
Nyquist criterion I Nyquist criterion II Simplifications Analysis of kL(s) loops

Introduction to Control (00340040)
lecture no. 9

Leonid Mirkin

Faculty of Mechanical Engineering
Technion—IIT



Nyquist criterion I Nyquist criterion II Simplifications Analysis of kL(s) loops

Loop shaping

remu

d

y

ymn

CP −

Philosophy:

− analyze, and affect, properties of the closed-loop system via properties
of the frequency response L(j!) of the loop transfer function L = PC ,

i.e.

L(j!) →


S : r 7→ e

T : r 7→ y ;−n 7→ y

Td : d 7→ y

Tc : r 7→ u;−n 7→ u

Today:

− internal stability via properties of the Nyquist (polar+) plot of L(j!).
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Outline

Nyquist stability criterion: no open-loop j!-poles

Nyquist stability criterion: including open-loop poles at the origin
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Analysis of kL(s) loops
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Preliminary: return difference
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Let
L(s) ··= P(s)C (s) =

NL(s)

DL(s)

(loop transfer function) and assume that there are no unstable pole / zero
cancellations between P(s) and C (s). Consider the transfer function

1 + L(s) =
NL(s) + DL(s)

DL(s)
=

�cl(s)

DP(s)DC (s)
;

called return difference. It is readily seen that

− unstable poles of 1 + L(s) are open-loop unstable poles

− unstable zeros of 1 + L(s) are closed-loop unstable poles.



Nyquist criterion I Nyquist criterion II Simplifications Analysis of kL(s) loops

Assumptions

We consider the system

L −

and assume that

− L(s) is proper

− L(s) has no j!-axis poles will be relaxed later on
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Idea

L −

Technical steps:

1. define a simple closed contour Γs containing all singularities of 1 + L(s)
in the ORHP C0 ··= {s ∈ C | Re s > 0};

2. determine the mapping Γ1+L of Γs by the return difference;

3. count the number � of clockwise encirclings the origin by Γ1+L.

By the argument principle,

� = �+
cl − �+

ol ⇐⇒ �+
cl = � + �+

ol ;

where

− �+
cl is the number of closed-loop poles in C0

− �+
ol is the number of open-loop poles (those of L(s)) in C0
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Idea: slight modification

The difference between [1 + L(s)]-plane and L(s)-plane is just the horizontal
shift by 1:

Re [1 + L(s)]

Im
[1
+
L
(s
)]

Γ1+L

ReL(s)

Im
L
(s
)

ΓL

−1

Hence,

#encirclings the origin by Γ1+L
= #encirclings the point −1 + j0 by ΓL

and we may replace steps 2. and 3. above with

2. determine the maping ΓL of Γs by the loop transfer function;

3. count the number � of clockwise encirclings the point −1 + j0 by ΓL.
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Nyquist contour

Re s

Im
s

Γs,2

Γs,1

Γs,3

R → ∞

R

−R

The contour

Γs = Γs;1 ∪ Γs;2 ∪ Γs;3;

where

Γs;1 = j!; ! : 0 → R;

Γs;2 = Rej� ; � : �2 → −�
2 ;

Γs;3 = j!; ! : −R → 0;

with R → ∞ is called the Nyquist contour. It
contains all ORHP poles of transfer functions
having a finite number of such poles.
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Mapping the Nyquist contour by L

Consider each of the Nyquist contour segments separately:

Γs;1: In this case s = j! (! ≥ 0) mapped to L(j!), so that

− ΓL;1 is the polar plot of the frequency response of L.

Γs;2: As L(s) is proper (bn = 0 if L(s) is strictly proper),

L(Rej� ) =
bnR

nej�n + bn−1R
n−1ej�(n−1) + · · ·+ b1Rej� + b0

Rnej�n + an−1Rn−1ej�(n−1) + · · ·+ a1Rej� + a0

=
bn + bn−1R

−1e−j� + · · ·+ b1R
1−nej�(1−n) + b0R

−ne−j�n

1 + a1−nR−1e−j� + · · ·+ a1R1−ne−j�(n−1) + a0R−ne−j�n

Thus, limR→∞ L(Rej� ) = bn for every � , i.e.

− ΓL;2 collapses to a single point, bn.

Since this point already belongs to ΓL;1, we may effectively omit ΓL;2.

