
Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Introduction to Control (034040)
lecture no. 12

Leonid Mirkin

Faculty of Mechanical Engineering
Technion—IIT

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Outline

Industrial (PID) controllers

Tuning PID controllers

PID controller architectures and implementation

2-degrees-of-freedom controller configuration

Concluding remarks

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Outline

Industrial (PID) controllers

Tuning PID controllers

PID controller architectures and implementation

2-degrees-of-freedom controller configuration

Concluding remarks

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

PID regulators

reuy
CP −

− P: C (s) = kp;

− PI:

C (s) = kp
(
1 +

ki
s

)
= kp

(
1 +

1

�is

)
;

with �i = 1=ki called its reset time;

− PD:
C (s) = kp(1 + �ds);

with �d called its derivative time;

− PID:

C (s) = kp
(
1 +

1

�is
+ �ds

)
or C (s) = kp

(
1 +

1

�is

)(
1 + �ds

)
:

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

PID regulators

reuy
CP −

− P: C (s) = kp;

− PI:

C (s) = kp
(
1 +

ki
s

)
= kp

(
1 +

1

�is

)
;

with �i = 1=ki called its reset time;

− PD:
C (s) = kp(1 + �ds);

with �d called its derivative time;

− PID:

C (s) = kp
(
1 +

1

�is
+ �ds

)
or C (s) = kp

(
1 +

1

�is

)(
1 + �ds

)
:

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

PID regulators

reuy
CP −

− P: C (s) = kp;

− PI:

C (s) = kp
(
1 +

ki
s

)
= kp

(
1 +

1

�is

)
;

with �i = 1=ki called its reset time;

− PD:
C (s) = kp(1 + �ds);

with �d called its derivative time;

− PID:

C (s) = kp
(
1 +

1

�is
+ �ds

)
or C (s) = kp

(
1 +

1

�is

)(
1 + �ds

)
:

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

PID regulators

reuy
CP −

− P: C (s) = kp;

− PI:

C (s) = kp
(
1 +

ki
s

)
= kp

(
1 +

1

�is

)
;

with �i = 1=ki called its reset time;

− PD:
C (s) = kp(1 + �ds);

with �d called its derivative time;

− PID:

C (s) = kp
(
1 +

1

�is
+ �ds

)
or C (s) = kp

(
1 +

1

�is

)(
1 + �ds

)
:

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

PID regulators: why

− Relatively simple structure

− (relatively) easy to implement
− (relatively) easy to tune

− Intuitively clear interpretation

− the “P”-part exploits current knowledge of system behavior
− the “I”-part exploits the past
− the “D”-part attempts to exploit prediction of the future

− Vast practical experience

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Frequency domain interpretation of PI controller

0

20

40

60

10
−2

10
−1

10
0

10
1

10
2

−90

−45

0

M
ag
n
it
u
d
e
(d
B
)

P
h
as
e
(d
eg
)

Frequency (rad/sec)

Bode diagram of 1 + 1
� is

for �i = 10, 1, 0.1

− PI controller adds additional phase lag thus reducing stability margins

− to prevent this, �i should be such that !c�i ≫ 1

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Frequency domain interpretation of PD controller

0

20

40

60

10
−2

10
−1

10
0

10
1

10
2

0

45

90

M
ag
n
it
u
d
e
(d
B
)

P
h
as
e
(d
eg
)

Frequency (rad/sec)

Bode diagram of 1 + �ds for �d = 0.1, 1, 10

− PD controller adds a phase lead thus increasing stability margins

− to exploit this, �d should be such that �d!c ̸≪ 1.

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Outline

Industrial (PID) controllers

Tuning PID controllers

PID controller architectures and implementation

2-degrees-of-freedom controller configuration

Concluding remarks

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Designing PID’s

Historically, the design of PID controllers is dubbed their tuning. There are
roughly two philosophies here:

− explicit model-based: starts with a process model, often of the form

P(s) =
k

�s + 1
e−sh or P(s) =

k

(�1s + 1)(�2s + 1)
e−sh;

and then chooses kp, �i, and �d according to whatever algorithm;

− implicit model-based: chooses kp, �i, and �d directly from outcomes of
a (simple) experiment with the plant according to whatever algorithm

− although frequently regarded as model-free, all such experiments implicitly
assume that plant dynamics are “simple,” say that the gain and phase are
monotonically decaying functions of !

