Introduction to Control (034040) lecture no. 11

Leonid Mirkin

Faculty of Mechanical Engineering Technion—IIT

Typical operations with $L(j\omega)$

The goal of today's lecture is to

- give a flavor of basic tools of loop shaping

for frequency responses with monotonically decreasing magnitude and phase.

Typical operations with $L(j\omega)$

The goal of today's lecture is to

give a flavor of basic tools of loop shaping

for frequency responses with monotonically decreasing magnitude and phase.

Typical operations with $L(j\omega)$

Typical course of action:

- set required crossover, ω_c
 (means: proportional controller)
- shape high-frequency gain (means: low-pass filter)
- shape phase around ω_{c} (means: lead controller)
- shape low-frequency gain (means: lag controller)

by cascade adjustments of C(s).

The goal of today's lecture is to

give a flavor of basic tools of loop shaping

for frequency responses with monotonically decreasing magnitude and phase.

Design examples

Assigning required crossover

Phase shaping around crossover: lead controller

Shaping low-frequency gain: lag controller

Design examples

Lead controller

Lag controller

Design examples

Assigning required crossover

Phase shaping around crossover: lead controller

Shaping low-frequency gain: lag controller

Design examples

Gain effects

- If $|L(j\omega)|$ is monotonically decreasing and continuous,
 - $\,$ increase / decrease of the loop gain $\,$ \implies $\,$ increase / decrease of $\omega_{\rm c}$

If we aim at $\omega_c = \omega_c^*$, then we may just use the following P controller: $C(s) = k_p = \frac{1}{|P(j\omega_c^*)|}.$

Gain effects

If $|L(j\omega)|$ is monotonically decreasing and continuous, - increase / decrease of the loop gain \implies increase / decrease of ω_c

If we aim at $\omega_{c} = \omega_{c}^{*}$, then we may just use the following P controller:

$$C(s) = k_{\mathsf{p}} = rac{1}{|P(\mathsf{j}\omega_{\mathsf{c}}^*)|}.$$

Assigning required crossover

Lead controller

Lag controller

Design examples

Assigning required crossover

Phase shaping around crossover: lead controller

Shaping low-frequency gain: lag controller

Design examples

Motivating example

Consider control of $P(s) = 1/s^2$. Its polar plot

shows clearly that this plant cannot be stabilized by a P controller.

Motivating example

Consider control of $P(s) = 1/s^2$. Its polar plot

shows clearly that this plant cannot be stabilized by a ${\sf P}$ controller. Some

phase lead

must be added in the crossover region.

Consider 1-order controllers of the form $C_1(s) = \frac{s+b}{s+a}$. For a = 1 we have:

Any $C_1(s)$ with a > b adds a phase lead $\forall \omega$ and thus stabilizes the double integrator. Such a C_1 , however, would alter ω_c , which might be undesirable.

Consider 1-order controllers of the form $C_1(s) = \frac{s+b}{s+a}$. For a = 1 we have:

Any $C_1(s)$ with a > b adds a phase lead $\forall \omega$ and thus stabilizes the double integrator.

Consider 1-order controllers of the form $C_1(s) = \frac{s+b}{s+a}$. For a = 1 we have:

Any $C_1(s)$ with a > b adds a phase lead $\forall \omega$ and thus stabilizes the double integrator. Such a C_1 , however, would alter ω_c , which might be undesirable.

Lead controller

General form: $C_{\text{lead}}(s) = \frac{\sqrt{\alpha} s + \omega_m}{s + \sqrt{\alpha} \omega_m}$, where $\alpha > 1$ is a parameter.

Lead controller for different α 's

C_{lead} : properties

Pros: if we choose $\omega_m = \omega_c$, the use of $C_{\text{lead}}(s)$

- does not alter ω_{c}
- increases μ_{ph}

Cons:

- decreases the low-frequency gain
- increases the high-frequency gain

```
- decreases \mu_{\rm g}
(because, typically, \omega_{\rm c} < \omega_{\phi} and |C_{\rm lead}(j\omega)| > 1 for \omega > \omega_m)
```

Assume that the required crossover frequency is $\omega_c = 1 \text{ rad/sec.}$ Applying $C_{\text{lead}}(s)$ for $\omega_m = 1$ and $\alpha = \{2, 4, 10, 20\}$ to $P(s) = 1/s^2$ we get:

Closed-loop command responses with C_{lead} for $\omega_{\text{m}}=1$ and $\alpha=\{2,4,10,20\}$

Phase lead of lead controllers

Maximal phase lead, $\phi_m = \arcsin \frac{\alpha - 1}{\alpha + 1}$, is achieved at $\omega = \omega_m$:

Practically, as the slope of the curve above for large α is low, the values $-\alpha \ge 14$ are undesirable.

