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The marvels of high-gain feedback (from Lecture 5)
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y ∞P − ⇒ ruy
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P P−1
−

and
Tc → P−1 : r 7→ u; T → 1 : r 7→ y ; Td → 0 : d 7→ y

i.e. high-gain feedback

− can invert the plant w/o knowing its model

− can compensate disturbance w/o measuring it directly

But

− is it feasible (stabilizing)?
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Root-locus behavior as k → ∞
The root locus form

−1

k
= Gk(s);

where Gk(s) has n poles and m ≤ n (finite) zeros. In this case

− m loci end up at (finite) zeros of Gk(s)

− n −m loci end up at infinity along asymptotes centered at

�c =

∑n
i=1 pi −

∑m
i=1 zi

n −m

and directed with angles

�i =
arg bm − � + 2� i

n −m
; i = 0; 1; : : : ; n −m − 1

where bm is known as the high-frequency gain1 of Gk .

1As high frequencies |Gk(j!)| behaves like the gain frequency response of bm=s
n−m.
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Strictly proper Gk(s) with negative high-frequency gain

Let

− n > m

− bm < 0

Then there always is an asymptote with �i = 0, i.e.

− at least one closed-loop pole is in the RHP as k → ∞,

implying that

− high-gain feedback is impossible in this case.
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Nonminimum-phase Gk(s)

Let

− at least one (finite) zero of Gk(s) be in C̄0 ··= {s ∈ C | Re s ≥ 0}
In this case

− at least one locus ends up2 in the RHP,

implying that

− high-gain feedback is impossible in this case.

2Even if all NMP zeros of Gk(s) are on the j!-axis, closed-loop poles approach the
RHP as the gain grows, which is also unacceptable.
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Gk(s) with pole excess more than 2

Let

− n −m > 2

− bm > 0

Then one of the asymptotes has �i =
�

n−m < �
2 , i.e.

− at least two (because of symmetry) closed-loop poles are in the RHP
as k → ∞,

implying that

− high-gain feedback is impossible in this case.
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Minimum-phase Gk(s) with pole excess 2

Let

− n −m = 2

− bm > 0

− all (finite) zeros of Gk(s) be in Re s < 0

Then n − 2 loci end up in the LHP (at stable zeros) and the others go to

∑n
i=1 pi −

∑n−2
i=1 zi

2
± j∞;

implying that

− high-gain feedback is possible in this case iff

n∑

i=1

pi <
n−2∑

i=1

zi ⇐⇒ an−1

an
>

bn−3

bn−2
:



High-gain feedback limitations Back to reality Steady-state performance

Minimum-phase Gk(s) with pole excess 2

Let

− n −m = 2

− bm > 0

− all (finite) zeros of Gk(s) be in Re s < 0

Then n − 2 loci end up in the LHP (at stable zeros) and the others go to

∑n
i=1 pi −
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i=1 zi

2
± j∞;

implying that
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n∑

i=1

pi <
n−2∑

i=1

zi ⇐⇒ an−1

an
>

bn−3

bn−2
:

2Loosely speaking, this implies that poles should be “more stable” than zeros.



High-gain feedback limitations Back to reality Steady-state performance

Minimum-phase Gk(s) with pole excess 1

Let

− n −m = 1

− bm > 0

− all (finite) zeros of Gk(s) be in Re s < 0

Then n − 1 loci end up in the LHP (at stable zeros) and the last one goes
to −∞ along the real axis, implying that

− high-gain feedback is always possible in this case.
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Minimum-phase Gk(s) with pole excess 0

Let

− n −m = 0

− all (finite) zeros of Gk(s) be in Re s < 0

Then all loci end up in the LHP (at stable zeros), implying that

− high-gain feedback is always possible in this case.
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Summary

Systems, for which high-gain feedback can be applied:

1. minimum-phase and m = n

2. minimum-phase, m = n − 1, and bn−1 > 0

3. minimum-phase, m = n − 2, bn−2 > 0, and an−1

an
>

bn−3

bn−2

(although in this case we’ll have a pair of lightly damped poles)

MP systems with a pole excess of at most 1 are the classes of systems

− easiest to control by feedback.

The problem is that such systems

− virtually do not exist in real world applications . . .