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Ziegler-Nichols tuning

In 1942 John G. Ziegler & Nathaniel B. Nichols from Taylor Instrument Co.
have published a paper with two methods of tuning PID controllers, based
on

1. a closed-loop experiment with a proportional controller,

2. an open-loop step response experiment.

These methods were simple and efficient, soundly outperforming available
solutions. They are still relevant today (although may no longer be widely
used). We study the first of them below.

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Ziegler-Nichols tuning: closed-loop experiment

reuy
kpP −

Increase kp slowly until undamped oscillations arise in y :

0

1

Time, t

y
(t
)

kp = Ku

Denote the gain for which this happens as Ku and the oscillation period in
steady state as Tu.

Remark: As a matter of fact, Tu = 2�=!� and Ku = �g = 1=|P(j!�)|.

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Ziegler-Nichols tuning: closed-loop experiment

reuy
kpP −

Increase kp slowly until undamped oscillations arise in y :

0

1

Time, t

y
(t
)

kp < Ku

0

1

Time, t

y
(t
)

kp = Ku

Denote the gain for which this happens as Ku and the oscillation period in
steady state as Tu.

Remark: As a matter of fact, Tu = 2�=!� and Ku = �g = 1=|P(j!�)|.

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Ziegler-Nichols tuning: closed-loop experiment

reuy
kpP −

Increase kp slowly until undamped oscillations arise in y :

0

1

Time, t

y
(t
)

kp < Ku

0

1

Time, t

y
(t
)

kp = Ku

0

1

Time, t

y
(t
)

kp > Ku

Denote the gain for which this happens as Ku and the oscillation period in
steady state as Tu.

Remark: As a matter of fact, Tu = 2�=!� and Ku = �g = 1=|P(j!�)|.

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Ziegler-Nichols tuning: closed-loop experiment

reuy
kpP −

Increase kp slowly until undamped oscillations arise in y :

0

1

Time, t

y
(t
)

kp < Ku

0

1

Time, t

y
(t
)

kp = Ku

0

1

Time, t

y
(t
)

kp > Ku

Denote the gain for which this happens as Ku and the oscillation period in
steady state as Tu.

Remark: As a matter of fact, Tu = 2�=!� and Ku = �g = 1=|P(j!�)|.

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Ziegler-Nichols tuning: closed-loop experiment

reuy
kpP −

Increase kp slowly until undamped oscillations arise in y :

0

1

Time, t

y
(t
)

kp < Ku

0

1

Time, t

y
(t
)

kp = Ku

Tu

0

1

Time, t

y
(t
)

kp > Ku

Denote the gain for which this happens as Ku and the oscillation period in
steady state as Tu.

Remark: As a matter of fact, Tu = 2�=!� and Ku = �g = 1=|P(j!�)|.

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Ziegler-Nichols tuning: closed-loop experiment

reuy
kpP −

Increase kp slowly until undamped oscillations arise in y :

0

1

Time, t

y
(t
)

kp < Ku

0

1

Time, t

y
(t
)

kp = Ku

Tu

0

1

Time, t

y
(t
)

kp > Ku

Denote the gain for which this happens as Ku and the oscillation period in
steady state as Tu.

Remark: As a matter of fact, Tu = 2�=!� and Ku = �g = 1=|P(j!�)|.

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Ziegler-Nichols tuning: rules

kp �i �d
P 0:5Ku renders L(j 2�

Tu
) = 0:5 e−j� (thus, �g = 2)

PI 0:45Ku
Tu
1:2 renders L(j 2�

Tu
) = 0:45 e−j1:06� (11◦ phase lag)

PID 0:6Ku
Tu
2

Tu
8 renders L(j 2�

Tu
) = 0:66 e−j0:86� (25◦ phase lead)

double zero at s = −4=Tu

PID1 0:7Ku
Tu
2:5

Tu
6:7 renders L(j 2�

Tu
) = 0:8 e−j0:84� (28◦ phase lead)

two zeros at s = (−3:35± j2:351)=Tu

(� ≈ 0:82 and !n ≈ 4:1=Tu)

These values are to be used

− only as a starting point.

