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The marvels of high-gain feedback (from Lecture 5)
-

Te—=P Y risu T—o1lr—y, Tq—=0:dey

and

i.e. high-gain feedback
— can invert the plant w/o knowing its model

— can compensate disturbance w/o measuring it directly



The marvels of high-gain feedback (from Lecture 5)
-

Te—=P Y risu T—o1lr—y, Tq—=0:dey

and

i.e. high-gain feedback
— can invert the plant w/o knowing its model

— can compensate disturbance w/o measuring it directly

But
— s it feasible (stabilizing)?
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High-gain feedback limitations: root locus insight
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Steady-state performance of closed-loop systems: conditions for es = 0
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High-gain feedback limitations

Root-locus behavior as k — oo

The root locus form
— 7 = G(s),
where Gi(s) has n poles and m < n (finite) zeros. In this case
— m loci end up at (finite) zeros of G(s)
— n— mloci end up at infinity along asymptotes centered at

Do Pi— 27

n—m

Oc =

and directed with angles

g 2Bbm A2y
n—m

where b, is known as the high-frequency gain! of Gy.

As high frequencies |G (jw)| behaves like the gain frequency response of by,/s" ™.



Strictly proper Gi(s) with negative high-frequency gain

Let
— n>m
— bn,<0
Then there always is an asymptote with ¢; =0, i.e.

— at least one closed-loop pole is in the RHP as kK — oo



High-gain feedback limitations

Strictly proper Gi(s) with negative high-frequency gain
Let
— n>m
— by <0
Then there always is an asymptote with ¢; =0, i.e.
— at least one closed-loop pole is in the RHP as k — oo,
implying that

— high-gain feedback is impossible in this case.



High-gain feedback limitations
Nonminimum-phase Gi(s)
Let
— at least one (finite) zero of Gi(s) be in Cop := {s € C | Res > 0}

In this case

— at least one locus ends up? in the RHP

2Even if all NMP zeros of Gk(s) are on the jw-axis, closed-loop poles approach the
RHP as the gain grows, which is also unacceptable.



High-gain feedback limitations

Nonminimum-phase Gi(s)
Let
— at least one (finite) zero of Gi(s) be in Cy := {s € C | Res > 0}
In this case
— at least one locus ends up in the RHP,
implying that

— high-gain feedback is impossible in this case.



High-gain feedback limitations

Gi(s) with pole excess more than 2

Let
- n—m>2
— by,>0
Then one of the asymptotes has ¢; = T < 7 i.e.

— at least two (because of symmetry) closed-loop poles are in the RHP
as k — oo



High-gain feedback limitations

Gi(s) with pole excess more than 2

Let
— n—m>2
— by, >0
Then one of the asymptotes has ¢; = T < 7 i.e.
— at least two (because of symmetry) closed-loop poles are in the RHP
as k — oo,
implying that

— high-gain feedback is impossible in this case.



High-gain feedback limitations

Minimum-phase G(s) with pole excess 2

Let
—n—m=2
— by,>0
— all (finite) zeros of Gi(s) be in Res <0
Then n— 2 loci end up in the LHP (at stable zeros) and the others go to

-2
D i1 Pi ; D1 Zi + joo




High-gain feedback limitations

Minimum-phase G(s) with pole excess 2

Let
—n—m=2
— by, >0
— all (finite) zeros of Gi(s) be in Res <0
Then n— 2 loci end up in the LHP (at stable zeros) and the others go to

-2
D i1 Pi ; D1 Zi + joo,

implying that
— high-gain feedback is possible in this case iff?

n n—2 3 b
n—1 n—3
E pi < E Zj < > .
. . an bn—2
i=1 i=1

2| oosely speaking, this implies that poles should be “more stable” than zeros.



High-gain feedback limitations

Minimum-phase Gi(s) with pole excess 1

Let
—n—m=1
— by,>0
— all (finite) zeros of Gi(s) be in Res <0

Then n— 1 loci end up in the LHP (at stable zeros) and the last one goes
to —oo along the real axis



High-gain feedback limitations

Minimum-phase Gi(s) with pole excess 1

Let
—n—m=1
— by, >0
— all (finite) zeros of Gi(s) be in Res <0

Then n— 1 loci end up in the LHP (at stable zeros) and the last one goes
to —oo along the real axis, implying that

— high-gain feedback is always possible in this case.