Γs;3: As L(s) has real coefficients, L(−j!) = L(j!), so that

− ΓL;3 is the mirror of ΓL;1 around the real axis.
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Nyquist plot

The union of ΓL;1 and ΓL;3, which is the

− graph of L(j!) in polar coordinates as ! runs from −∞ to +∞,

is called the Nyquist plot of L(j!).

The Nyquist plot can be constructed in two steps:

1. construct the polar plot of L(j!)
(which is the graph of L(j!) in polar coordinates as ! runs from 0 to +∞)

2. add the reflection of the polar plot about the real axis

The critical point, −1+ j0, on the L(s)-plane is also presented, owing to its
importance in the stability analysis.
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Nyquist stability criterion

L −

Theorem (Nyquist)

The closed-loop system is stable iff the Nyquist plot of L(j!)

− does not intersect the critical point −1 + j0

− encircles the critical point �+
ol times in the counterclockwise direction

as ! grows from −∞ to ∞, where �+
ol is the number of poles of L(s) in C0.

Proof:

− If ∃!0 s.t. L(j!0) = −1, �cl(j!0) = 0 and closed-loop system unstable.

− We know that the number of clockwise encirclings of the critical point
by the mapping of the Nyquist contour by L(s) (i.e. the Nyquist plot)
is � = �+

cl − �+
ol . The stability of the closed-loop system is equivalent

to �+
cl = 0, hence the system stable iff � = −�+

ol .
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Nyquist stability criterion (contd)

L −

Corollary 1: If the Nyquist plot of L(j!) does not cross the critical point,
then the number of closed-loop unstable poles

�+
cl = �+

ol + �;

where � is the number of clockwise encirclings of the critical point −1 + j0
by the Nyquist plot.

Corollary 2: If the Nyquist plot of L(j!) intersects the critical point at some
frequency, say ! = !0, then �cl(s) has at least one root at s = j!0.

Corollary 3: If L is stable itself, then the closed-loop system is stable iff the
Nyquist plot of L(j!) neither intersects nor encircles the critical point as !
increases from −∞ to ∞.
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Example 1

Let L(s) =
1:2

s + 1
. Its Nyquist plot is

Re

Im L(j!)

−1
!
=
0 +

!
=
0
−

!
=
∞

!
= −∞

We have:

− L is stable (i.e. �+
ol = 0)

− Nyquist plot does not encircle the critical point

Hence,

− the closed-loop system is stable
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Example 2
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(3s + 8)(9s2 + 3s + 19)
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Example 3

Let L(s) =
2

(s − 1)(0:125s + 1)3
. Its Nyquist plot is

Re

ImL(j!)

−1
!
=
0
+

!
=
0 −

!
=
∞

!
= −∞

We have:

− L is unstable with L(s) havingd one unstable pole (i.e. �+
ol = 1)

− Nyquist plot encircles the critical point once in the counterclockwise
direction

Hence,

− the closed-loop system is stable
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Example 4

Let L(s) =
(−s + 1)3

(s + 1)4
. Its Nyquist plot is

Re

Im

L(j!)

−1
!
=
0
−

!
=
0 +

!
=
∞

!
= −∞

We have:

− L is stable (i.e. �+
ol = 0)

− Nyquist plot encircles the critical point twice in the clockwise direction

Hence,

− the closed-loop system is unstable (in fact, �+
cl = 2).
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Example 5
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1:2(−0:5s + 1)2

(0:5s + 1)2(s − 1)
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Nyquist contour if L(s) has pole(s) at the origin

Re s

Im
s

Γs,2

Γs,3

Γs,4

Γs,0

Γs,1

R → ∞

R

�

−�

−R

The modified contour is

Γs = Γs;0 ∪ Γs;1 ∪ Γs;2 ∪ Γs;3 ∪ Γs;4;

where

Γs;0 = �ej� ; � : 0 → �
2 ;

Γs;1 = j!; ! : � → R;

Γs;2 = Rej� ; � : �2 → −�
2 ;

Γs;3 = j!; ! : −R → −�;
Γs;4 = �ej� ; � : −�

2 → 0;

with R → ∞ and � → 0. It still contains all
ORHP poles of transfer functions having a
finite number of such poles.



