Introduction to Control (00340040) lecture no. 9

Leonid Mirkin

Faculty of Mechanical Engineering Technion—IIT

Loop shaping

Philosophy:

- analyze, and affect, properties of the closed-loop system via properties of the frequency response $L(j\omega)$ of the loop transfer function L = PC,

i.e.

$$L(j\omega) \quad \rightarrow \quad \begin{cases} S: r \mapsto e \\ T: r \mapsto y, -n \mapsto y \\ T_d: d \mapsto y \\ T_c: r \mapsto u, -n \mapsto u \end{cases}$$

Today:

- internal stability via properties of the Nyguist (polar +) plot of $L(j\omega)$.

Loop shaping

Philosophy:

- analyze, and affect, properties of the closed-loop system via properties of the frequency response $L(j\omega)$ of the loop transfer function L = PC,

i.e.

$$L(j\omega) \rightarrow \begin{cases} S: r \mapsto e \\ T: r \mapsto y, -n \mapsto y \\ T_d: d \mapsto y \\ T_c: r \mapsto u, -n \mapsto u \end{cases}$$

Today:

- internal stability via properties of the Nyquist (polar +) plot of $L(j\omega)$.

Nyquist stability criterion: no open-loop j ω -poles

Nyquist stability criterion: including open-loop poles at the origin

Simplifications

Analysis of kL(s) loops

Nyquist stability criterion: no open-loop $j\omega$ -poles

Nyquist stability criterion: including open-loop poles at the origin

Simplifications

Analysis of kL(s) loops

Preliminary: return difference

Let

$$L(s) := P(s)C(s) = \frac{N_L(s)}{D_L(s)}$$

(loop transfer function) and assume that there are no unstable pole / zero cancellations between P(s) and C(s). Consider the transfer function

$$1 + L(s) = rac{N_L(s) + D_L(s)}{D_L(s)} = rac{\chi_{
m cl}(s)}{D_P(s)D_C(s)}$$

called return difference. It is readily seen that

- unstable poles of 1 + L(s) are open-loop unstable poles
- unstable zeros of 1 + L(s) are closed-loop unstable poles.

Analysis of kL(s) loops

We consider the system

and assume that

- *L*(*s*) is proper
- L(s) has no j ω -axis poles

will be relaxed later on

Technical steps:

- 1. define a simple closed contour Γ_s containing all singularities of 1 + L(s)in the ORHP $\mathbb{C}_0 := \{s \in \mathbb{C} \mid \text{Re} s > 0\};$
- 2. determine the mapping Γ_{1+L} of Γ_s by the return difference;
- 3. count the number ν of clockwise encirclings the origin by Γ_{1+L} . By the argument principle,

$$\nu = \pi_{cl}^+ - \pi_{ol}^+ \quad \Longleftrightarrow \quad \pi_{cl}^+ = \nu + \pi_{ol}^+,$$

where

- $-~\pi_{\mathsf{cl}}^+$ is the number of closed-loop poles in \mathbb{C}_0
- $-\pi_{ol}^+$ is the number of open-loop poles (those of L(s)) in \mathbb{C}_0

Idea: slight modification

The difference between [1 + L(s)]-plane and L(s)-plane is just the horizontal shift by 1:

Hence

#encirclings the origin by $\Gamma_{1+L} = \#$ encirclings the point -1 + j0 by Γ_L I we may replace steps 2, and 3, above with determine the maping Γ_L of Γ_s by the loop transfer function;

Idea: slight modification

The difference between [1 + L(s)]-plane and L(s)-plane is just the horizontal shift by 1:

Hence,

 $\#_{encirclings the origin by } \Gamma_{1+L} = \#_{encirclings the point } -1 + j0 \mbox{ by } \Gamma_L$

and we may replace steps 2. and 3. above with

- 2. determine the maping Γ_L of Γ_s by the loop transfer function;
- 3. count the number ν of clockwise encirclings the point -1 + j0 by Γ_L .

Nyquist contour

The contour

 $\Gamma_{s} = \Gamma_{s,1} \cup \Gamma_{s,2} \cup \Gamma_{s,3},$

where

$$\begin{split} & \Gamma_{s,1} = \mathsf{j}\omega, & \omega: 0 \to R, \\ & \Gamma_{s,2} = R \mathsf{e}^{\mathsf{j}\theta}, & \theta: \frac{\pi}{2} \to -\frac{\pi}{2}, \\ & \Gamma_{s,3} = \mathsf{j}\omega, & \omega: -R \to 0, \end{split}$$

with $R \rightarrow \infty$ is called the Nyquist contour. It contains all ORHP poles of transfer functions having a finite number of such poles.