Typically, some (nontrivial) manual tuning of controller parameters required.

1D. Pessen rule; apparently, ZN rule affected by no longer existent hardware limitations.

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Ziegler-Nichols tuning: rules

kp �i �d
P 0:5Ku renders L(j 2�

Tu
) = 0:5 e−j� (thus, �g = 2)

PI 0:45Ku
Tu
1:2 renders L(j 2�

Tu
) = 0:45 e−j1:06� (11◦ phase lag)

PID 0:6Ku
Tu
2

Tu
8 renders L(j 2�

Tu
) = 0:66 e−j0:86� (25◦ phase lead)

double zero at s = −4=Tu

PID1 0:7Ku
Tu
2:5

Tu
6:7 renders L(j 2�

Tu
) = 0:8 e−j0:84� (28◦ phase lead)

two zeros at s = (−3:35± j2:351)=Tu

(� ≈ 0:82 and !n ≈ 4:1=Tu)

These values are to be used

− only as a starting point.

Typically, some (nontrivial) manual tuning of controller parameters required.

1D. Pessen rule; apparently, ZN rule affected by no longer existent hardware limitations.

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Ziegler-Nichols tuning: example

reu

d

y
C (s)

e−0.5s

(s + 1)2 −

Polar plot of the plant is:

Re

Im

P(j!)

−1
0.21

!
=
1.92

so we get: Ku ≈ 4:688 and Tu ≈ 3:27.

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Ziegler-Nichols tuning: example (contd)

PI controller: CPI(s) = 2:11
(
1 + 1

2:73s

)
PID controller: PID controller: CPID(s) = 3:28

(
1 + 1

1:31s + 0:49s
)

10

20

30

40

10
−2

10
−1

10
0

10
1

10
2

−90

−45

0

45

90

M
ag
ni
tu
de

(d
B
)

P
ha
se

(d
eg
)

Frequency (rad/sec)

Bode diagrams of CPI and CPID

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Ziegler-Nichols tuning: example (contd)

Re

Im

LPI(j!)

LPID(j!)

−1

PI controller: !c = 1:11, �g = 1:79, �ph = 33:7◦

PID controller: !c = 1:55, �g = 1:97, �ph = 36:3◦

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Ziegler-Nichols tuning: example (contd)

5 10 15

0

1

1.35

1.44

Time, t

y
(t
)

Responses to r = 1 with CPI and CPID

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Ziegler-Nichols tuning: example (contd)

5 10 15

0

0.28

0.44

Time, t

y
(t
)

Responses to d = 1 with CPI and CPID

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Ziegler-Nichols tuning cum grano salis

Let

P(s) =
0:1e−1:5s

s(s2 + 0:05s + 1)

with

Re

Im

P(j!)

−1

P
(j
0.
89
69
)
=

−0
.5
55
7

It has

!� ≈ 0:897 and |P(j!�)| ≈ 0:556;

so
Ku ≈ 1:8 and Tu ≈ 7:

Hence,

CPID(s) = 1:08

(
1 +

1

3:5s
+ 0:875s

)
=

0:31(1:75 s + 1)2

s
:

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Ziegler-Nichols tuning cum grano salis (contd)

The loop is then

Re

Im

P(j!)

L(j!) = P(j!)CPID(j!)

−1

P
(j
0.
89
69
)
=

−0
.5
55
7

L(j0.8969
) = −0.6002− j 0.2902

which yields an unstable closed-loop system . . .

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Where is it now?

Explicit model-based approaches seem to be dominant nowadays. Arguably,
the most widely used plant model is the so-called “first-order+delay,” like

P(s) =
k

�s + 1
e−sh or P(s) =

k

s
e−sh

for some � > 0. In some cases, when more inertial systems are considered,
“second-order+delay” models of the form

P(s) =
k

(�1s + 1)(�2s + 1)
e−sh or P(s) =

k

s(�s + 1)
e−sh

may be picked.

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Where is it now?