For larger α we do not gain much (in terms of the phase lead), while pay a steep price (in terms of low- and high-frequency controller gains).

Phase lead of lead controllers

Maximal phase lead, $\phi_m = \arcsin \frac{\alpha - 1}{\alpha + 1}$, is achieved at $\omega = \omega_m$:

Practically, as the slope of the curve above for large α is low, the values

 $- \alpha \ge 14$ are undesirable.

For larger α we do not gain much (in terms of the phase lead), while pay a steep price (in terms of low- and high-frequency controller gains).

More phase lead

If $\phi_m > 60^\circ$ is required, use 2 (seldom, even more) lead controllers:

Lead controller

Lag controller

Design examples

Assigning required crossover

Phase shaping around crossover: lead controller

Shaping low-frequency gain: lag controller

Design examples

Closed-loop disturbance responses with C_{lead} for $\omega_{\text{m}} = 1$ and $\alpha = \{2, 4, 10, 20\}$

To explain this, note that

$$T_{\sf d}(s) = rac{P(s)}{1 + P(s)C_{\sf lead}(s)} = rac{1}{1/P(s) + C_{\sf lead}(s)} = rac{1}{s^2 + C_{\sf lead}(s)},$$

so that

$$\lim_{t\to\infty} y_d(t) = T_d(0) = \frac{1}{C_{\text{lead}}(0)} = \sqrt{\alpha}.$$

Therefore, with the use of C_{lead}

- the vulnerability to low-frequency disturbances increases as α grows.

Possible remedy is to

- increase the static gain of $\mathit{C}_{\mathsf{lead}}$,

by the controller $C(s) = kC_{lead}(s)$ for some k > 1. Yet this would

- increase high-frequency gain as well;
- increase the system bandwidth beyond required.

We would like to

— increase low-frequency gain without altering gain / phase at $\omegapprox\omega_{
m c}.$

Possible remedy is to

- increase the static gain of C_{lead} ,

by the controller $C(s) = kC_{lead}(s)$ for some k > 1. Yet this would

- increase high-frequency gain as well;
- increase the system bandwidth beyond required.

We would like to

 $-\,$ increase low-frequency gain without altering gain / phase at $\omega \approx \omega_{\rm c}.$

Lag controller

General form: $C_{lag}(s) = \frac{10s + \omega_m}{10s + \omega_m/\beta}$, where $\beta > 1$ is a parameter.

Lag controller for different β 's

Bode diagrams of $C_{lag}(s)$ for $\omega_m = 1$ and $\beta = \{2, 4, 10, 30, \infty\}$

If the zero steady-state error under d = 1 is required, then we shall choose $\beta = \infty$. Let's also choose $\omega_m = 1$ for C_{lag} and consider

 $C(s) = C_{\mathsf{lead}}(s)C_{\mathsf{lag}}(s).$

We have (again, in $C_{\text{lead}} \alpha = \{2, 4, 10, 20\}$):

Closed-loop disturbance responses with $C_{\text{lead}}C_{\text{lag}}$ for $\omega_{\text{m}} = 1$, $\alpha = \{2, 4, 10, 20\}$, and $\beta = \infty$

C_{lag} : properties

Pros: if we choose $\omega_m = \omega_c$, the use of $C_{lag}(s)$

- increases the low-frequency gain of $L(j\omega)$
- adds at most 5.7° phase lag at $\omega_{\rm c}$ (this may be compensated by a bit larger phase lead of $C_{\rm lead}(s)$)

Cons:

- adds phase lag
- $-\,$ gain increase within a decade of $\omega_{
 m c}$ is modest (at most by $\sqrt{2}pprox 1.414)$

Design examples

Assigning required crossover

Phase shaping around crossover: lead controller

Shaping low-frequency gain: lag controller

Design examples

A DC motor controlled in closed loop:

Requirements:

- closed-loop stability (of course)
- zero steady-state error for a step in r
- zero steady-state error for a step in d
- $-~\mu_{\sf ph} \ge 45^\circ$
- $-\omega_{c}$ is treated as a tuning parameter

Remark: We implicitly assume that the plant is normalized, in a sense that the control amplitude |u(t)| < 1 is "small" and |u(t)| > 1 is "large".

A DC motor controlled in closed loop:

Requirements:

- closed-loop stability (of course)
- zero steady-state error for a step in r
- zero steady-state error for a step in d
- $-~\mu_{\sf ph} \geq$ 45°
- $-\omega_{c}$ is treated as a tuning parameter

Remark: We implicitly assume that the plant is normalized, in a sense that the control amplitude |u(t)| < 1 is "small" and |u(t)| > 1 is "large".

always holds

A DC motor controlled in closed loop:

Requirements:

- closed-loop stability (of course)
- zero steady-state error for a step in r
- zero steady-state error for a step in d

always holds integrator in C(s)

- $-~\mu_{\sf ph} \geq$ 45 $^\circ$
- $-\omega_{c}$ is treated as a tuning parameter

Remark: We implicitly assume that the plant is normalized, in a sense that the control amplitude |u(t)| < 1 is "small" and |u(t)| > 1 is "large".