Mapping the Nyquist contour by L

Consider each of the Nyquist contour segments separately: $\Gamma_{s,1}$: In this case $s = j\omega$ ($\omega \ge 0$) mapped to $L(j\omega)$, so that $-\Gamma_{L,1}$ is the polar plot of the frequency response of L.

 $L(Re^{j\theta}) = \frac{b_n R^n e^{j\theta n} + b_{n-1} R^{n-1} e^{j\theta (n-1)} + \dots + b_1 Re^{j\theta} + b_0}{R^n e^{j\theta n} + a_{n-1} R^{n-1} e^{j\theta (n-1)} + \dots + a_1 Re^{j\theta} + a_0}$ $= \frac{b_n + b_{n-1} R^{n-1} e^{-j\theta} + \dots + b_1 R^{1-n} e^{j\theta (1-n)} + b_0 R^{-n} e^{-j\theta n}}{1 + a_{1-n} R^{n-1} e^{-j\theta} + \dots + a_1 R^{1-n} e^{j\theta (n-1)} + a_0 R^{-n} e^{-j\theta n}}$

Thus, $\lim_{R\to\infty} L(Re^{j\theta}) = b_n$ for every θ , i.e. — $\Gamma_{L,2}$ collapses to a single point, b_n . Since this point already belongs to $\Gamma_{L,1}$, we may effectively omit $\Gamma_{L,2}$.

 $\Gamma_{s,3}$: As L(s) has real coefficients, $L(-j\omega) = \overline{L(j\omega)}$, so that $-\Gamma_{L,3}$ is the mirror of $\Gamma_{L,1}$ around the real axis.

Mapping the Nyquist contour by L

Consider each of the Nyquist contour segments separately: $\Gamma_{s,1}$: In this case $s = j\omega$ ($\omega \ge 0$) mapped to $L(j\omega)$, so that $-\Gamma_{L,1}$ is the polar plot of the frequency response of L.

 $\Gamma_{s,2}$: As L(s) is proper ($b_n = 0$ if L(s) is strictly proper),

$$L(Re^{j\theta}) = \frac{b_n R^n e^{j\theta n} + b_{n-1} R^{n-1} e^{j\theta(n-1)} + \dots + b_1 Re^{j\theta} + b_0}{R^n e^{j\theta n} + a_{n-1} R^{n-1} e^{j\theta(n-1)} + \dots + a_1 Re^{j\theta} + a_0}$$

= $\frac{b_n + b_{n-1} R^{-1} e^{-j\theta} + \dots + b_1 R^{1-n} e^{j\theta(1-n)} + b_0 R^{-n} e^{-j\theta n}}{1 + a_{1-n} R^{-1} e^{-j\theta} + \dots + a_1 R^{1-n} e^{-j\theta(n-1)} + a_0 R^{-n} e^{-j\theta n}}$

Thus, $\lim_{R\to\infty} L(Re^{j\theta}) = b_n$ for every θ , i.e. - $\Gamma_{L,2}$ collapses to a single point, b_n . Since this point already belongs to $\Gamma_{L,1}$, we may effectively omit $\Gamma_{L,2}$.

3: As L(s) has real coefficients, $L(-j\omega) = L(j\omega)$, so that $-\Gamma_{L,3}$ is the mirror of $\Gamma_{L,1}$ around the real axis.

Mapping the Nyquist contour by L

Consider each of the Nyquist contour segments separately: $\Gamma_{s,1}$: In this case $s = j\omega$ ($\omega \ge 0$) mapped to $L(j\omega)$, so that $-\Gamma_{L,1}$ is the polar plot of the frequency response of L.