Nyquist criterion I Nyquist criterion II Simplifications Analysis of kL(s) loops

Mapping Γs;0 and Γs;4 by L(s)

The mapping of Γs;1 ∪ Γs;2 ∪ Γs;3 are practically unchanged. So to complete
the picture we only need

Γs;0: Let L(s) = 1
sn L̃(s), where n ∈ N and L̃(0) ̸= 0 is finite. In this case

L(�ej� ) =
1

�nej�n
L̃(�ej� )

�→0−−−→ L̃(0)

�n
e−j�n;

so that

− ΓL;0 is an arc of ∞ radius, starting at either positive (if L̃(0) > 0)
or negative (if L̃(0) < 0) real axis and going n�=2 [rad] clockwise

until it intersect the beginning of Γs;1.

Γs;4: As L(s) has real coefficients, L(−j!) = L(j!), hence

− ΓL;4 is the mirror of ΓL;0 around the real axis.

Remark: ΓL;4 ∪ ΓL;0 is an arc connecting the end of ΓL;3 (! → 0−) and the
beginning of ΓL;1 (! → 0+) through the angle �n in the clockwise direction.
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Nyquist stability criterion

L −

Since the modified Nyquist contour excludes the poles of L(s) at the origin,

− these poles are not counted in �+
ol .

That may be done since �cl(s) cannot
1 have roots at s = 0, so all unstable

closed-loop poles are separated from the origin and, therefore, lie inside the
modified Nyquist contour if � is sufficiently small.

The rest of the criterion remains unchanged . . .

1Common roots of DL(s) and �cl(s) = NL(s) + DL(s) are common roots of DL(s) and
NL(s), so cannot be unstable under our assumption.
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Example 6

Let L(s) =
1

s
. Its Nyquist plot is

Re

Im

L(j!)

−1

! = 0−

! = 0+

!
=∞

!
=
−∞

We have:

− L is “stable” (i.e. �+
ol = 0)

− Nyquist plot does not encircle the
critical point

Hence,

− the closed-loop system is stable
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Example 7

Let L(s) =
1
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− the closed-loop system is unstable
(�+

cl = 2)
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!
=∞

!
=
−∞

We have:

− L is “stable” (i.e. �+
ol = 0)

− Nyquist plot does not encircle the
critical point

Hence,

− the closed-loop system is stable
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Example 8

Let L(s) =
1

s(s + 1)
. Its Nyquist plot is

Re

Im

L(j!)

−1

! = 0−

! = 0+

!
=∞

!
=
−∞

We have:

− L is “stable” (i.e. �+
ol = 0)

− Nyquist plot does not encircle the
critical point

Hence,

− the closed-loop system is stable
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Example 9

Let L(s) =
1

s(s − 1)
. Its Nyquist plot is

Re

Im

L(j!)

−1

! = 0−

! = 0+

!
=
∞

!
= −∞

We have:

− L(s) has one unstable pole (i.e.
�+
ol = 1)

− Nyquist plot encircles the critical
point once in the clockwise dir.

Hence,

− the closed-loop system is unstable
(�+

cl = 2)



Nyquist criterion I Nyquist criterion II Simplifications Analysis of kL(s) loops

Example 9

Let L(s) =
1

s(s − 1)
. Its Nyquist plot is

Re

Im

L(j!)

−1

! = 0−

! = 0+

!
=
∞

!
= −∞

We have:

− L(s) has one unstable pole (i.e.
�+
ol = 1)

− Nyquist plot encircles the critical
point once in the clockwise dir.

Hence,

− the closed-loop system is unstable
(�+

cl = 2)
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Outline

Nyquist stability criterion: no open-loop j!-poles

Nyquist stability criterion: including open-loop poles at the origin

Simplifications

Analysis of kL(s) loops
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Counting encirclements

Counting counterclockwise encirclements may be tedious (−4 in this case):

Re

Im

L(j!)

−1
!
=
0
−

!
=
0 +

!
=
∞

!
= −∞

But there is a way to simplify this procedure . . .
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Positive and negative crossings

Consider the ray (−∞;−1] in the L(j!)-plane:

Re

Im

−1

negative crossing

positive crossing

A crossing occurs when the plot of L(j!) intersects the ray. It is said to be

− positive if the direction of L(j!) is downward

− negative if the direction of L(j!) is upward
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Encirclements via the Nyquist plot

Lemma
The number of counterclockwise encirclements around the critical point by
the Nyquist plot of L(j!) equals the net sum of crossings the ray (−∞;−1]
by the Nyquist plot of L(j!).

Re

Im

L(j!)

−1

−2−2
!
=
0
−

!
=
0 +

!
=
∞

!
= −∞
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Encirclements via the polar plot

Lemma
The number of counterclockwise encirclements around the critical point by
the Nyquist plot of L(j!) equals twice2 the net sum of crossings the ray
(−∞;−1] by the polar plot of L(j!).

