Introduction to Control (034040) lecture no. 11

Leonid Mirkin

Faculty of Mechanical Engineering Technion—IIT

Typical operations with $L(i\omega)$

Typical operations with $L(i\omega)$

The goal of today's lecture is to

give a flavor of basic tools of loop shaping

for frequency responses with monotonically decreasing magnitude and phase.

Typical operations with $L(i\omega)$

Typical course of action:

- set required crossover, ω_c (means: proportional controller)
- shape high-frequency gain (means: low-pass filter)
- shape phase around ω_c (means: lead controller)
- shape low-frequency gain (means: lag controller)

by cascade adjustments of $C(s)$.

The goal of today's lecture is to

give a flavor of basic tools of loop shaping

for frequency responses with monotonically decreasing magnitude and phase.

[Assigning required crossover](#page-5-0)

[Phase shaping around crossover: lead controller](#page-8-0)

[Shaping low-frequency gain: lag controller](#page-22-0)

[Design examples](#page-32-0)

[Assigning required crossover](#page-5-0)

Gain effects

If $|L(j\omega)|$ is monotonically decreasing and continuous, increase / decrease of the loop gain \Rightarrow increase / decrease of ω_c

Gain effects

If $|L(j\omega)|$ is monotonically decreasing and continuous, increase / decrease of the loop gain \Rightarrow increase / decrease of ω_c

If we aim at $\omega_{\rm c} = \omega_{\rm c}^*$, then we may just use the following P controller:

$$
C(s)=k_{\mathsf{p}}=\frac{1}{|P(j\omega_{\mathsf{c}}^*)|}.
$$

[Assigning required crossover](#page-5-0) **[Lead controller](#page-8-0)** [Lag controller](#page-22-0) [Design examples](#page-32-0)

[Phase shaping around crossover: lead controller](#page-8-0)

Motivating example

Consider control of $P(s) = 1/s^2$. Its polar plot

shows clearly that this plant cannot be stabilized by a P controller.

Motivating example

Consider control of $P(s) = 1/s^2$. Its polar plot

shows clearly that this plant cannot be stabilized by a P controller. Some

− phase lead

must be added in the crossover region.

Consider 1-order controllers of the form $C_1(s) = \frac{s+b}{s+a}$. For $a = 1$ we have:

Consider 1-order controllers of the form $C_1(s) = \frac{s+b}{s+a}$. For $a = 1$ we have:

Any $C_1(s)$ with $a > b$ adds a phase lead $\forall \omega$ and thus stabilizes the double integrator.

Consider 1-order controllers of the form $C_1(s) = \frac{s+b}{s+a}$. For $a = 1$ we have:

Any $C_1(s)$ with $a > b$ adds a phase lead $\forall \omega$ and thus stabilizes the double integrator. Such a C_1 , however, would alter ω_c , which might be undesirable.

Lead controller

General form: $C_{\text{lead}}(s) =$ $\sqrt{\alpha} s + \omega_m$ $\frac{\sqrt{N+1+2m}}{S + \sqrt{\alpha} \omega_m}$, where $\alpha > 1$ is a parameter.

Lead controller for different α 's

C_{lead} : properties

Pros: if we choose $\omega_m = \omega_c$, the use of $C_{lead}(s)$

- $-$ does not alter ω_c
- $-$ increases $\mu_{\rm ph}$

Cons:

- − decreases the low-frequency gain
- − increases the high-frequency gain

```
- decreases \mu_{\rm g}(because, typically, \omega_c < \omega_{\phi} and |C_{lead}(j\omega)| > 1 for \omega > \omega_m)
```
Assume that the required crossover frequency is $\omega_c = 1$ rad/sec. Applying $C_{\text{lead}}(s)$ for $\omega_m = 1$ and $\alpha = \{2, 4, 10, 20\}$ to $P(s) = 1/s^2$ we get:

Closed-loop command responses with C_{lead} for $\omega_m = 1$ and $\alpha = \{2, 4, 10, 20\}$

Phase lead of lead controllers

Maximal phase lead, $\phi_m = \arcsin \frac{\alpha-1}{\alpha+1}$, is achieved at $\omega = \omega_m$:

Phase lead of lead controllers

Maximal phase lead, $\phi_m = \arcsin \frac{\alpha-1}{\alpha+1}$, is achieved at $\omega = \omega_m$:

Practically, as the slope of the curve above for large α is low, the values

 $\alpha > 14$ are undesirable.