 $\Gamma_{s,2}$: As L(s) is proper ($b_n = 0$ if L(s) is strictly proper),

$$L(Re^{j\theta}) = \frac{b_n R^n e^{j\theta n} + b_{n-1} R^{n-1} e^{j\theta(n-1)} + \dots + b_1 Re^{j\theta} + b_0}{R^n e^{j\theta n} + a_{n-1} R^{n-1} e^{j\theta(n-1)} + \dots + a_1 Re^{j\theta} + a_0}$$

= $\frac{b_n + b_{n-1} R^{-1} e^{-j\theta} + \dots + b_1 R^{1-n} e^{j\theta(1-n)} + b_0 R^{-n} e^{-j\theta n}}{1 + a_{1-n} R^{-1} e^{-j\theta} + \dots + a_1 R^{1-n} e^{-j\theta(n-1)} + a_0 R^{-n} e^{-j\theta n}}$

Thus, $\lim_{R\to\infty} L(Re^{j\theta}) = b_n$ for every θ , i.e. $-\Gamma_{L,2}$ collapses to a single point, b_n . Since this point already belongs to $\Gamma_{L,1}$, we may effectively omit $\Gamma_{L,2}$.

 $\Gamma_{s,3}$: As L(s) has real coefficients, $L(-j\omega) = \overline{L(j\omega)}$, so that - $\Gamma_{L,3}$ is the mirror of $\Gamma_{L,1}$ around the real axis.

Nyquist plot

The union of $\Gamma_{L,1}$ and $\Gamma_{L,3}$, which is the

- graph of $L(j\omega)$ in polar coordinates as ω runs from $-\infty$ to $+\infty$, is called the Nyquist plot of $L(j\omega)$.

The Nyquist plot can be constructed in two steps:

- 1. construct the polar plot of $L(j\omega)$ (which is the graph of $L(j\omega)$ in polar coordinates as ω runs from 0 to $+\infty$)
- 2. add the reflection of the polar plot about the real axis

The critical point, -1 + j0, on the L(s)-plane is also presented, owing to its importance in the stability analysis.

Nyquist stability criterion

Theorem (Nyquist)

The closed-loop system is stable iff the Nyquist plot of $L(j\omega)$

- does not intersect the critical point -1 + j0

- encircles the critical point π_{ol}^+ times in the counterclockwise direction as ω grows from $-\infty$ to ∞ , where π_{ol}^+ is the number of poles of L(s) in \mathbb{C}_0 . Proof:

- If $\exists \omega_0$ s.t. $L(j\omega_0) = -1$, $\chi_{cl}(j\omega_0) = 0$ and closed-loop system unstable.
- We know that the number of clockwise encirclings of the critical point by the mapping of the Nyquist contour by L(s) (i.e. the Nyquist plot) is $v = \pi_{cl}^+ - \pi_{ol}^+$. The stability of the closed-loop system is equivalent to $\pi_{cl}^+ = 0$, hence the system stable iff $v = -\pi_{ol}^+$.

Nyquist stability criterion (contd)

Corollary 1: If the Nyquist plot of $L(j\omega)$ does not cross the critical point, then the number of closed-loop unstable poles

$$\pi_{\rm cl}^+ = \pi_{\rm ol}^+ + \nu,$$

where ν is the number of clockwise encirclings of the critical point -1+j0 by the Nyquist plot.

Corollary 2: If the Nyquist plot of $L(j\omega)$ intersects the critical point at some frequency, say $\omega = \omega_0$, then $\chi_{cl}(s)$ has at least one root at $s = j\omega_0$.

Corollary 3: If L is stable itself, then the closed-loop system is stable iff the Nyquist plot of $L(j\omega)$ neither intersects nor encircles the critical point as ω increases from $-\infty$ to ∞ .

Nyquist stability criterion (contd)

Corollary 1: If the Nyquist plot of $L(j\omega)$ does not cross the critical point, then the number of closed-loop unstable poles

$$\pi_{\rm cl}^+ = \pi_{\rm ol}^+ + \nu,$$

where ν is the number of clockwise encirclings of the critical point $-1+{\rm j}0$ by the Nyquist plot.

Corollary 2: If the Nyquist plot of $L(j\omega)$ intersects the critical point at some frequency, say $\omega = \omega_0$, then $\chi_{cl}(s)$ has at least one root at $s = j\omega_0$.

Corollary 3: If L is stable itself, then the closed-loop system is stable iff the Nyquist plot of $L(j\omega)$ neither intersects nor encircles the critical point as ω increases from $-\infty$ to ∞ .

Nyquist stability criterion (contd)

Corollary 1: If the Nyquist plot of $L(j\omega)$ does not cross the critical point, then the number of closed-loop unstable poles

$$\pi_{\rm cl}^+ = \pi_{\rm ol}^+ + \nu,$$

where ν is the number of clockwise encirclings of the critical point $-1+{\rm j}0$ by the Nyquist plot.