Re

Im

L(j!)

−1

−1−1
!
=
0

!
=
∞

2One should be careful with the cases when the polar plot starts or / and ends at the
ray. This situation, if happens, may be counted as “half crossings.”
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Example 3 (contd)

If L(s) =
2

(s − 1)(0:125s + 1)3
:

Re

Im

L(j!)

−1

+1=2

! = 0

! = ∞

If L(s) =
6

(s − 1)(0:125s + 1)3
:

Re

Im

L(j!)

−1

+1=2 −1

! = 0

! = ∞
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Example 3 (contd)

If L(s) =
2

(s − 1)(0:125s + 1)3
(one counterclockwise encirclement):

Re

Im

L(j!)

−1

+1=2

! = 0

! = ∞

If L(s) =
6

(s − 1)(0:125s + 1)3
:

Re

Im

L(j!)

−1

+1=2 −1

! = 0

! = ∞
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Example 3 (contd)

If L(s) =
2

(s − 1)(0:125s + 1)3
(one counterclockwise encirclement):

Re

Im

L(j!)

−1

+1=2

! = 0

! = ∞

If L(s) =
6

(s − 1)(0:125s + 1)3
:

Re

Im

L(j!)

−1

+1=2 −1

! = 0

! = ∞
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Example 3 (contd)

If L(s) =
2

(s − 1)(0:125s + 1)3
(one counterclockwise encirclement):

Re

Im

L(j!)

−1

+1=2

! = 0

! = ∞

If L(s) =
6

(s − 1)(0:125s + 1)3
(one clockwise encirclement):

Re

Im

L(j!)

−1

+1=2 −1

! = 0

! = ∞
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Outline

Nyquist stability criterion: no open-loop j!-poles

Nyquist stability criterion: including open-loop poles at the origin

Simplifications

Analysis of kL(s) loops
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Problem

Consider (in fact, L(s) = kL̃(s))

kL̃(s) −

where L̃(s) is a proper transfer function and k is the parameter we want to
choose. The problem is to

− find all k stabilizing the system.
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Nyquist criterion revisited

kL̃(s) −

The return difference transfer function rewrites as

1 + L(s) = 1 + kL̃(s) = k

(
1

k
+ L̃(s)

)
Since the multiplication by k affects neither poles nor zeros of this transfer
function, we may analyze stability by mapping the Nyquist contour by
1
k + L̃(s). This, in turn, implies that we should

− analyze the Nyquist plot of L̃(j!) with the critical point − 1
k + j0.

In other words, different critical point is the only modification we need.
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Nyquist criterion revisited

kL̃(s) −

The return difference transfer function rewrites as

1 + L(s) = 1 + kL̃(s) = k

(
1

k
+ L̃(s)

)
Since the multiplication by k affects neither poles nor zeros of this transfer
function, we may analyze stability by mapping the Nyquist contour by
1
k + L̃(s). This, in turn, implies that we should

− analyze the Nyquist plot of L̃(j!) with the critical point − 1
k + j0.

In other words, different critical point is the only modification we need.
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Example 3 (contd)

Let L̃(s) =
2

(s − 1)(0:125s + 1)3
. Its Nyquist plot3 is

Re

ImL̃(j!)

−0.39−2

In this case �+
ol = 1 and there are four intervals of k :

− 1
k < −2: no encirclings =⇒ �+

cl = 1;

−2 < − 1
k < − 529

1372 ≈ −0:39: 1 counterclockwise encircling =⇒ �+
cl = 0;

−0:39 ≈ − 529
1372 < − 1

k < 0: 1 clockwise encircling =⇒ �+
cl = 2;

− 1
k > 0: no encirclings =⇒ �+

cl = 1.

3Points of intersection with the real axis found by solving L̃(j!) = L̃(−j!) in !.
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Example 3 (contd)

Let L̃(s) =
2

(s − 1)(0:125s + 1)3
. Its Nyquist plot is

Re

ImL̃(j!)

−0.39−2

In this case �+
ol = 1 and there are three intervals of k:

k < 1
2 : no encirclings =⇒ �+

cl = 1;
1
2 < k < 1372

529 ≈ 2:59: 1 counterclockwise encircling =⇒ �+
cl = 0;

k > 1372
529 ≈ 2:59: 1 clockwise encircling =⇒ �+

cl = 2.
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