Introduction to Control (00340040) lecture no. 9

Leonid Mirkin

Faculty of Mechanical Engineering Technion—IIT

Loop shaping

Philosophy:

− analyze, and affect, properties of the closed-loop system via properties of the frequency response $L(j\omega)$ of the loop transfer function $L = PC$,

i.e.

$$
L(j\omega) \rightarrow \begin{cases} S:r \mapsto e \\ T:r \mapsto y, -n \mapsto y \\ T_d:d \mapsto y \\ T_c:r \mapsto u, -n \mapsto u \end{cases}
$$

Loop shaping

Philosophy:

− analyze, and affect, properties of the closed-loop system via properties of the frequency response $L(j\omega)$ of the loop transfer function $L = PC$,

i.e.

$$
L(j\omega) \rightarrow \begin{cases} S:r \mapsto e \\ T:r \mapsto y, -n \mapsto y \\ T_d:d \mapsto y \\ T_c:r \mapsto u, -n \mapsto u \end{cases}
$$

Today:

internal stability via properties of the Nyquist (polar +) plot of $L(j\omega)$.

Nyquist stability criterion: no open-loop ω -poles

[Nyquist stability criterion: including open-loop poles at the origin](#page-29-0)

[Simplifications](#page-43-0)

[Analysis of](#page-52-0) $kL(s)$ loops

[Nyquist stability criterion: no open-loop j](#page-4-0) ω -poles

Preliminary: return difference

Let

$$
L(s) := P(s)C(s) = \frac{N_L(s)}{D_L(s)}
$$

(loop transfer function) and assume that there are no unstable pole / zero cancellations between $P(s)$ and $C(s)$. Consider the transfer function

$$
1+L(s)=\frac{N_L(s)+D_L(s)}{D_L(s)}=\frac{\chi_{\text{cl}}(s)}{D_P(s)D_C(s)},
$$

called return difference. It is readily seen that

- unstable poles of $1 + L(s)$ are open-loop unstable poles
- unstable zeros of $1 + L(s)$ are closed-loop unstable poles.

We consider the system

and assume that

- $-$ L(s) is proper
- $-$ L(s) has no j ω -axis poles will be relaxed later on

Technical steps:

- 1. define a simple closed contour Γ_s containing all singularities of $1 + L(s)$ in the ORHP $\mathbb{C}_0 := \{ s \in \mathbb{C} \mid \text{Re } s > 0 \};$
- 2. determine the mapping Γ_{1+1} of Γ_s by the return difference;
- 3. count the number v of clockwise encirclings the origin by Γ_{1+1} . By the argument principle,

$$
\nu = \pi^+_{\mathsf{cl}} - \pi^+_{\mathsf{ol}} \quad \iff \quad \pi^+_{\mathsf{cl}} = \nu + \pi^+_{\mathsf{ol}},
$$

where

- π_{cl}^{+} is the number of closed-loop poles in \mathbb{C}_{0}
- $\pi_{\textsf{ol}}^{+}$ is the number of open-loop poles (those of $L(s)$) in \mathbb{C}_{0}

Idea: slight modification

The difference between $[1 + L(s)]$ -plane and $L(s)$ -plane is just the horizontal shift by 1:

Idea: slight modification

The difference between $[1 + L(s)]$ -plane and $L(s)$ -plane is just the horizontal shift by 1:

Hence,

 $#$ encirclings the origin by $Γ_{1+L}$ = $#$ encirclings the point -1 + j0 by $Γ_L$

and we may replace steps 2. and 3. above with

- 2. determine the maping Γ_L of Γ_s by the loop transfer function;
- 3. count the number v of clockwise encirclings the point $-1 + j0$ by Γ_l .

Nyquist contour

The contour

 $\mathsf{\Gamma}_\mathsf{s} = \mathsf{\Gamma}_{\mathsf{s},1} \cup \mathsf{\Gamma}_{\mathsf{s},2} \cup \mathsf{\Gamma}_{\mathsf{s},3},$

where

 $\Gamma_{s,1} = j\omega, \qquad \omega: 0 \to R,$ $\mathsf{\Gamma}_{\mathsf{s},2} = R \mathsf{e}^{\mathsf{j} \theta}, \hspace{1cm} \theta$: $\frac{\pi}{2} \rightarrow -\frac{\pi}{2},$ $\Gamma_{s,3} = j\omega, \qquad \omega : -R \to 0,$

with $R \to \infty$ is called the Nyquist contour. It contains all ORHP poles of transfer functions having a finite number of such poles.

