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Loop shaping (contd)

L −

− . . .

− having appropriate crossover frequency, !c

− high loop gain, |L(j!)| ≫ 1, at low frequencies (! ≪ !c)

− low loop gain, |L(j!)| ≪ 1, at high frequencies (! ≫ !c)

− keeping L(j!) “far” from the critical point in the crossover region

There is a need to quantify / measure this “far” requirement . . .

Such a measure should

1. reflect motivations for “far from the critical point” requirement and

2. be easily computable

Toward this end, the notions of stability margins introduced.



Stability margins Time-delay systems Delay margin

Loop shaping (contd)

L −

− plot of L(j!) agrees with the Nyquist stability criterion

− having appropriate crossover frequency, !c

− high loop gain, |L(j!)| ≫ 1, at low frequencies (! ≪ !c)

− low loop gain, |L(j!)| ≪ 1, at high frequencies (! ≫ !c)

− keeping L(j!) “far” from the critical point in the crossover region

There is a need to quantify / measure this “far” requirement . . .

Such a measure should

1. reflect motivations for “far from the critical point” requirement and

2. be easily computable

Toward this end, the notions of stability margins introduced.



Stability margins Time-delay systems Delay margin

Loop shaping (contd)

L −

− plot of L(j!) agrees with the Nyquist stability criterion

− having appropriate crossover frequency, !c

− high loop gain, |L(j!)| ≫ 1, at low frequencies (! ≪ !c)

− low loop gain, |L(j!)| ≪ 1, at high frequencies (! ≫ !c)

− keeping L(j!) “far” from the critical point in the crossover region

There is a need to quantify / measure this “far” requirement . . .

Such a measure should

1. reflect motivations for “far from the critical point” requirement and

2. be easily computable

Toward this end, the notions of stability margins introduced.



Stability margins Time-delay systems Delay margin

Loop shaping (contd)

L −

− plot of L(j!) agrees with the Nyquist stability criterion

− having appropriate crossover frequency, !c

− high loop gain, |L(j!)| ≫ 1, at low frequencies (! ≪ !c)

− low loop gain, |L(j!)| ≪ 1, at high frequencies (! ≫ !c)

− keeping L(j!) “far” from the critical point in the crossover region

There is a need to quantify / measure this “far” requirement . . .

Such a measure should

1. reflect motivations for “far from the critical point” requirement and

2. be easily computable

Toward this end, the notions of stability margins introduced.



Stability margins Time-delay systems Delay margin

Gain and phase margins: definitions

L −

Provided the closed-loop system is stable:

Gain margin (�g) is the minimal factor by which the loop gain should be
changed to render the closed-loop system unstable
(typically, �g > 1, although it might also be contractive)

Phase margin (�ph) is theminimal amount by which the loop phase should
be changed to render the closed-loop system unstable
(�ph > 0 if a phase lag leads to instability and �ph < 0 if a phase lead)

In both cases, the minimal gain / phase change should result in

− Nyquist plot crossing the critical point.
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What happens when only the magnitude changes ?

Re

Im

L(j!)

−1

!
=
0

!
=∞

− when the loop static gain increases, the polar plot is inflated

− when the loop static gain decreases, the polar plot is deflated
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Gain margin on Nyquist plot

From �g viewpoint, we are only interested in

− points where the Nyquist plot crosses the negative real semi-axis

i.e. where1 arg L(j!) ≡ −� (mod 2�):

Re

Im

�gL(j!)
L(j!)

−1

L(0) �gL(0)

1

�g

L(j!
� )

1The frequencies at which this happens called phase crossover frequencies, !� .
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What happens when only the phase changes ?

Re

Im

L(j!)

−1
!
=
0

!
=∞

− when the phase increases, the polar plot pivots counterclockwise

− when the phase decreases, the polar plot pivots clockwise
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Phase margin on Nyquist plot

From �ph viewpoint, we are only interested in

− points where the Nyquist plot crosses the unit circle

i.e. where2 |L(j!)| = 1:

Re

Im

�ph

L(j!)e−j�ph

L(j!)

−1

L(j!c)

2As we know, the frequencies at which this happens called crossover frequencies, !c.
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Gain and phase margins on Bode diagram

− �g calculated from the magnitude plot at !�
if the closed-loop system stable, then �g equals the absolute value of the magnitude

of L(j!�) in dB, i.e. the distance from |L(j!�)| to 0 dB

− �ph calculated from the phase plot at !c

if the closed-loop system is stable, then �ph equals the distance between arg L(j!c)

and the closest −� + 2�k, k ∈ Z, point

For example (here �g = 2 ≈ 6:021 dB and �ph = 57:9◦ ≈ 0:32� (rad)):
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�g and �ph: distance from the critical point

From what we learned,

− �g is the distance from the critical point along the real axis

− �ph is the angular distance from the critical point

Thus, the “far from the critical point” requirement may be translated to
the “sufficiently large stability margins” requirement.