Explicit model-based approaches seem to be dominant nowadays. Arguably,
the most widely used plant model is the so-called “first-order+delay,” like

P(s) =
k

�s + 1
e−sh or P(s) =

k

s
e−sh

for some � > 0. In some cases, when more inertial systems are considered,
“second-order+delay” models of the form

P(s) =
k

(�1s + 1)(�2s + 1)
e−sh or P(s) =

k

s(�s + 1)
e−sh

may be picked.

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Where is it now? (contd)

Typical course of action:

1. identify parameters by fitting the model to system response

− experiments may be carried out in open-loop or in closed-loop settings
− may be based on step or frequency response characteristics

2. tune kp, �i, �d to result in a “best” response for a given model

− some methods are heuristic lookup tables
e.g. the so-called SIMC rule sets

kp =
1

k

�

h + �c
and �i = min{�; 4(h + �c)};

where �c is a tuning parameter (the closed-loop dominant time constant)

− others use advanced optimization techniques to tune PID parameters (we
may also employ brute force parametric search to minimize whatever cost
function . . .)

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

First-order+delay richness: example

Let the “actual”

P(s) =
(−0:3s + 1)(0:08s + 1)

(2s + 1)(s + 1)(0:4s + 1)(0:2s + 1)(0:05s + 1)3
:

It may be approximated by

P1(s) =
1

2:48s + 1
e−1:58s

reasonably well:

1.58 5 10 t

y
(t
)

1

step response of P(s)
step response of P1(s)

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Second-order+delay richness: example

Let the “actual”

P(s) =
(−0:3s + 1)(0:08s + 1)

(2s + 1)(s + 1)(0:4s + 1)(0:2s + 1)(0:05s + 1)3
:

Its approximation by

P2(s) =
1

(1:19s + 1)(1:91s + 1)
e−0:865s

is even better:

0.865 5 10 t

y
(t
)

1

step response of P(s)
step response of P2(s)

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Outline

Industrial (PID) controllers

Tuning PID controllers

PID controller architectures and implementation

2-degrees-of-freedom controller configuration

Concluding remarks

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

“Natural” architecture

reu

d

y
1 + 1

�is
+ �dskpP(s) −

with the control signal

u(t) = kp
(
e(t) +

1

�i

∫ t

0
e(�)d� + �dė(t)

)
:

The transfer function of the controller,

C (s) = kp
(
1 +

1

�is
+ �ds

)
=

kp(�d�is
2 + �is + 1)

�is
;

has zeros. It can be verified that unless canceled by plant poles,

− controller zeros are zeros of the transfer function r 7→ y , i.e. of T (s).

This might be problematic (zeros, especially dominant, complicate analysis
and might contribute to increased overshoot).

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

“Natural” architecture

reu

d

y
1 + 1

�is
+ �dskpP(s) −

with the control signal

u(t) = kp
(
e(t) +

1

�i

∫ t

0
e(�)d� + �dė(t)

)
:

The transfer function of the controller,

C (s) = kp
(
1 +

1

�is
+ �ds

)
=

kp(�d�is
2 + �is + 1)

�is
;

has zeros. It can be verified that unless canceled by plant poles,

− controller zeros are zeros of the transfer function r 7→ y , i.e. of T (s).

This might be problematic (zeros, especially dominant, complicate analysis
and might contribute to increased overshoot).

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Alternative architecture

reu

d

y 1
�i s

1 + �ds

kpP(s) −−

with the control signal

u(t) = kp
(
−y(t) +

1

�i

∫ t

0
e(�)d� − �dẏ(t)

)
:

Now the transfer function of the system r 7→ y ,

Tcyr(s) =
P(s) kp=(�is)

1 + P(s)C (s)
;

has only zeros of the plant as its zeros, which might simplify matters. Note,

− disturbance response is not affected by this change of the architecture.

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Alternative architecture

reu

d

y 1
�i s

1 + �ds

kpP(s) −−

with the control signal

u(t) = kp
(
−y(t) +

1

�i

∫ t

0
e(�)d� − �dẏ(t)

)
:

Now the transfer function of the system r 7→ y ,

Tcyr(s) =
P(s) kp=(�is)

1 + P(s)C (s)
;

has only zeros of the plant as its zeros, which might simplify matters. Note,

− disturbance response is not affected by this change of the architecture.