Mapping the Nyquist contour by L

Consider each of the Nyquist contour segments separately: $\Gamma_{s,1}$: In this case $s = j\omega \; (\omega \geq 0)$ mapped to $L(j\omega)$, so that $\Gamma_{L,1}$ is the polar plot of the frequency response of L.

Mapping the Nyquist contour by L

Consider each of the Nyquist contour segments separately:

 $\Gamma_{s,1}$: In this case $s = j\omega \; (\omega \geq 0)$ mapped to $L(j\omega)$, so that

 $\Gamma_{L,1}$ is the polar plot of the frequency response of L.

 $\Gamma_{s,2}$: As $L(s)$ is proper $(b_n = 0$ if $L(s)$ is strictly proper),

$$
L(Re^{j\theta}) = \frac{b_n R^n e^{j\theta n} + b_{n-1} R^{n-1} e^{j\theta (n-1)} + \dots + b_1 R e^{j\theta} + b_0}{R^n e^{j\theta n} + a_{n-1} R^{n-1} e^{j\theta (n-1)} + \dots + a_1 R e^{j\theta} + a_0}
$$

=
$$
\frac{b_n + b_{n-1} R^{-1} e^{-j\theta} + \dots + b_1 R^{1-n} e^{j\theta (1-n)} + b_0 R^{-n} e^{-j\theta n}}{1 + a_{1-n} R^{-1} e^{-j\theta} + \dots + a_1 R^{1-n} e^{-j\theta (n-1)} + a_0 R^{-n} e^{-j\theta n}}
$$

Thus, $\lim_{R\to\infty} L(Re^{j\theta}) = b_n$ for every θ , i.e.

 $-$ Γ_{L2} collapses to a single point, b_n .

Since this point already belongs to $\Gamma_{L,1}$, we may effectively omit $\Gamma_{L,2}$.

Mapping the Nyquist contour by L

Consider each of the Nyquist contour segments separately:

 $\Gamma_{s,1}$: In this case $s = j\omega \; (\omega \geq 0)$ mapped to $L(j\omega)$, so that

 $\Gamma_{L,1}$ is the polar plot of the frequency response of L.

 $\Gamma_{s,2}$: As $L(s)$ is proper $(b_n = 0$ if $L(s)$ is strictly proper),

$$
L(Re^{j\theta}) = \frac{b_n R^n e^{j\theta n} + b_{n-1} R^{n-1} e^{j\theta (n-1)} + \dots + b_1 R e^{j\theta} + b_0}{R^n e^{j\theta n} + a_{n-1} R^{n-1} e^{j\theta (n-1)} + \dots + a_1 R e^{j\theta} + a_0}
$$

=
$$
\frac{b_n + b_{n-1} R^{-1} e^{-j\theta} + \dots + b_1 R^{1-n} e^{j\theta (1-n)} + b_0 R^{-n} e^{-j\theta n}}{1 + a_{1-n} R^{-1} e^{-j\theta} + \dots + a_1 R^{1-n} e^{-j\theta (n-1)} + a_0 R^{-n} e^{-j\theta n}}
$$

Thus, $\lim_{R\to\infty} L(Re^{j\theta}) = b_n$ for every θ , i.e.

 $-$ Γ_{L2} collapses to a single point, b_n . Since this point already belongs to $\Gamma_{L,1}$, we may effectively omit $\Gamma_{L,2}$.

 $Γ_{s,3}$: As $L(s)$ has real coefficients, $L(-jω) = L(jω)$, so that $-$ Γ_{L3} is the mirror of Γ_{L1} around the real axis.

Nyquist plot

The union of $\Gamma_{L,1}$ and $\Gamma_{L,3}$, which is the − graph of $L(iω)$ in polar coordinates as ω runs from $-\infty$ to $+\infty$, is called the Nyquist plot of $L(j\omega)$.

The Nyquist plot can be constructed in two steps:

1. construct the polar plot of $L(i\omega)$

(which is the graph of $L(i\omega)$ in polar coordinates as ω runs from 0 to $+\infty$)

2. add the reflection of the polar plot about the real axis

The critical point, $-1 + j0$, on the $L(s)$ -plane is also presented, owing to its importance in the stability analysis.