Corollary 2: If the Nyquist plot of $L(j\omega)$ intersects the critical point at some frequency, say $\omega = \omega_0$, then $\chi_{cl}(s)$ has at least one root at $s = j\omega_0$.

Corollary 3: If L is stable itself, then the closed-loop system is stable iff the Nyquist plot of $L(j\omega)$ neither intersects nor encircles the critical point as ω increases from $-\infty$ to ∞ .

Analysis of kL(s) loops

Example 1

Let $L(s) = \frac{1.2}{s+1}$. Its Nyquist plot is

We have:

- -L is stable (i.e. $\pi_{\rm ol}^+=0$)
- Nyquist plot does not encircle the critical point

Hence,

the closed-loop system is stable.

Analysis of kL(s) loops

Example 1

Let $L(s) = \frac{1.2}{s+1}$. Its Nyquist plot is

We have:

- *L* is stable (i.e. $\pi_{ol}^+ = 0$)
- Nyquist plot does not encircle the critical point

Hence,

the closed-loop system is stable

Let $L(s) = \frac{(3s+8)(9s^2+3s+19)}{125(s+1)^3}$. Its Nyquist plot is

We have:

- *L* is stable (i.e. $\pi_{ol}^+ = 0$)

Nyquist plot does not encircle the critical point.

- the closed-loop system is stable

We have:

- *L* is stable (i.e. $\pi_{ol}^+ = 0$)
- Nyquist plot does not encircle the critical point

Hence,

the closed-loop system is stable

Let $L(s) = rac{2}{(s-1)(0.125s+1)^3}$. Its Nyquist plot is

We have:

- L is unstable with L(s) havingd one unstable pole (i.e. $\pi_{\rm ol}^+ = 1$)
- Nyquist plot encircles the critical point once in the counterclockwise direction

Hence,

- the closed-loop system is stable

Let $L(s) = rac{2}{(s-1)(0.125s+1)^3}$. Its Nyquist plot is

We have:

- *L* is unstable with *L*(*s*) havingd one unstable pole (i.e. $\pi_{ol}^+ = 1$)
- Nyquist plot encircles the critical point once in the counterclockwise direction

Hence,

the closed-loop system is stable

Analysis of kL(s) loops

Example 4

We have:

- *L* is stable (i.e. $\pi_{\rm ol}^+ = 0$)

 Nyquist plot encircles the critical point twice in the clockwise direction Hence,

— the closed-loop system is unstable (in fact, $\pi_{
m cl}^+=2$).

Analysis of kL(s) loops

Example 4

Let
$$L(s) = rac{(-s+1)^3}{(s+1)^4}$$
. Its Nyquist plot is

We have:

- *L* is stable (i.e. $\pi_{ol}^+ = 0$)

 $-\,$ Nyquist plot encircles the critical point twice in the clockwise direction Hence,

- the closed-loop system is unstable (in fact, $\pi_{cl}^+ = 2$).

Let $L(s) = \frac{1.2(-0.5s+1)^2}{(0.5s+1)^2(s-1)}$. Its Nyquist plot is

We have:

- L is unstable with L(s) having one unstable pole (i.e. $\pi_{\rm ol}^+ = 1$)

Nyquist plot encircles the critical point once in the clockwise direction.
 Hence,

— the closed-loop system is unstable (in fact, $\pi_{cl}^+=2$).

Let
$$L(s) = \frac{1.2(-0.5s+1)^2}{(0.5s+1)^2(s-1)}$$
. Its Nyquist plot is

We have:

- *L* is unstable with L(s) having one unstable pole (i.e. $\pi_{ol}^+ = 1$)

 Nyquist plot encircles the critical point once in the clockwise direction Hence,

- the closed-loop system is unstable (in fact, $\pi_{cl}^+ = 2$).