A DC motor controlled in closed loop:

Requirements:

- closed-loop stability (of course)
- zero steady-state error for a step in r
- zero steady-state error for a step in d
- $-~\mu_{\sf ph} \ge 45^\circ$
- $-\omega_{\sf c}$ is treated as a tuning parameter

Remark: We implicitly assume that the plant is normalized, in a sense that the control amplitude |u(t)| < 1 is "small" and |u(t)| > 1 is "large".

always holds integrator in C(s)might require phase lead

Example 1: the plant

Let $\omega_{c} = 0.05$:

This crossover can be attained by the gain $k \approx 0.1$.

Example 1: adjusting crossover

We get:

Here $\mu_{\mathsf{ph}} pprox 90^\circ$ and

we don't need a lead,

even after the lag controller will add its 5.7° .

Example 1: adjusting low-frequency gain

Use the lag controller with $\omega_m = 0.05$ and $\beta = \infty$:

It yields $\mu_{\rm ph} \approx 83^{\circ}$, which is more than enough. Resulting controller:

$$C(s) = kC_{lag}(s) = \frac{0.10003(s+0.005)}{s}$$

Example 1: closed-loop command response

To note:

- resonance peak is very small \implies small OS
- closed-loop bandwidth $\omega_{\rm b} \approx 0.0562$, which is a bit above the designed $\omega_{\rm c} = 0.05$ and smaller than the open-loop bandwidth

Example 1: closed-loop disturbance response

To note:

- not enough controller gain \implies high disturbance sensitivity

Example 1: closed-loop control signal

To note:

- closed-loop bandwidth \ll open-loop bandwidth \implies low control effort

Example 2: the plant

Let $\omega_{\rm c} = 0.5$ now:

This is about the actual crossover, so can be attained by the gain $k \approx 1.04$.

Example 2: adjusting crossover

We get:

Here $\mu_{\sf ph} pprox 76^\circ$ and

we still don't need a lead,

even after the lag controller will add its 5.7° .

Example 2: adjusting low-frequency gain

Use the lag controller with $\omega_m = 0.5$ and $\beta = \infty$:

It yields $\mu_{\rm ph} \approx 70^{\circ}$, which is also more than enough. Resulting controller:

$$C(s) = kC_{lag}(s) = \frac{1.0308(s+0.05)}{s}$$

Example 2: closed-loop command response

To note:

- resonance peak is very small \implies small OS
- closed-loop bandwidth $\omega_{\rm b}\approx 0.7161,$ which is a bit above the designed $\omega_{\rm c}=0.5$ and about the same as the open-loop bandwidth

Example 2: closed-loop disturbance response

To note:

– unit controller gain \implies neutral disturbance sensitivity

Example 2: closed-loop control signal

To note:

- closed-loop bandwidth \approx open-loop bandwidth \implies moderate control effort

Example 3: the plant

Let $\omega_c = 5$ now:

This is below the actual crossover, so can be attained by the gain $k \approx 26.9$.

Example 3: adjusting crossover

We get:

Here $\mu_{\sf ph} pprox 22^\circ$ and

 $-\,$ we do need a phase lead of $45^\circ-22^\circ+5.7^\circ=28.7^\circ,$ for which one lead is enough.

Example 3: adjusting phase around crossover

Here $\mu_{ph}\approx 50.7^\circ,$ which is exactly what we need before the lag controller adds its $5.7^\circ.$

Example 3: adjusting low-frequency gain

Use the lag controller with $\omega_m = 5$ and $\beta = \infty$:

It yields $\mu_{\rm ph}\approx 45^\circ$, which is exactly what we need. Resulting controller:

$$C(s) = kC_{\text{lead}}(s)C_{\text{lag}}(s) = \frac{45.619(s+2.951)(s+0.5)}{s(s+8.471)}.$$

Example 3: closed-loop command response

To note:

- resonance peak becomes larger \implies larger OS
- closed-loop bandwidth $\omega_{\rm b} \approx 8.3176$, which is a bit above the designed $\omega_{\rm c} = 5$ and higher than the open-loop bandwidth

Example 3: closed-loop disturbance response

To note:

- high controller gain \implies low disturbance sensitivity

Example 3: closed-loop control signal

To note:

- closed-loop bandwidth \gg open-loop bandwidth \implies high control effort