Nyquist stability criterion

Theorem (Nyquist)

The closed-loop system is stable iff the Nyquist plot of $L(i\omega)$

 $-$ does not intersect the critical point $-1 + j0$

 $-$ encircles the critical point π_{ol}^{+} times in the counterclockwise direction as ω grows from $-\infty$ to ∞ , where π_{ol}^+ is the number of poles of L(s) in \mathbb{C}_0 . Proof:

- $-$ If $\exists ω_0$ s.t. $L(iω_0) = -1$, $χ_{cl}(iω_0) = 0$ and closed-loop system unstable.
- − We know that the number of clockwise encirclings of the critical point by the mapping of the Nyquist contour by $L(s)$ (i.e. the Nyquist plot) is $\nu = \pi_{\mathsf{cl}}^+ - \pi_{\mathsf{ol}}^+$. The stability of the closed-loop system is equivalent to $\pi^+_{\text{cl}} = 0$, hence the system stable iff $\nu = -\pi^+_{\text{ol}}$.

Nyquist stability criterion (contd)

Corollary 1: If the Nyquist plot of $L(j\omega)$ does not cross the critical point, then the number of closed-loop unstable poles

$$
\pi_{\mathsf{cl}}^+ = \pi_{\mathsf{ol}}^+ + \nu,
$$

where v is the number of clockwise encirclings of the critical point $-1 + j0$ by the Nyquist plot.

Nyquist stability criterion (contd)

Corollary 1: If the Nyquist plot of $L(j\omega)$ does not cross the critical point, then the number of closed-loop unstable poles

$$
\pi_{\text{cl}}^+ = \pi_{\text{ol}}^+ + \nu,
$$

where v is the number of clockwise encirclings of the critical point $-1 + j0$ by the Nyquist plot.

Corollary 2: If the Nyquist plot of $L(j\omega)$ intersects the critical point at some frequency, say $\omega = \omega_0$, then $\chi_{cl}(s)$ has at least one root at $s = j\omega_0$.

Nyquist stability criterion (contd)

Corollary 1: If the Nyquist plot of $L(j\omega)$ does not cross the critical point, then the number of closed-loop unstable poles

$$
\pi_{\text{cl}}^+ = \pi_{\text{ol}}^+ + \nu,
$$

where v is the number of clockwise encirclings of the critical point $-1 + j0$ by the Nyquist plot.

Corollary 2: If the Nyquist plot of $L(j\omega)$ intersects the critical point at some frequency, say $\omega = \omega_0$, then $\chi_{cl}(s)$ has at least one root at $s = j\omega_0$.

Corollary 3: If L is stable itself, then the closed-loop system is stable iff the Nyquist plot of $L(i\omega)$ neither intersects nor encircles the critical point as ω increases from $-\infty$ to ∞ .

Example 1

Let $L(s) = \frac{1.2}{s+1}$. Its Nyquist plot is

-
-

Let $L(s) = \frac{1.2}{s+1}$. Its Nyquist plot is

We have:

- $-$ L is stable (i.e. $\pi_{\text{ol}}^{+} = 0$)
- Nyquist plot does not encircle the critical point

Hence,

− the closed-loop system is stable

We have:

- $-$ L is stable (i.e. $\pi_{\text{ol}}^{+} = 0$)
- Nyquist plot does not encircle the critical point

Hence,

the closed-loop system is stable

Let $L(s) = \frac{2}{(s-1)(s-1)}$ $\frac{1}{(s-1)(0.125s+1)^3}$. Its Nyquist plot is

-
-

Let $L(s) = \frac{2}{(s-1)(s-1)}$ $\frac{1}{(s-1)(0.125s+1)^3}$. Its Nyquist plot is

We have:

- $−$ L is unstable with $L(s)$ havingd one unstable pole (i.e. $π_{ol}^{+} = 1$)
- Nyquist plot encircles the critical point once in the counterclockwise direction

Hence,

− the closed-loop system is stable

Example 4

Example 4

Let
$$
L(s) = \frac{(-s+1)^3}{(s+1)^4}
$$
. Its Nyquist plot is

We have:

 $-$ L is stable (i.e. $\pi_{\text{ol}}^{+} = 0$)

− Nyquist plot encircles the critical point twice in the clockwise direction Hence,

 $-$ the closed-loop system is unstable (in fact, $\pi^+_{\text{cl}} = 2$).