Nyquist criterion I

Nyquist criterion II

Simplifications

Analysis of kL(s) loops

Nyquist stability criterion: no open-loop j ω -poles

Nyquist stability criterion: including open-loop poles at the origin

Simplifications

Analysis of kL(s) loops

Nyquist contour if L(s) has pole(s) at the origin

The modified contour is

 $\Gamma_{s} = \Gamma_{s,0} \cup \Gamma_{s,1} \cup \Gamma_{s,2} \cup \Gamma_{s,3} \cup \Gamma_{s,4},$

where

$\Gamma_{s,0} = \epsilon e^{j\theta},$	$\theta: 0 \to \frac{\pi}{2},$
$\Gamma_{s,1} = j\omega,$	$\omega:\epsilon o R,$
$\Gamma_{s,2} = R e^{j\theta},$	$ heta:rac{\pi}{2} ightarrow -rac{\pi}{2},$
$\Gamma_{s,3} = j\omega,$	$\omega:-R ightarrow-\epsilon,$
$\Gamma_{s,4} = \epsilon e^{j\theta},$	$ heta:-rac{\pi}{2} ightarrow 0,$

with $R \to \infty$ and $\epsilon \to 0$. It still contains all ORHP poles of transfer functions having a finite number of such poles.

Mapping $\Gamma_{s,0}$ and $\Gamma_{s,4}$ by L(s)

The mapping of $\Gamma_{s,1} \cup \Gamma_{s,2} \cup \Gamma_{s,3}$ are practically unchanged. So to complete the picture we only need

 $\Gamma_{s,0}$: Let $L(s) = \frac{1}{s^n} \tilde{L}(s)$, where $n \in \mathbb{N}$ and $\tilde{L}(0) \neq 0$ is finite. In this case

$$L(\epsilon e^{j\theta}) = \frac{1}{\epsilon^{n} e^{j\theta n}} \tilde{L}(\epsilon e^{j\theta}) \xrightarrow{\epsilon \to 0} \frac{\tilde{L}(0)}{\epsilon^{n}} e^{-j\theta n},$$

so that

- Γ_{L,0} is an arc of ∞ radius, starting at either positive (if L̃(0) > 0) or negative (if L̃(0) < 0) real axis and going nπ/2 [rad] clockwise until it intersect the beginning of Γ_{s,1}.
- $\Gamma_{\epsilon,4}$: As L(s) has real coefficients, $L(-j\omega) = L(j\omega)$, hence $-\Gamma_{L4}$ is the mirror of Γ_{L0} around the real axis.

Remark $\Gamma_{L,4} \cup \Gamma_{L,0}$ is an arc connecting the end of $\Gamma_{L,3}$ ($\omega \to 0^-$) and the beginning of $\Gamma_{L,1}$ ($\omega \to 0^+$) through the angle πn in the clockwise direction.

Mapping $\Gamma_{s,0}$ and $\Gamma_{s,4}$ by L(s)

The mapping of $\Gamma_{s,1} \cup \Gamma_{s,2} \cup \Gamma_{s,3}$ are practically unchanged. So to complete the picture we only need

 $\Gamma_{s,0}$: Let $L(s) = \frac{1}{s^n} \tilde{L}(s)$, where $n \in \mathbb{N}$ and $\tilde{L}(0) \neq 0$ is finite. In this case

$$L(\epsilon e^{j\theta}) = \frac{1}{\epsilon^{n} e^{j\theta n}} \tilde{L}(\epsilon e^{j\theta}) \xrightarrow{\epsilon \to 0} \frac{\tilde{L}(0)}{\epsilon^{n}} e^{-j\theta n},$$

so that

- Γ_{L,0} is an arc of ∞ radius, starting at either positive (if L̃(0) > 0) or negative (if L̃(0) < 0) real axis and going nπ/2 [rad] clockwise until it intersect the beginning of Γ_{s,1}.
- $\Gamma_{s,4}$: As L(s) has real coefficients, $L(-j\omega) = \overline{L(j\omega)}$, hence

- $\Gamma_{L,4}$ is the mirror of $\Gamma_{L,0}$ around the real axis.

Remark: $\Gamma_{L,4} \cup \Gamma_{L,0}$ is an arc connecting the end of $\Gamma_{L,3}$ ($\omega \to 0^-$) and the beginning of $\Gamma_{L,1}$ ($\omega \to 0^+$) through the angle πn in the clockwise direction.

