steady-state error $e_{ss} := \lim_{t \to \infty} |e(t)| = 0$ under r = 1?
- (c) In what range of k_p the damping factors of all closed-loop poles satisfy $\zeta \in (0, 0.69)$? What is the range of overshoot values for the response of θ to r = 1 in this range of k_p ?
- (d) In what range of k_p the natural frequencies of all closed-loop poles satisfy $\omega_n \ge 2.22$ rad/sec?

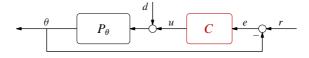


Fig. 1: Closed-loop system for controller design

- (e) In what range of k_p the steady-state response to d = 1 satisfies $\lim_{t\to\infty} |\theta(t)| \le 1$? What is the minimal attainable overshoot in that range?
- 5. Consider now a PI controller of the form $C(s) = k_p \left(1 + \frac{k_i}{s}\right)$.
 - (a) In what range of k_p and k_i the closed-loop system is stable? Use *root-locus arguments* to justify, again.
 - (b) In what range of k_p and k_i the steady-state error $e_{ss} := \lim_{t \to \infty} |e(t)| = 0$ under r = 1?
 - (c) In what range of k_p and k_i the steady-state response to d = 1 verifies $\lim_{t\to\infty} |\theta(t)| \le 1$?
 - (d) Choose k_p and $k_i \ge 0.01$ such that the step response of the resulted system $T : r \mapsto \theta$ has OS $\le 15\%$ and $t_s \le 3$ [sec] under the settling level $\delta = 2\%$.

All answers should be justified. All simulation should be attached in *two* m-files, one for item 4 and another one for item 5.