Rules of thumb for adequate gain and phase margins:

− �g ≈ 6÷ 12 dB and �ph ≈ 45÷ 60◦.
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Stability margins cum grano salis

One should not take stability margins too seriously though. Neither �g nor
�ph, nor even both of them, reflects the distance from the Nyquist plot of L
to the critical point comprehensively. For example, if L(j!) looks like

Re

Im

L(j!)

−1

then

− �g = ∞ and �ph = ∞, yet L(j!) is very close to the critical point.
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Loop shaping: big picture

low frequencies

high frequencies
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Hot strip mill profile control

Thickness can only be measured at some distance from rolls, leading to

− measurement delays
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Networked control

Plant

Controller

Network

Sampling, encoding, transmission, decoding need time. This gives rise to

− measurement delays

− actuation delays
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Temperature control

Everybody experienced this, I guess. . .
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Delay element in time domain

D̄� uy

tt t + �

I/O relation:
y = D̄�u ⇐⇒ y(t) = u(t − �)

This system is

− linear
D̄� (˛1u1 + ˛2u2) = ˛1u1(t − �) + ˛2u2(t − �) = ˛1(D̄�u1) + ˛2(D̄�u2)

− time invariant
D̄�1(S�2u) = u(t − �2 − �1) = S�2(D̄�1u)

− BIBO stable
∥y∥∞ = ∥u∥∞ for all u ∈ L∞
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Delay element in time domain

D̄� uy

tt t + �

I/O relation:
y = D̄�u ⇐⇒ y(t) = u(t − �)

This system is

− linear
D̄� (˛1u1 + ˛2u2) = ˛1u1(t − �) + ˛2u2(t − �) = ˛1(D̄�u1) + ˛2(D̄�u2)

− time invariant
D̄�1(S�2u) = u(t − �2 − �1) = S�2(D̄�1u)

− BIBO stable3

∥y∥∞ = ∥u∥∞ for all u ∈ L∞

3L∞ ··= {x : R → R | ∥x∥∞ <∞}, where ∥x∥∞ ··= supt∈R |x(t)|
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Delay element in s-domain

D̄� uy

tt t + �

By the time shift property of the Laplace transform:

y(t) = u(t − �) ⇐⇒ Y (s) = e−�sU(s)

Therefore, the delay element has the transfer function

D̄� (s) = e−�s :

This transfer function is

− irrational,

so D̄� is an infinite-dimensional system.
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Frequency response

Obtained as
e−�s |s=j! = e−j�! = cos(�!)− j sin(�!)

It has

− unit magnitude (|e−j�! | ≡ 1) and

− linearly decaying phase (arg e−j�! = −�!, in radians if ! is in rad/sec)
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10
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-360
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Dead-time systems

Systems with loop delays:

CP D̄�
remu

d

y

ymn

−

where

P is a plant with a rational transfer function P(s)

C is a controller with a (rational) transfer function C (s)
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Effect of loop delay on characteristic polynomial

CP D̄�
remu

d

y

ymn

−

Let P(s) = NP(s)
DP(s)

and C (s) = NC (s)
DC (s)

. Then

�cl(s) = e−�sNP(s)NC (s) + DP(s)DC (s)

has infinitely many roots (known as quasi-polynomial).

Example

If P(s) = 1 and C (s) = kp, then

�cl(s) = kpe
−�s + 1 has roots at s =

ln kp
�

+ j
� + 2� i

�

for all i ∈ Z.
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Another scary example

remu

d

y

ymn

kp
1

s
e−�s

−

Comparing delay-free (� = 0) and delayed (� > 0) closed-loop poles,

we can see that the addition of a delay considerably complicates matters.
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Effect of loop delay on L(j!)

L −

Let L(s) = Lr(s)e
−�s for some rational Lr(s). In this case

L(j!) = Lr(j!)e
−j�!

⇓
|L(j!)| = |Lr(j!)| and arg L(j!) = arg Lr(j!)− �!:

In other words, delay in this case

− does not change the magnitude of Lr(j!) and

− adds phase lag proportional to !,

which is not hard to account for.
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Effect of loop delay on L(j!): Bode diagram
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Effect of loop delay on L(j!): polar plot

Re

Im

Lr(j!)