Mapping $\Gamma_{s,0}$ and $\Gamma_{s,4}$ by L(s)

The mapping of $\Gamma_{s,1} \cup \Gamma_{s,2} \cup \Gamma_{s,3}$ are practically unchanged. So to complete the picture we only need

 $\Gamma_{s,0}$: Let $L(s) = \frac{1}{s^n} \tilde{L}(s)$, where $n \in \mathbb{N}$ and $\tilde{L}(0) \neq 0$ is finite. In this case

$$L(\epsilon e^{j\theta}) = \frac{1}{\epsilon^{n} e^{j\theta n}} \tilde{L}(\epsilon e^{j\theta}) \xrightarrow{\epsilon \to 0} \frac{\tilde{L}(0)}{\epsilon^{n}} e^{-j\theta n},$$

so that

Γ_{L,0} is an arc of ∞ radius, starting at either positive (if L̃(0) > 0) or negative (if L̃(0) < 0) real axis and going nπ/2 [rad] clockwise until it intersect the beginning of Γ_{s,1}.

$$\Gamma_{s,4}$$
: As $L(s)$ has real coefficients, $L(-j\omega) = \overline{L(j\omega)}$, hence
- $\Gamma_{L,4}$ is the mirror of $\Gamma_{L,0}$ around the real axis.

Remark: $\Gamma_{L,4} \cup \Gamma_{L,0}$ is an arc connecting the end of $\Gamma_{L,3}$ ($\omega \to 0^-$) and the beginning of $\Gamma_{L,1}$ ($\omega \to 0^+$) through the angle πn in the clockwise direction.

Nyquist stability criterion

Since the modified Nyquist contour excludes the poles of L(s) at the origin,

- these poles are not counted in π_{ol}^+ .

That may be done since $\chi_{cl}(s)$ cannot¹ have roots at s = 0, so all unstable closed-loop poles are separated from the origin and, therefore, lie inside the modified Nyquist contour if ϵ is sufficiently small.

The rest of the criterion remains unchanged

¹Common roots of $D_L(s)$ and $\chi_{cl}(s) = N_L(s) + D_L(s)$ are common roots of $D_L(s)$ and $N_L(s)$, so cannot be unstable under our assumption.

Analysis of kL(s) loops

Example 6

Let $L(s) = \frac{1}{s}$. Its Nyquist plot is

We have:

- *L* is "stable" (i.e. $\pi_{\rm ol}^+ = 0$)
- Nyquist plot does not encircle the critical point

Hence,

the closed-loop system is stable

Let $L(s) = \frac{1}{s}$. Its Nyquist plot is

We have:

- *L* is "stable" (i.e. $\pi_{\sf ol}^+=0$)
- Nyquist plot does not encircle the critical point

Hence,

the closed-loop system is stable

Let $L(s) = \frac{1}{s^5}$. Its Nyquist plot is

Let $L(s) = \frac{1}{s^5}$. Its Nyquist plot is

We have:

L is "stable" (i.e. $\pi_{ol}^+ = 0$)

Nyquist plot encircles the critical point twice in the clockwise dir.

the closed-loop system is unstable $(\pi_{cl}^+ = 2)$

Example 8

Let $L(s) = \frac{1}{s(s+1)}$. Its Nyquist plot is

We have:

- *L* is "stable" (i.e. $\pi_{\rm ol}^+ = 0$)
- Nyquist plot does not encircle the critical point

Hence,

- the closed-loop system is stable

Let $L(s) = \frac{1}{s(s+1)}$. Its Nyquist plot is

We have:

- *L* is "stable" (i.e. $\pi_{ol}^+ = 0$)
- Nyquist plot does not encircle the critical point

Hence,

the closed-loop system is stable

Example 9

Let $L(s) = \frac{1}{s(s-1)}$. Its Nyquist plot is

We have:

- -L(s) has one unstable pole (i.e. $\pi_{
 m ol}^+=1)$
- Nyquist plot encircles the critical point once in the clockwise dir.

Hence,

- the closed-loop system is unstable $(\pi_{cl}^+ = 2)$

Let $L(s) = \frac{1}{s(s-1)}$. Its Nyquist plot is

We have:

- L(s) has one unstable pole (i.e. $\pi_{
 m ol}^+=1)$
- Nyquist plot encircles the critical point once in the clockwise dir.

Hence,

- the closed-loop system is unstable $(\pi_{cl}^+=2)$

Nyquist stability criterion: no open-loop j ω -poles

Nyquist stability criterion: including open-loop poles at the origin

Simplifications

Analysis of kL(s) loops

Counting encirclements

Counting counterclockwise encirclements may be tedious (-4 in this case):

But there is a way to simplify this procedure ...