Let
$$
L(s) = \frac{1.2(-0.5s + 1)^2}{(0.5s + 1)^2(s - 1)}
$$
. Its Nyquist plot is

Let $L(s) = \frac{1.2(-0.5s + 1)^2}{(0.5s + 1)^2(s - 1)}$ $\frac{1}{(0.5s+1)^2(s-1)}$. Its Nyquist plot is

We have:

 $−$ L is unstable with L(s) having one unstable pole (i.e. $π_{ol}^{+} = 1$)

− Nyquist plot encircles the critical point once in the clockwise direction Hence,

 $-$ the closed-loop system is unstable (in fact, $\pi^+_{\text{cl}} = 2$).

[Nyquist stability criterion: including open-loop poles at the origin](#page-29-0)

Nyquist contour if $L(s)$ has pole(s) at the origin

The modified contour is

 $\Gamma_{\mathsf{s}} = \Gamma_{\mathsf{s},0} \cup \Gamma_{\mathsf{s},1} \cup \Gamma_{\mathsf{s},2} \cup \Gamma_{\mathsf{s},3} \cup \Gamma_{\mathsf{s},4}$

where

with $R \to \infty$ and $\epsilon \to 0$. It still contains all ORHP poles of transfer functions having a finite number of such poles.

Mapping $\Gamma_{s,0}$ and $\Gamma_{s,4}$ by $L(s)$

The mapping of $\Gamma_{s,1} \cup \Gamma_{s,2} \cup \Gamma_{s,3}$ are practically unchanged. So to complete the picture we only need

 $\Gamma_{s,0}$: Let $L(s) = \frac{1}{s^n}\tilde{L}(s)$, where $n \in \mathbb{N}$ and $\tilde{L}(0) \neq 0$ is finite. In this case

$$
L(\epsilon e^{j\theta}) = \frac{1}{\epsilon^n e^{j\theta n}} \tilde{L}(\epsilon e^{j\theta}) \xrightarrow{\epsilon \to 0} \frac{\tilde{L}(0)}{\epsilon^n} e^{-j\theta n},
$$

so that

− Γ _{L,0} is an arc of ∞ radius, starting at either positive (if $\tilde{L}(0) > 0$) or negative (if $\tilde{L}(0) < 0$) real axis and going $n\pi/2$ [rad] clockwise until it intersect the beginning of $\Gamma_{s,1}$.

Mapping $\Gamma_{s,0}$ and $\Gamma_{s,4}$ by $L(s)$

The mapping of $\Gamma_{s,1} \cup \Gamma_{s,2} \cup \Gamma_{s,3}$ are practically unchanged. So to complete the picture we only need

 $\Gamma_{s,0}$: Let $L(s) = \frac{1}{s^n}\tilde{L}(s)$, where $n \in \mathbb{N}$ and $\tilde{L}(0) \neq 0$ is finite. In this case

$$
L(\epsilon e^{j\theta}) = \frac{1}{\epsilon^n e^{j\theta n}} \tilde{L}(\epsilon e^{j\theta}) \xrightarrow{\epsilon \to 0} \frac{\tilde{L}(0)}{\epsilon^n} e^{-j\theta n},
$$

so that

− Γ _{L,0} is an arc of ∞ radius, starting at either positive (if $\tilde{L}(0) > 0$) or negative (if $\tilde{L}(0) < 0$) real axis and going $n\pi/2$ [rad] clockwise until it intersect the beginning of $\Gamma_{s,1}$.

$$
\Gamma_{s,4}
$$
: As $L(s)$ has real coefficients, $L(-j\omega) = \overline{L(j\omega)}$, hence

 $\Gamma_{L,4}$ is the mirror of $\Gamma_{L,0}$ around the real axis.