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Alternative architecture: example

For example, let

P(s) =
k

s + a
and C (s) = kp

(
1 +

1

�is

)
Then

T (s) =
kkp(�is + 1)

�is2 + �i(a+ kkp)s + kkp

has a zero at s = −1=�i (unless �i = 1=a). At the same time,

Tcyr(s) =
kkp

�is2 + �i(a+ kkp)s + kkp

is a 2-order transfer function without zeros (hence, easier to understand).

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Ziegler-Nichols tuning: example (contd)

The same tuning, but a different architecture:

5 10 15

0

1

1.1

1.35

1.44

Time, t

y
(t
)

Responses to r = 1 with CPI and CPID

The disturbance response remains the same.

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Implementing the D part

The non-proper �ds is normally implemented as

�ds

˛�ds + 1

with sufficiently small ˛ (typically, 0:05 ≤ ˛ ≤ 0:3):

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Outline

Industrial (PID) controllers

Tuning PID controllers

PID controller architectures and implementation

2-degrees-of-freedom controller configuration

Concluding remarks

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Open-loop control: architecture

ru
d

y
P Col

Signals of interest:

y = PColr + Pd & u = Colr ;

where

− r is a reference signal (requirements)

− d is a load disturbance

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Open-loop control: strategy

ru
d

y
P Col

Plant inversion with reference model:

C = Col = P−1Tref;

where stable Tref should endeavor to have . . .

steady-state |1− Tref(j!)| ≪ 1 at !’s where the spectrum of r dominates

transients − dominant poles of Tref(s) are in “good” regions
− sufficiently wide, but not too wide, bandwidth of Tref(j!)
− no high resonant peaks of |Tref(j!)|

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Open-loop control: properties

ru
d

y
P Col

Open-loop architecture is

¨̂ efficient in handling command following requirements

¨̂ technically simple both Tref and Col are stable

− all nonminimum-phase zeros of P(s) as zeros of Tref(s)
− pole excess of Tref(s) ≥ poles excess of P(s) unless ṙ , r̈ , etc measurable

_̈ does not help in handling uncertainty

− modeling inaccuracies in P
− disturbances

_̈ inapplicable if the plant P is unstable

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Closed-loop control: architecture (unity feedback)

remu

d

y

ymn

CP −

Signals of interest:

y = Tr + Tdd − Tn & u = Tcr − Td − Tcn ;

where

− T (s) =
P(s)C (s)

1 + P(s)C (s)
complementary sensitivity

− Td(s) =
P(s)

1 + P(s)C (s)
disturbance sensitivity

− Tc(s) =
C (s)

1 + P(s)C (s)
control sensitivity

− S(s) = 1− T (s) sensitivity

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Closed-loop control: strategy

remu

d

y

ymn

CP −

Internally stabilizing C should endeavor to have . . .

Command following:

− |1− T (j!)| ≪ 1 at !’s where the spectrum of r dominates

− T (j!) has sufficiently wide, but not too wide, bandwidth

− T (j!) has no high resonance peaks

Disturbance attenuation:

− |Td(j!)| ≪ 1 at !’s where the spectrum of d dominates

Noise sensitivity:

− |T (j!)| ≪ 1 & |Tc(j!)| ̸≫ 1 at !’s where the spectrum of n dominates

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Closed-loop control: properties

remu

d

y

ymn

CP −

Closed-loop architecture is

¨̂ efficient in stabilizing

¨̂ efficient in handling command following requirements

¨̂ efficient in attenuating disturbances

_̈ technically nontrivial

− high-low gain tradeoffs
− crossover region acrobatics

partially because it has to address

_̈ too many intrinsically conflicting goals.

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Closed-loop control: properties

remu

d

y

ymn

CP −

Closed-loop architecture is

¨̂ efficient in stabilizing

¨̂ efficient in handling command following requirements

¨̂ efficient in attenuating disturbances

_̈ technically nontrivial

− high-low gain tradeoffs
− crossover region acrobatics

partially because it has to address

_̈ too many intrinsically conflicting goals.