Positive and negative crossings

Consider the ray $(-\infty, -1]$ in the $L(j\omega)$ -plane:

A crossing occurs when the plot of $L(j\omega)$ intersects the ray. It is said to be

- positive if the direction of $L(j\omega)$ is downward
- negative if the direction of $L(j\omega)$ is upward

Encirclements via the Nyquist plot

Lemma

The number of counterclockwise encirclements around the critical point by the Nyquist plot of $L(j\omega)$ equals the net sum of crossings the ray $(-\infty, -1]$ by the Nyquist plot of $L(j\omega)$.

Encirclements via the polar plot

Lemma

The number of counterclockwise encirclements around the critical point by the Nyquist plot of $L(j\omega)$ equals twice² the net sum of crossings the ray $(-\infty, -1]$ by the polar plot of $L(j\omega)$.

 $^{^{2}}$ One should be careful with the cases when the polar plot starts or / and ends at the ray. This situation, if happens, may be counted as "half crossings."

Example 3 (contd)

If
$$L(s) = \frac{2}{(s-1)(0.125s+1)^3}$$
:

Example 3 (contd)

If $L(s) = \frac{2}{(s-1)(0.125s+1)^3}$ (one counterclockwise encirclement):

Example 3 (contd)

If $L(s) = \frac{2}{(s-1)(0.125s+1)^3}$ (one counterclockwise encirclement):

Example 3 (contd)

If $L(s) = \frac{2}{(s-1)(0.125s+1)^3}$ (one counterclockwise encirclement):

Nyquist stability criterion: no open-loop j ω -poles

Nyquist stability criterion: including open-loop poles at the origin

Simplifications

Analysis of kL(s) loops

Problem

Consider (in fact, $L(s) = k\tilde{L}(s)$)

where $\tilde{L}(s)$ is a proper transfer function and k is the parameter we want to choose. The problem is to

- find all k stabilizing the system.

Nyquist criterion revisited

The return difference transfer function rewrites as

$$1 + L(s) = 1 + k\tilde{L}(s) = k\left(\frac{1}{k} + \tilde{L}(s)\right)$$

Since the multiplication by *k* affects neither poles nor zeros of this transfer function, we may analyze stability by mapping the Nyquist contour by $\frac{1}{k} + \tilde{L}(s)$.

- analyze the Nyquist plot of $\tilde{L}(j\omega)$ with the critical point $-\frac{1}{k}$ + j0. In other words, different critical point is the only modification we need.

Nyquist criterion revisited

The return difference transfer function rewrites as

$$1 + L(s) = 1 + k\tilde{L}(s) = k\left(\frac{1}{k} + \tilde{L}(s)\right)$$

Since the multiplication by k affects neither poles nor zeros of this transfer function, we may analyze stability by mapping the Nyquist contour by $\frac{1}{k} + \tilde{L}(s)$. This, in turn, implies that we should

- analyze the Nyquist plot of $\tilde{L}(j\omega)$ with the critical point $-\frac{1}{k} + j0$. In other words, different critical point is the only modification we need. Example 3 (contd) Let $\tilde{L}(s) = \frac{2}{(s-1)(0.125s+1)^3}$. Its Nyquist plot³ is $\tilde{L}(j\omega)$ Im -2 Re

In this case $\pi_{ol}^+ = 1$ and there are four intervals of k: $-\frac{1}{k} < -2$: no encirclings $\implies \pi_{cl}^+ = 1$; $-2 < -\frac{1}{k} < -\frac{529}{1372} \approx -0.39$: 1 counterclockwise encircling $\implies \pi_{cl}^+ = 0$; $-0.39 \approx -\frac{529}{1372} < -\frac{1}{k} < 0$: 1 clockwise encircling $\implies \pi_{cl}^+ = 2$; $-\frac{1}{k} > 0$: no encirclings $\implies \pi_{cl}^+ = 1$.

³Points of intersection with the real axis found by solving $\tilde{L}(j\omega) = \tilde{L}(-j\omega)$ in ω .

Example 3 (contd) Let $\tilde{L}(s) = \frac{2}{(s-1)(0.125s+1)^3}$. Its Nyquist plot is $\tilde{L}(j\omega)$ Im -2 Re

In this case $\pi_{ol}^+ = 1$ and there are three intervals of k: $k < \frac{1}{2}$: no encirclings $\implies \pi_{cl}^+ = 1$; $\frac{1}{2} < k < \frac{1372}{529} \approx 2.59$: 1 counterclockwise encircling $\implies \pi_{cl}^+ = 0$; $k > \frac{1372}{529} \approx 2.59$: 1 clockwise encircling $\implies \pi_{cl}^+ = 2$.