Mapping $\Gamma_{s,0}$ and $\Gamma_{s,4}$ by $L(s)$

The mapping of $\Gamma_{s,1} \cup \Gamma_{s,2} \cup \Gamma_{s,3}$ are practically unchanged. So to complete the picture we only need

 $\Gamma_{s,0}$: Let $L(s) = \frac{1}{s^n}\tilde{L}(s)$, where $n \in \mathbb{N}$ and $\tilde{L}(0) \neq 0$ is finite. In this case

$$
L(\epsilon e^{j\theta}) = \frac{1}{\epsilon^n e^{j\theta n}} \tilde{L}(\epsilon e^{j\theta}) \xrightarrow{\epsilon \to 0} \frac{\tilde{L}(0)}{\epsilon^n} e^{-j\theta n},
$$

so that

− Γ _{L,0} is an arc of ∞ radius, starting at either positive (if $\tilde{L}(0) > 0$) or negative (if $\tilde{L}(0) < 0$) real axis and going $n\pi/2$ [rad] clockwise until it intersect the beginning of $\Gamma_{s,1}$.

$$
\Gamma_{s,4}
$$
: As $L(s)$ has real coefficients, $L(-j\omega) = \overline{L(j\omega)}$, hence
 $- \Gamma_{L,4}$ is the mirror of $\Gamma_{L,0}$ around the real axis.

Remark: $\Gamma_{L,4} \cup \Gamma_{L,0}$ is an arc connecting the end of $\Gamma_{L,3}$ $(\omega \to 0^-)$ and the beginning of $\Gamma_{L,1} \; (\omega \to 0^+)$ through the angle $\pi \, n$ in the clockwise direction.

Nyquist stability criterion

Since the modified Nyquist contour excludes the poles of $L(s)$ at the origin,

 $-$ these poles are not counted in π_{ol}^+ .

That may be done since $\chi_{cl}(s)$ cannot¹ have roots at $s = 0$, so all unstable closed-loop poles are separated from the origin and, therefore, lie inside the modified Nyquist contour if ϵ is sufficiently small.

The rest of the criterion remains unchanged ...

¹Common roots of $D_L(s)$ and $\chi_{cl}(s) = N_L(s) + D_L(s)$ are common roots of $D_L(s)$ and $N_L(s)$, so cannot be unstable under our assumption.

Example 6

Let $L(s) = \frac{1}{s}$. Its Nyquist plot is

-
-

Let $L(s) = \frac{1}{s}$. Its Nyquist plot is

We have:

- $-$ L is "stable" (i.e. $\pi_{\text{ol}}^{+} = 0$)
- Nyquist plot does not encircle the critical point

Hence,

− the closed-loop system is stable

Example 7

Let $L(s) = \frac{1}{s^5}$. Its Nyquist plot is

Let $L(s) = \frac{1}{s^5}$. Its Nyquist plot is

We have:

 $-$ L is "stable" (i.e. $\pi_{\text{ol}}^{+} = 0$)

Nyquist plot encircles the critical point twice in the clockwise dir.

Hence,

− the closed-loop system is unstable $(\pi^+_{\text{cl}} = 2)$

Example 8

Let $L(s)=\dfrac{1}{s(s+1)}.$ Its Nyquist plot is

-
-

Example 8

Let $L(s)=\dfrac{1}{s(s+1)}.$ Its Nyquist plot is

We have:

- *L* is "stable" (i.e.
$$
\pi_{ol}^{+} = 0
$$
)

Nyquist plot does not encircle the critical point

Hence,

− the closed-loop system is stable

Example 9

Let $L(s) = \frac{1}{s(s-1)}$. Its Nyquist plot is

-
-

Let $L(s) = \frac{1}{s(s-1)}$. Its Nyquist plot is

We have:

- $L(s)$ has one unstable pole (i.e. $\pi_{\mathsf{ol}}^{+}=1)$
- − Nyquist plot encircles the critical point once in the clockwise dir.

Hence,

− the closed-loop system is unstable $(\pi^+_{\rm cl} = 2)$

[Simplifications](#page-43-0)

Counting encirclements

Counting counterclockwise encirclements may be tedious (−4 in this case):

But there is a way to simplify this procedure . . .

Positive and negative crossings

Consider the ray $(-\infty, -1]$ in the $L(i\omega)$ -plane:

A crossing occurs when the plot of $L(j\omega)$ intersects the ray. It is said to be

- *positive* if the direction of $L(i\omega)$ is downward
- negative if the direction of $L(j\omega)$ is upward

Encirclements via the Nyquist plot

Lemma

The number of counterclockwise encirclements around the critical point by the Nyquist plot of $L(j\omega)$ equals the net sum of crossings the ray $(-\infty, -1]$ by the Nyquist plot of $L(j\omega)$.