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

The best of both worlds

Handling uncertainty:

remu

d

y

ymn

CP −

− no alternative to feedback

− no alternative architecture (C acts after n and before d)

Nominal command following:

remu

d

y

ymn

CP − vs. ru

d

y
P Col

− no advantage of feedback

− open-loop design is simpler

Natural question:

− can we synergize open- and closed-loop architectures?

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

The best of both worlds

Handling uncertainty:

remu

d

y

ymn

CP −

− no alternative to feedback

− no alternative architecture (C acts after n and before d)

Nominal command following:

remu

d

y

ymn

CP − vs. ru

d

y
P Col

− no advantage of feedback

− open-loop design is simpler

Natural question:

− can we synergize open- and closed-loop architectures?

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Circumvent C in the nominal case

The idea is to

− negate the effect of C if everything behaves expectably.

ydes

ureq

0 0u

d

y

n

CP -

Expectable behavior is expressed as two requirements to added signals:

1. ydes and ureq are bounded stability

2. ydes = Pureq consistency

In this case (remember, TcP = T and S + T = 1)

u = ureq + C (ydes − Pu) ⇐⇒ u = Sureq + Tcydes = ureq

and y = Pu = ydes, regardless C (provided it is stabilizing, of course).

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Circumvent C in the nominal case

The idea is to

− negate the effect of C if everything behaves expectably.

ydes

ureq

0 0u

d

y

n

CP -

Expectable behavior is expressed as two requirements to added signals:

1. ydes and ureq are bounded stability

2. ydes = Pureq consistency

In this case (remember, TcP = T and S + T = 1)

u = ureq + C (ydes − Pu) ⇐⇒ u = Sureq + Tcydes = ureq

and y = Pu = ydes, regardless C (provided it is stabilizing, of course).

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

2DOF architecture (when a reference model is used)

If we take ydes = Trefr and ureq = Colr for Col = P−1Tref (consistent), then

rydes

ureq

u

d

y

n

Tref

Col

CP -

and signals of interest are

y = Trefr + Tdd − Tn & u = Colr − Td − Tcn ;

This controller blends open- and closed-loop controller architectures, with a
complete separation of

− nominal command response shaped by Col

standard open-loop design

− stabilization and handling uncertainty shaped by C
standard feedback design, just w/o taking the command response into account

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

2DOF architecture (when a reference model is used)

If we take ydes = Trefr and ureq = Colr for Col = P−1Tref (consistent), then

rydes

ureq

u

d

y

n

Tref

Col

CP -

and signals of interest are

y = Trefr + Tdd − Tn & u = Colr − Td − Tcn ;

This controller blends open- and closed-loop controller architectures, with a
complete separation of

− nominal command response shaped by Col

standard open-loop design

− stabilization and handling uncertainty shaped by C
standard feedback design, just w/o taking the command response into account

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Outline

Industrial (PID) controllers

Tuning PID controllers

PID controller architectures and implementation

2-degrees-of-freedom controller configuration

Concluding remarks

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Summary

Learned in this course,

− flavor of basic control ideas,

so you could communicate with control engineers in their native language.

A long and winding road to become a control engineer / R&D yourselves,

035188 Control Theory

035036 Control Systems Design

034406 Advanced Control Laboratory

036709 Sampled-Data Control Systems

036012 Linear Control Systems

036050 Nonlinear Control Systems

036013 Process Optimization
...

Industrial (PID) controllers Tuning PID controllers PID architectures 2DOF controllers Concluding remarks

Summary

Learned in this course,

− flavor of basic control ideas,

so you could communicate with control engineers in their native language.

A long and winding road to become a control engineer / R&D yourselves,

035188 Control Theory

035036 Control Systems Design

034406 Advanced Control Laboratory

036709 Sampled-Data Control Systems

036012 Linear Control Systems

036050 Nonlinear Control Systems

036013 Process Optimization
...

	Industrial (PID) controllers
	Tuning PID controllers
	PID controller architectures and implementation
	2-degrees-of-freedom controller configuration
	Concluding remarks