For larger α we do not gain much (in terms of the phase lead), while pay a steep price (in terms of low- and high-frequency controller gains).

More phase lead

If $\phi_m > 60^\circ$ is required, use 2 (seldom, even more) lead controllers:

[Shaping low-frequency gain: lag controller](#page-22-0)

Closed-loop disturbance responses with C_{lead} for $\omega_m = 1$ and $\alpha = \{2, 4, 10, 20\}$

To explain this, note that

$$
T_{\rm d}(s) = \frac{P(s)}{1 + P(s)C_{\rm lead}(s)} = \frac{1}{1/P(s) + C_{\rm lead}(s)} = \frac{1}{s^2 + C_{\rm lead}(s)},
$$

so that

$$
\lim_{t\to\infty}y_d(t)=T_d(0)=\frac{1}{C_{\text{lead}}(0)}=\sqrt{\alpha}.
$$

Therefore, with the use of C_{lead}

 $-$ the vulnerability to low-frequency disturbances increases as α grows.

Possible remedy is to

 $-$ increase the static gain of C_{lead} ,

by the controller $C(s) = kC_{lead}(s)$ for some $k > 1$. Yet this would

- − increase high-frequency gain as well;
- − increase the system bandwidth beyond required.

Possible remedy is to

 $-$ increase the static gain of C_{lead} .

by the controller $C(s) = kC_{lead}(s)$ for some $k > 1$. Yet this would

- − increase high-frequency gain as well;
- − increase the system bandwidth beyond required.

We would like to

− increase low-frequency gain without altering gain / phase at $\omega \approx \omega_c$.

Lag controller

General form: $C_{\text{lag}}(s) = \frac{10s + \omega_m}{10s + \omega_m/\beta}$, where $\beta > 1$ is a parameter.

Lag controller for different β 's

Bode diagrams of $C_{\text{lag}}(s)$ for $\omega_m = 1$ and $\beta = \{2, 4, 10, 30, \infty\}$

If the zero steady-state error under $d = 1$ is required, then we shall choose $\beta = \infty$. Let's also choose $\omega_m = 1$ for C_{lag} and consider

 $C(s) = C_{\text{lead}}(s)C_{\text{lag}}(s)$.

We have (again, in $C_{\text{lead}} \alpha = \{2, 4, 10, 20\}$):

Closed-loop disturbance responses with $C_{\text{lead}}C_{\text{lag}}$ for $\omega_m = 1$, $\alpha = \{2, 4, 10, 20\}$, and $\beta = \infty$

C_{lag} : properties

Pros: if we choose $\omega_m = \omega_c$, the use of $C_{\text{lag}}(s)$

- − increases the low-frequency gain of $L(iω)$
- $-$ adds at most 5.7 $^{\circ}$ phase lag at ω_{c} (this may be compensated by a bit larger phase lead of $C_{\text{lead}}(s)$)

Cons:

- − adds phase lag
- $-$ gain increase within a decade of ω_{c} is modest (at most by $\sqrt{2}\approx 1.414)$

[Design examples](#page-32-0)

A DC motor controlled in closed loop:

Requirements:

- − closed-loop stability (of course)
- zero steady-state error for a step in r
- zero steady-state error for a step in d
- $\mu_{\rm ph} \geq 45^{\circ}$
- ω_c is treated as a tuning parameter

Remark: We implicitly assume that the plant is normalized, in a sense that the control amplitude $|u(t)| < 1$ is "small" and $|u(t)| > 1$ is "large".

A DC motor controlled in closed loop:

Requirements:

- − closed-loop stability (of course)
- zero steady-state error for a step in r always holds
- zero steady-state error for a step in d
- $\mu_{\rm ph} \geq 45^{\circ}$
- ω_c is treated as a tuning parameter

Remark: We implicitly assume that the plant is normalized, in a sense that the control amplitude $|u(t)| < 1$ is "small" and $|u(t)| > 1$ is "large".

A DC motor controlled in closed loop:

Requirements:

- − closed-loop stability (of course)
- zero steady-state error for a step in r always holds
- zero steady-state error for a step in d integrator in $C(s)$

- $\mu_{\rm ph} \geq 45^{\circ}$
- ω_c is treated as a tuning parameter

Remark: We implicitly assume that the plant is normalized, in a sense that the control amplitude $|u(t)| < 1$ is "small" and $|u(t)| > 1$ is "large".