High-gain feedback limitations
Minimum-phase Gi(s) with pole excess 0

Let
— n—m=20
— all (finite) zeros of Gi(s) be in Res <0
Then all loci end up in the LHP (at stable zeros), implying that

— high-gain feedback is always possible in this case.



High-gain feedback limitations

Summary

Systems, for which high-gain feedback can be applied:

1. minimum-phase and m=n

2. minimum-phase, m=n—1, and b,_1 >0

3. minimum-phase, m=n—2, b,_» > 0, and 327;1 > %
(although in this case we'll have a pair of lightly damped poles)



High-gain feedback limitations

Summary

Systems, for which high-gain feedback can be applied:
1. minimum-phase and m=n
2. minimum-phase, m=n—1, and b,_1 >0

- b
3. minimum-phase, m=n—2, b,_» > 0, and % > b”—z
n n—

(although in this case we'll have a pair of lightly damped poles)

MP systems with a pole excess of at most 1 are the classes of systems
— easiest to control by feedback.
The problem is that such systems

— virtually do not exist in real world applications. ..



High-gain feedback limitations

Summary

Systems, for which high-gain feedback can be applied:
1. minimum-phase and m=n
2. minimum-phase, m=n—1, and b,_1 >0
bn 3

3. minimum-phase, m = n—2, b,_» >0, and 2% > =2
n n—

(although in this case we'll have a pair of lightly damped poles)

MP systems with a pole excess of at most 1 are the classes of systems
— easiest to control by feedback.

The problem is that such systems
— virtually do not exist in real world applications. ..

We may have such loops if we measure enough derivatives of the output y
(equivalent to using non-proper controller). Yet measuring derivatives is

— prone to severe high-frequency noise,

which, as we know from Lecture 5, makes high-gain feedback unaffordable.



Back to reality



Back to reality

The marvels of high-gain feedback (contd)

d
- e

This control law, which renders

TPl T=1, T,—0

w/o the need to know the plant model, is hardly ever feasible because of
— stability constraints
— measurement imperfections

— implementation limitations

normally, C(s) must be proper; too large coefficients = numerical errors



Back to reality

What can we do then?

To understand what can be done, let us try to see how feedback affects
— steady-state errors

— transient behavior



Steady-state performance

Outline

Steady-state performance of closed-loop systems: conditions for es = 0



Steady-state performance

Steady-state error (from Lecture 3)

e = Teyw
for some stable Tg,, then

o _ JITenlo)l i w(t) = sin(wt +¢)1(t)
= 7L, (0)] if w(t) = ramp(t) and Tew(0) =0



Steady-state performance

Closed-loop relations (from Lecture 5)
d
n Ym

y=Tr+ Tqd — Tn

U
e=r—y=>5r—Tqyd+ Tn,

We know that

P(s)C(s)

eI E N Y OLE)

(mind that S+ T =1).



Steady-state performance

ess for r(t) = sin(wt + ¢)1(t)

Ym

. B 1
s = |S(jo)| = |1+ P(jo)C(jw)|

provided the system is (internally) stable, of course.

In this case
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Steady-state performance

ess for r(t) = sin(wt + ¢)1(t)

Ym

. B 1
s = |S(jo)| = |1+ P(jo)C(jw)|

provided the system is (internally) stable, of course. Thus

In this case

— 6s=0 < |P(jo)C(jw)| =00 <= |P(jo)| =0V |C(jo)| = .
Note that this is a requirement
— only on the gain of PC at one frequency, o,

and does not impose any requirements on the gain at other frequencies.



Steady-state performance

ess for d(t) = sin(wt + ¢)1(t)

P(jw) ‘ _ 1

In this case

es = [~ Ta(jo)| = '1+P(jw)c(ja)) T [1/P(jo) + C(jw)]

provided the system is (internally) stable, of course.