Encirclements via the polar plot

Lemma

The number of counterclockwise encirclements around the critical point by the Nyquist plot of $L(j\omega)$ equals twice² the net sum of crossings the ray $(-\infty, -1]$ by the polar plot of $L(i\omega)$.

²One should be careful with the cases when the polar plot starts or $/$ and ends at the ray. This situation, if happens, may be counted as "half crossings."

Example 3 (contd)

If
$$
L(s) = \frac{2}{(s-1)(0.125s+1)^3}
$$
:

$$
\frac{11/2}{\frac{1}{\omega - s^0}} = \frac{1}{\sqrt{\frac{1}{100}}}
$$

If
$$
L(s) = \frac{6}{(s-1)(0.125s+1)^3}
$$
:

If $L(s) = \frac{2}{(s-1)(0.1)}$ $\frac{1}{(s-1)(0.125s+1)^3}$ (one counterclockwise encirclement):

If $L(s) = \frac{2}{(s-1)(0.1)}$ $\frac{1}{(s-1)(0.125s+1)^3}$ (one counterclockwise encirclement):

If $L(s) = \frac{2}{(s-1)(0.1)}$ $\frac{1}{(s-1)(0.125s+1)^3}$ (one counterclockwise encirclement):

[Analysis of](#page-52-0) $kL(s)$ loops

Problem

Consider (in fact, $L(s) = k\tilde{L}(s)$)

where $\tilde{L}(s)$ is a proper transfer function and k is the parameter we want to choose. The problem is to

 $-$ find all k stabilizing the system.

Nyquist criterion revisited

The return difference transfer function rewrites as

$$
1+L(s)=1+k\tilde{L}(s)=k\left(\frac{1}{k}+\tilde{L}(s)\right)
$$

Since the multiplication by k affects neither poles nor zeros of this transfer function, we may analyze stability by mapping the Nyquist contour by $\frac{1}{k} + \tilde{L}(s).$ This, in turn, implies that we should

Nyquist criterion revisited

The return difference transfer function rewrites as

$$
1+L(s)=1+k\tilde{L}(s)=k\left(\frac{1}{k}+\tilde{L}(s)\right)
$$

Since the multiplication by k affects neither poles nor zeros of this transfer function, we may analyze stability by mapping the Nyquist contour by $\frac{1}{k} + \tilde{L}(s)$. This, in turn, implies that we should

 $-$ analyze the Nyquist plot of $\tilde{L}(j\omega)$ with the critical point $-\frac{1}{k} + j0$. In other words, different critical point is the only modification we need.

Let $\tilde{L}(s) = \frac{2}{(s-1)(s-1)}$ $(s-1)(0.125s+1)^3$. Its Nyquist plot 3 is

In this case $\pi^+_{\mathsf{ol}}=1$ and there are four intervals of k : $-\frac{1}{k} < -2$: no encirclings $\implies \pi_{\text{cl}}^+ = 1$; $-2 < -\frac{1}{k} < -\frac{529}{1372} \approx -0.39$: 1 counterclockwise encircling $\implies \pi^+_{\mathsf{cl}} = 0$; $-0.39 \approx -\frac{529}{1372} < -\frac{1}{k} < 0$: 1 clockwise encircling $\implies \pi_{\text{cl}}^+ = 2$; $-\frac{1}{k} > 0$: no encirclings $\implies \pi_{cl}^+ = 1$.

³Points of intersection with the real axis found by solving $\tilde{L}(j\omega) = \tilde{L}(-j\omega)$ in ω .

Let $\tilde{L}(s) = \frac{2}{(s-1)(s-1)}$ $\frac{1}{(s-1)(0.125s+1)^3}$. Its Nyquist plot is

In this case $\pi_{\text{ol}}^{+} = 1$ and there are three intervals of k : $k < \frac{1}{2}$ $\frac{1}{2}$: no encirclings $\implies \pi_{\text{cl}}^+ = 1$; $\frac{1}{2} < k < \frac{1372}{529} \approx 2.59$: 1 counterclockwise encircling $\implies \pi^+_{\mathsf{cl}} = 0$; $k > \frac{1372}{529} \approx 2.59$: 1 clockwise encircling $\implies \pi_{\text{cl}}^+ = 2$.