We may have such loops if we measure enough derivatives of the output y
(equivalent to using non-proper controller). Yet measuring derivatives is

− prone to severe high-frequency noise,

which, as we know from Lecture 5, makes high-gain feedback unaffordable.
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The marvels of high-gain feedback (contd)

reu

d

y ∞P − ⇒ ruy

d

P P−1
−

This control law, which renders

Tc → P−1; T → 1; Td → 0

w/o the need to know the plant model, is hardly ever feasible because of

− stability constraints

− measurement imperfections

− implementation limitations
normally, C(s) must be proper; too large coefficients =⇒ numerical errors

− . . .
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What can we do then ?

remu

d

y

ymn

CP −

To understand what can be done, let us try to see how feedback affects

− steady-state errors

− transient behavior
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Steady-state error (from Lecture 3)

If
e = Teww

for some stable Tew , then

ess =

{
|Tew (j!)| if w(t) = sin(!t + �)1(t)

|T ′
ew (0)| if w(t) = ramp(t) and Tew (0) = 0
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Closed-loop relations (from Lecture 5)

remu

d

y

ymn

CP −

We know that

y = Tr + Tdd − Tn

⇓

e = r − y = Sr − Tdd + Tn;

where

T (s) =
P(s)C (s)

1 + P(s)C (s)
; Td(s) =

P(s)

1 + P(s)C (s)
; S(s) =

1

1 + P(s)C (s)

(mind that S + T = 1).
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ess for r(t) = sin(!t + �)1(t)

remu

d

y

ymn

CP −

In this case

ess = |S(j!)| = 1

|1 + P(j!)C (j!)|
provided the system is (internally) stable, of course. Thus

− ess = 0 ⇐⇒ |P(j!)C (j!)| = ∞ ⇐⇒ |P(j!)| = ∞∨ |C (j!)| = ∞.

Note that this is a requirement

− only on the gain of PC at one frequency, !,

and does not impose any requirements on the gain at other frequencies.
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ess for d(t) = sin(!t + �)1(t)

remu

d

y

ymn

CP −

In this case

ess = |−Td(j!)| =
∣∣∣∣

P(j!)

1 + P(j!)C (j!)

∣∣∣∣ =
1

|1=P(j!) + C (j!)|

provided the system is (internally) stable, of course. Thus

− ess = 0 ⇐⇒ either P(j!) = 0 or |C (j!)| = ∞.

This is also a requirement

− only on the gains of P and C at one frequency, !,

and does not impose any requirements on the gains at other frequencies.
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ess for d(t) = sin(!t + �)1(t)

remu

d

y

ymn

CP −

In this case

ess = |−Td(j!)| =
∣∣∣∣

P(j!)

1 + P(j!)C (j!)

∣∣∣∣ =
1

|1=P(j!) + C (j!)|

provided the system is (internally) stable, of course. Thus

− ess = 0 ⇐⇒ either3 P(j!) = 0 or |C (j!)| = ∞.

This is also a requirement

− only on the gains of P and C at one frequency, !,

and does not impose any requirements on the gains at other frequencies.

3In that case even open-loop control does the job, since the plant filters out harmonic
component of d with the frequency ! irrespective of the controller.
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ess for n(t) = sin(!t + �)1(t)
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ess = |T (j!)| =
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− only on the gain of PC at one frequency, !,

and does not impose any requirements on the gain at other frequencies.
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DC motor: ess for r(t) = 1(t)

reuy
C (s)

k

s(�s + 1) −

In this case the plant has a pole at the origin (an integrator), so static loop
gain

|P(0)C (0)| = lim
s→0

∣∣∣∣
kC (s)

s(�s + 1)

∣∣∣∣ = ∞

provided C (0) ̸= 0 (true whenever C stabilizes the system, right?). Thus

− ess = 0 iff C is stabilizing,

which, for example, true with C (s) = kp (P controller) for all kp > 0.
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DC motor: ess for d(t) = 1(t)

reu

d

y
C (s)

k

s(�s + 1) −

In this case

ess =
1

|1=P(0) + C (0)| =
1

|C (0)| ;

so that the integral action in P does not help. What could help is an

− integrator in C ,

which indeed guarantees that |C (0)| = ∞.
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DC motor: ess for d(t) = 1(t) with I controller

reu

d

y ki
s

k

s(�s + 1) −

This control law acting as

u(t) = ki

∫ t

0
e(�)d�

is called the integral controller (I controller). This unstable controller allows

− u(t) ̸→ 0 even if e(t) → 0,

which is necessary for counteracting constant disturbances.
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DC motor: ess for d(t) = 1(t) with I controller (contd)

reu

d

y ki
s

k

s(�s + 1) −

The root-locus form with respect to ki is − 1
k i
= k

s2(�s+1)
, so that we have:

Re s

Im
s

−1=�

which is never stable.
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DC motor: ess for d(t) = 1(t) with PI controller

reu

d

y
kp
(
1 + ki

s

)k

s(�s + 1) −

This control law acting as

u(t) = kp

(
e(t) + ki

∫ t

0
e(�)d�

)

is called the proportional-integral controller (PI controller). It also allows

− u(t) ̸→ 0 even if e(t) → 0,

but has an additional degree of freedom, a zero at s = −ki:

C (s) = kp
(
1 +

ki
s

)
=

kp(s + ki)

s
;

which can be used to stabilize the system.
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DC motor: ess for d(t) = 1(t) with PI controller (contd)

reu

d

y
kp
(
1 + ki

s

)k

s(�s + 1) −

The root locus form with respect to kp is − 1
kp

= k(s+k i)
s2(�s+1)

, so that we have:

Re s

Im
s

−1=�−ki
Re s

Im
s

−ki
Re s

Im
s

−1=� −ki

which may be stabilized iff 0 < �ki < 1 (as in this case �c =
�k i−1
2� ).
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DC motor: ess for d(t) = 1(t) with PI controller (contd)
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DC motor: ess for d(t) = 1(t) with PI controller (contd)

reu

d

y
kp
(
1 + ki

s

)k

s(�s + 1) −

Root loci for various ki ∈ (0; 1=�) may take exotic forms:

Re s

Im
s

−1=� −ki
Re s

Im
s

−1=� −ki
Re s

Im
s

−1=� −ki
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DC motor: ess for r(t) = ramp(t)

reuy
C (s)

k

s(�s + 1) −

In this case

ess =

∣∣∣∣ lims→0
sS(s)

1

s2

∣∣∣∣ = lim
s→0

1

|s(1 + P(s)C (s))| = lim
s→0

1

|s + kC (s)=(�s + 1)|

As C (0) ̸= 0 for any stabilizing C , we have that

ess =
1

k|C (0)| :

Thus, the larger |C (0)| is, the smaller ess is and then

− ess = 0 only if |C (0)| = ∞,

which again requires an integral action in C (e.g. PI).
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DC motor: ess for d(t) = ramp(t)

reu

d

y
C (s)

k

s(�s + 1) −

Now,

ess =

∣∣∣∣ lims→0
sTd(s)

1

s2

∣∣∣∣ = lim
s→0

|P(s)|
|s(1 + P(s)C (s))| = lim

s→0

k

|s2(�s + 1) + ksC (s)|

so that

− if C (0) is finite, then ess = ∞.

Thus we need an integrator in C just to keep ess bounded, in which case

ess = lim
s→0

1

|sC (s)|
and

− ess = 0 only if C (s) has at least 2 poles at the origin (double integrator).
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DC motor: ess for r(t)=d(t) = sin(!t + �)1(t), ! > 0

reu

d

y
C (s)

k

s(�s + 1) −

Because

|P(j!)| =
∣∣∣∣

k

j!(j!� + 1)

∣∣∣∣ =
k

!
√
1 + �2!2

̸= ∞

we have that

− ess = 0 ⇐⇒ |C (j!)| = ∞.

The latter requires

− poles of C (s) at ±j!,

like

C (s) =
b2s

2 + b1s + b0
s2 + !2

:

Try to find stabilizing bi and show that b2 ̸= 0 is necessary for stability.
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DC motor: ess for r(t)=d(t) = sin(!t + �)1(t), ! > 0

reu

d

y
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k
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k

j!(j!� + 1)

∣∣∣∣ =
k

!
√
1 + �2!2

̸= ∞

we have that

− ess = 0 ⇐⇒ |C (j!)| = ∞.

The latter requires

− poles of C (s) at ±j!,

like

C (s) =
b2s

2 + b1s + b0
s2 + !2

:

Try to find stabilizing bi and show that b2 ̸= 0 is necessary for stability.
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DC motor: ess for n(t) = sin(!t + �)1(t), ! > 0

reu

d

y

n

C (s)
k

s(�s + 1) −

Because

P(j!) =
k

j!(j!� + 1)
=

k

!
√
1 + �2!2

̸= 0

we have that

− ess = 0 ⇐⇒ C (j!) = 0.

The latter requires

− zeros of C (s) at ±j!,

like

C (s) =
s2 + !2

a2s2 + a1s + a0

(known as notch). Try to find stabilizing ai .
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Summary
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Zero steady-state errors to

− r(t) = sin(!t + �)1(t) requires poles at ±j! in P(s)C (s)

− d(t) = sin(!t + �)1(t) requires poles at ±j! in C (s)

− r(t) = 1(t) requires an integrator in PC

− d(t) = 1(t) requires an integrator in C

− r(t) = ramp(t) requires a double integrator in PC

− d(t) = ramp(t) requires a double integrator in C

which are infinite gains at isolated frequencies. Zero steady-state error to

− n(t) = sin(!t + �)1(t) requires zeros at ±j! in P(s)C (s)

which is zero gain at isolated frequencies.
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