Steady-state performance

ess for d(t) = sin(wt + ¢)1(t)

In this case

P(jw) ‘ 1

€ss = |_Td(Ja))| - ']_ + P(_]CU)C(JC’)) N

~ [1/P(jo) + C(jo)|

provided the system is (internally) stable, of course. Thus
— s =0 <= either’ P(jw) =0 or |C(jw)| = oo.
This is also a requirement
— only on the gains of P and C at one frequency, w,
and does not impose any requirements on the gains at other frequencies.

3In that case even open-loop control does the job, since the plant filters out harmonic
component of d with the frequency w irrespective of the controller.



Steady-state performance

ess for n(t) = sin(wt + ¢)1(t)

y n ' . em_
n Ym

P(io)C(j»)
1+ P(jo)C(jo)

provided the system is (internally) stable, of course.

In this case

e — | T(j0)| = \



Steady-state performance

ess for n(t) = sin(wt + ¢)1(t)

y n ' . em_
n Ym

P(io)C(j»)
1+ P(jo)C(jo)
provided the system is (internally) stable, of course. Thus
— 6s=0 < P(jo)C(jo) =0 <= |P(jw)| =0V |C(jw)| = 0.

And yet again, this is a requirement

In this case

e — | T(j0)| = \

— only on the gain of PC at one frequency, w,

and does not impose any requirements on the gain at other frequencies.



Steady-state performance

DC motor: ey for r(t) = 1(t)

Yy k u e r
’ s(ts+1) M

In this case the plant has a pole at the origin (an integrator), so static loop
gain

kC(s)
s(ts+1)
provided C(0) # 0 (true whenever C stabilizes the system, right?). Thus
— ess = 0iff C is stabilizing,
which, for example, true with C(s) = k, (P controller) for all k, > 0.

|P(0)C(0)] = lim

s—0




Steady-state performance
DC motor: e for d(t) = 1(t)
d

| s(ts+1) 2 C(S) : ,T -

In this case
1 1

* = 11/P(0) + C(0)) _ [CO)’

so that the integral action in P does not help.




Steady-state performance
DC motor: e for d(t) = 1(t)
d

| s(ts+1) 2 C(S) : ,T -

In this case
1 1

[ = = s
®[1/P(0) +C(0)]  [C(0)]
so that the integral action in P does not help. What could help is an

— integrator in C,

which indeed guarantees that |C(0)| = oc.



Steady-state performance
DC motor: e for d(t) = 1(t) with | controller

d
y k

u K e r
| s(ts+1) B 7T

This control law acting as

u(t) = k;/ote(e)de

is called the integral controller (I controller).



Steady-state performance
DC motor: e for d(t) = 1(t) with | controller

d
k e r

Y ki
| s(zs+1) s 7T

<

This control law acting as

u(t) = k;/ote(e)de

is called the integral controller (I controller). This unstable controller allows
— u(t) /4 0 even if e(t) — 0,
which is necessary for counteracting constant disturbances.



Steady-state performance
DC motor: e for d(t) = 1(t) with | controller (contd)

d
y k

u K e r
| s(ts+1) B 7T

k

. e 1 ko
The root-locus form with respect to k; is k = S(zstl)



Steady-state performance
DC motor: ey for d(t) = 1(t) with | controller (contd)

d
y k

u ki e r
| s(zs+1) s 7T

The root-locus form with respect to k; is —% = , so that we have:

__k
s2(ts+1)

Ims.

which is never stable.



Steady-state performance
DC motor: ey for d(t) = 1(t) with Pl controller

d

K
T i O k(148 et

This control law acting as

u(t) = ko <e(t) +h /Ot e(e)de)

is called the proportional-integral controller (Pl controller).



Steady-state performance
DC motor: ey for d(t) = 1(t) with Pl controller

d

k
T i O k(148 et

s

This control law acting as

u(t) = ko <e(t) +h /Ot e(e)de>

is called the proportional-integral controller (Pl controller). It also allows
— u(t) / 0 even if e(t) — 0,

but has an additional degree of freedom, a zero at s = —k;:
ki k ki
)= k(14 7) = B

which can be used to stabilize the system.