Lr(j!)e−j�!

−1
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Nyquist criterion: what changes for dead-time systems ?

L −

Addition of loop delay changes practically nothing, because

− both 1 + L(s)e−�s and S(s) = 1=(1 + L(s)e−�s) are still merpmorphic
so Cauchy’s argument principle applies

− if |L(∞)| < 1, then S(s) has at most a finite number of poles in C0

so all of them are inside the Nyquist contour

The option to use the Nyquist stability criterion for dead-time systems is a

− great advantage of the loop-shaping philosophy.
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Nyquist criterion: example, L(s) = 0:4
s2+0:1s+1e

−�s

Re

Im

Lr(j!)

−1
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Im

Lr(j!)

L(j!)

−1

� = 0

, closed-loop system is stable � = 1

, closed-loop system is unstable

Re

Im

Lr(j!)

L(j!)

−1
Re

Im

Lr(j!)

L(j!)

−1

� = 5

, closed-loop system is stable

� = 11

, closed-loop system is unstable
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Motivation

A possible reason for adding a phase lag w/o affecting the magnitude is the
presence of loop delay D̄� . One might be tempted to think that

− �ph can be used as a measure of tolerance to loop delay variations

To see if this is true, let L1(s) =
√
2=(10s + 1) and L2(s) =

√
2=(0:1s + 1):
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(i.e. L1 and L2 have the same �ph)
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Motivation (contd)

Whereas the polar plots of L1(s) and L2(s) coincide,
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√
2

−1

Re

Im

L1,2(j!)
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√
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−1

. . . the polar plots of L1(s)e
−�s and L2(s)e

−�s do not !
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Motivation (contd)

Minimal destabilizing delays:

Re

Im

L1(j!)

L1(j!)e−j7.5�!

√
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−1 Re

Im

L2(j!)

L2(j!)e−j0.075�!

√
2

−1

Hence, L1 and L2 are two systems having

− the same phase margins, whereas

− remarkably different tolerances to loop delays
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What was wrong

Thus, the phase margin, �ph, might not reflect the sensitivity of the system
to loop delays. Underlying reason is that

− �ph does not take into account the crossover frequency,

which is an important factor in analyzing the effect of � on stability. Indeed,
the phase lag due to loop delay is proportional to the frequency, hence the
destabilizing phase lag due to the delay increases as !c grows.

This leads us to the need to introduce yet another stability margin:

Delay margin (�d or dead-time tolerance) is the the smallest destabilizing
delay that may be introduced in the loop
(typically, �d > 0, although it might also be negative)
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Delay margin computation

L −

Assume that

1. the closed-loop system is stable,

2. L has only one crossover frequency, !c, and

3. lim!→∞|L(j!)| < 1.

If a delay, say � , is added to the loop, then the closed-loop system becomes
unstable when arg

(
L(j!c)e

−j�!c
)
= −� . Since

arg
(
L(j!c)e

−j�!c
)
= arg L(j!c)− �!c = −� + �ph − �!c;

the systems becomes unstable for � = �ph=!c. Thus,

− �d =
�ph

!c
(where �ph must be in radians).
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If a delay, say � , is added to the loop, then the closed-loop system becomes
unstable when arg
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−j�!c
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= −� . Since
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)
= arg L(j!c)− �!c = −� + �ph − �!c;
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�ph
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(where �ph must be in radians).
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Example

Consider again L1(s) =
√
2=(10s + 1) and L2(s) =

√
2=(0:1s + 1):
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L1(s) and L2(s)

L1(s): �ph = 0:75� and !c = 0:1, thus �d = 7:5� ≈ 23:562

L2(s): �ph = 0:75� and !c = 10, thus �d = 0:075� ≈ 0:23562
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Delay margin: design implication

Equality

�d =
�ph

!c

implies that

− the larger !c is, the more sensitive the closed loop to delays is.

i.e. that the increase of !c renders the system more sensitive to (inevitable)
loop delays. This

− imposes yet another limitation on !c and, therefore, on the achievable
closed-loop bandwidth !b
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For curious: if condition 2. fails (multiple crossovers)

In this case we should check the phase margins at all crossover frequencies.
Important to realize that

− �d might not correspond to the crossover with the largest �ph,

like in the example below (with Lr(s) =
0:1(−2s+1)

s(s+1)(s2+0:13s+1)
):

Re

Im
Lr(j!)

−1 Re

Im
Lr(j!)

Lr(j!)e−j4!

−1
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