A DC motor controlled in closed loop:

Requirements:

- − closed-loop stability (of course)
- zero steady-state error for a step in r always holds
- zero steady-state error for a step in d integrator in $C(s)$
-
- ω_c is treated as a tuning parameter

Remark: We implicitly assume that the plant is normalized, in a sense that the control amplitude $|u(t)| < 1$ is "small" and $|u(t)| > 1$ is "large".

 $- \mu_{\rm ph} \geq 45^{\circ}$ might require phase lead

Example 1: the plant

Let $\omega_c = 0.05$:

This crossover can be attained by the gain $k \approx 0.1$.

Example 1: adjusting crossover

We get:

Here $\mu_{\sf ph} \approx 90^\circ$ and

we don't need a lead,

even after the lag controller will add its 5.7° .

Example 1: adjusting low-frequency gain

Use the lag controller with $\omega_m = 0.05$ and $\beta = \infty$:

It yields $\mu_{\sf ph} \approx 83^\circ$, which is more than enough. Resulting controller:

$$
C(s) = kC_{\text{lag}}(s) = \frac{0.10003(s + 0.005)}{s}.
$$

Example 1: closed-loop command response

To note:

- resonance peak is very small \implies small OS
- closed-loop bandwidth $\omega_{\rm b} \approx 0.0562$, which is a bit above the designed $\omega_c = 0.05$ and smaller than the open-loop bandwidth

Example 1: closed-loop disturbance response

To note:

not enough controller gain \implies high disturbance sensitivity

Example 1: closed-loop control signal

To note:

 $-$ closed-loop bandwidth \ll open-loop bandwidth \Rightarrow low control effort

Example 2: the plant

Let $\omega_c = 0.5$ now:

This is about the actual crossover, so can be attained by the gain $k \approx 1.04$.

Example 2: adjusting crossover

We get:

Here $\mu_{\sf ph} \approx 76^{\circ}$ and

− we still don't need a lead,

even after the lag controller will add its 5.7° .

Example 2: adjusting low-frequency gain

Use the lag controller with $\omega_m = 0.5$ and $\beta = \infty$:

It yields $\mu_{\sf ph} \approx 70^{\circ}$, which is also more than enough. Resulting controller:

$$
C(s) = kC_{\text{lag}}(s) = \frac{1.0308(s + 0.05)}{s}.
$$

Example 2: closed-loop command response

To note:

- resonance peak is very small \implies small OS
- closed-loop bandwidth $\omega_{\rm b} \approx 0.7161$, which is a bit above the designed $\omega_c = 0.5$ and about the same as the open-loop bandwidth

Example 2: closed-loop disturbance response

To note:

unit controller gain \implies neutral disturbance sensitivity

Example 2: closed-loop control signal

To note:

closed-loop bandwidth \approx open-loop bandwidth \Rightarrow moderate control effort

Example 3: the plant

Let $\omega_c = 5$ now:

This is below the actual crossover, so can be attained by the gain $k \approx 26.9$.

Example 3: adjusting crossover

We get:

Here $\mu_{\sf ph} \approx 22^{\circ}$ and

− we do need a phase lead of $45^{\circ} - 22^{\circ} + 5.7^{\circ} = 28.7^{\circ}$, for which one lead is enough.

Example 3: adjusting phase around crossover

Here $\mu_{\rm ph} \approx 50.7^{\circ}$, which is exactly what we need before the lag controller adds its 5.7° .

Example 3: adjusting low-frequency gain

Use the lag controller with $\omega_m = 5$ and $\beta = \infty$:

It yields $\mu_{\sf ph} \approx$ 45 $^{\circ}$, which is exactly what we need. Resulting controller:

$$
C(s) = kC_{\text{lead}}(s)C_{\text{lag}}(s) = \frac{45.619(s + 2.951)(s + 0.5)}{s(s + 8.471)}.
$$

Example 3: closed-loop command response

To note:

- resonance peak becomes larger \implies larger OS
- closed-loop bandwidth $\omega_{\rm b} \approx 8.3176$, which is a bit above the designed $\omega_c = 5$ and higher than the open-loop bandwidth

Example 3: closed-loop disturbance response

To note:

high controller gain \implies low disturbance sensitivity

Example 3: closed-loop control signal

To note:

 $-\frac{1}{2}$ closed-loop bandwidth \gg open-loop bandwidth \Rightarrow high control effort