Steady-state performance
DC motor: eg for d(t) = 1(t) with Pl controller (contd)

d

K
T i O k(148 et

i . 1 k(s+ki)
The root locus form with respect to kj is Tk = (zs11)




Steady-state performance
DC motor: ey for d(t) = 1(t) with PI controller (contd)

d

K
T i [0 T k(145 ot

i . 1 k(s+ki)
The root locus form with respect to kj is Tk = (zs11)

, so that we have:

@ @ ]
Ell £ 1

—k; -1/t




Steady-state performance
DC motor: eg for d(t) = 1(t) with Pl controller (contd)

d

K
T i O k(148 et

i . 1 k(s+ki)
The root locus form with respect to kj is Tk = (zs11)

, so that we have:

@ @ ]
Ell £ 1

—k; -1/t

which may be stabilized iff 0 < 7k; < 1 (as in this case o = Z5-1).




Steady-state performance
DC motor: ey for d(t) = 1(t) with PI controller (contd)

d
o g ST R

s(ts+1)

Root loci for various k; € (0,1/7) may take exotic forms:

ms
ms

1/t —k Res _1/t /\ki Res _1/t ’ \7,(‘ Res




Steady-state performance

DC motor: ey for r(t) = ramp(t)

Yy k u e r
’ s(ts+1) C(S) —

In this case

| 1 | 1
= AT PEICE)] A s kC() (e + 1))

€ss =

. 1
lims3(s)

As C(0) # 0 for any stabilizing C, we have that

1
kIC(O)

€ss =

Thus, the larger |C(0)| is, the smaller e is and then
— e =0onlyif |C(0)] = 0,

which again requires an integral action in C (e.g. PI).



Steady-state performance

DC motor: ey for d(t) = ramp(t)
d

| s(zs+1) - C(S) : ,T -

Now,

|P(s)| . k

= IsA T P)CE))] o [2(es + 1) + ksC(s)]

. 1

e = ’sll_% sTd(s)S—2
so that

— if C(0) is finite, then e, = 0.

Thus we need an integrator in C just to keep ess bounded, in which case

1

- Iim ———
&= S [sC(s)]

and
— &5 = 0 only if C(s) has at least 2 poles at the origin (double integrator).



DC motor: ey for r(t)/d(t) = sin(wt + ¢)1(t)
d

| s(ts+1) 2 C(S) : ,T -

Because
k

k
jo(jot +1) ’ T oVl + 202

(o) = | 450

we have that

— s =0 <= |C(jw)| = .
The latter requires

— poles of C(s) at +jw



DC motor: ey for r(t)/d(t) = sin(wt + ¢)1(t)
d

| s(ts+1) 2 C(S) : ,T -

Because
k

k
Pljw)| = |—= =
Pl 'Jw(JwT +1) ’ V1 + 202

we have that

% 00

— s =0 <= |[C(jw)| = .
The latter requires
— poles of C(s) at +jw,

like )
bys® + bis + by
C(s) = .
(s) 52 + w2

Try to find stabilizing b; and show that by # 0 is necessary for stability.




Steady-state performance
DC motor: ey for n(t) = sin(wt + ¢)1(t)

d
k

_j; s(ts+1) - C(S) : Jf -

Because
Plio)= kK g
¥ oot +1) T ovit 2e?

we have that
— =0 <= (C(jw)=0.
The latter requires

— zeros of C(s) at tjw



Steady-state performance
DC motor: ey for n(t) = sin(wt + ¢)1(t)

d
k

A:L s(ts+1) - C(S) : Jf -

Because
Plio)= kK g
¥ oot +1) T ovit 2e?

we have that

— es=0 < ((jw)=0.
The latter requires

— zeros of C(s) at +jw,

like
s? + w?
aps2 + a1s + ag

C(s) =

(known as notch). Try to find stabilizing a;.



Steady-state performance

Summary

Zero steady-state errors to
— r(t) =sin(wt + ¢)1(t) requires poles at +jw in P(s)C(s)
n(wt + ¢)1(t) requires poles at £jw in C(s)

— d(t) =sin

— r(t) = 1(t) requires an integrator in PC

— d(t) = 1]( ) requires an integrator in C

— r(t) = ramp(t) requires a double integrator in PC

— d(t) = ramp( ) requires a double integrator in C

which are infinite gains at isolated frequencies. Zero steady-state error to
— n(t) =sin(wt + ¢)1(t) requires zeros at tjw in P(s)C(s)

which is zero gain at isolated frequencies.
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