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Internal stability of feedback systems
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Let

P(s) =

with
Xa(s) = Np(s)Nc(s) + Dp(s)Dc(s)
(the characteristic polynomial of the closed loop system).

Theorem

If P(s) and C(s) are proper , then
the closed-loop system is (. interna//y) stable iff yq(s) is Hurwitz, i.e. has no
roots in the closed RHP Co = {s € C | Res > 0}.
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Stability and feedback
Qualitative observations
Example 1: With C(s) = kp,

P(s) = = xad(s) =s+ (k, — 1).

It is Hurwitz iff (yo > 0) k, > 1. Hence,

= feedback can stabilize unstable systems.



Stability and feedback

Qualitative observations
Example 1: With C(s) = kp,

P(s) = = xad(s) =s+ (k, — 1).

It is Hurwitz iff (yo > 0) k, > 1. Hence,

= feedback can stabilize unstable systems.

Example 2: With C(s) = kp,

- 1
~ (s+0.1)3

P(s)

3 3 1

3 2

— =3 s [k —— ).
xa(s) =s>+ 105 + 1005+< p+ 1000)

It is Hurwitz iff (y; > 0 and yoy1 > yayxo0) —0.001 < k, < 0.008. Hence
~. feedback can destabilize stable systems.



Stability and feedback
Example 3

which corresponds to

Characteristic polynomial

xa(s) = ms? 4 cs + k + (cs + k)pky
= ms® + c(1 + pkp)s + k(1 + pky)

stable iff k, > —1/p, so we may use high-gain feedback here.



Stability and feedback

Example 3

which corresponds to

Characteristic polynomial

xa(s) = ms? 4 cs + k + (cs + k)pky
= ms® + c(1 + pkp)s + k(1 + pky)

stable iff k, > —1/p, so we may use high-gain feedback here.
Note that
— d is bounded whenever so is f (as 1/(cs + k)p is stable)

so we do not need to account for the form of disturbance d.



Stability and feedback

Example 4: stabilizing DC motor
We remember, Lecture 2, that the t.f. of a DC motor (voltage — angle) is

Km

Po(s) = s((Las + Ra)(Js + F) + KoKm)

or, if we neglect L,,

Km
(Ra(Js + ) + KpKm)

Pg(s) ~ .

Let's try to stabilize it by feedback with the controller C(s) = k:




Stability and feedback

Example 4: stabilizing approximate model

0 \ K u e r
| | s(Ru(Js + ) + KoKn) © %

Characteristic polynomial

Xa(s) = s(Ra(Js + ) + Ko Km) + Kmkp
= RyJs? 4+ (Raf + KuKm)s + Kk

is Hurwitz iff k, > 0. This suggests that we
— can use high-gain feedback

for this system and effectively implement the plant inversion strategy.



Stability and feedback
Example 4: stabilizing “full” model
d

o | Ko y . ,
| L s((Las + R)(Us + ) + KoKnm) O -0

Characteristic polynomial

xci(s) = s((Las + Ra)(Js + f) + KoKm) + Kmkp
= L,Js® + (Laf + RaJ)s? + (Rof + KuKm)s + Kk

is Hurwitz iff
ko >0 and (Lif + RyJ)(Raf + KpKm) > LaJKmk,

(Laf + RyJ)(Raf + KoKim)
LaJKm ’

0< kp < kp,sup =



Stability and feedback

Example 4: stabilizing “full” model (contd)

0 ‘ K u e r
| | s((Las + R)(Js + ) + KoKum) © <

Thus
— the conclusion derived on the basis of approximate model is erroneous

and we can increase the gain only up to (not including)

(Lof + RaJ)(Raf + KiKin)
Lo JKm

Ko.sup = (~ 1412.8 for motor in Lecture 2)

Thus, stability requirement might impose limitations on feedback gains.



Stability and feedback
Example 4: stabilizing “full” model (contd)

d

6 \ K u e !
’ \ s((Las + Ra)(Js + f) + KpKim) © R

Thus
— the conclusion derived on the basis of approximate model is erroneous

and we can increase the gain only up to (not including)

(Lof + RaJ)(Raf + KiKin)
Lo JKm

Ko.sup = (~ 1412.8 for motor in Lecture 2)

Thus, stability requirement might impose limitations on feedback gains. We
might be interested to understand,

— if this is a general property.

The answer is affirmative, but to apprehend this we need to learn more.
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Root locus: motivation

Example

Consider

The closed-loop characteristic polynomial y¢(s) = s + 2s + k, has roots

at p1o = —1++v1-— kp.



Root locus: motivation

Example

Consider

The closed-loop characteristic polynomial y¢(s) = s + 2s + k, has roots
at p1o = —1 £ /1 — ky. Some examples (for different values of k;):

k=2

| |
Ims

1

10.5

k=0 k=08 k=1k=1 k=08 "|k=0

-2 -1 Res

1-05




Root locus: motivation

Example (contd)

The complete picture is obtained if we plot

— locations of the roots of y(s) as a function of all k,'s

Ims

1

105

k=0 k=08 k=1lk=1 k=08 "|k=0

ky =125

This plot is called the root-locus plot, with
— root loci are paths of the roots of y(s) =0 in the s-plane

as some parameter changes.



Root locus: motivation

Example: what can we learn from root locus

Ims
—

k=125

For small k, (k, < 1, overdamped 2-order system): as k, increases,

— the closed-loop system becomes faster (slowest mode moves leftward)
For large kp (kp > 1, underdamped 2-order system): as kp increases,

— the system becomes faster (w, increases)

— the system becomes less damped (¢ decreases)



Root locus: motivation

Example: what can we learn from root locus (contd)

Ims
—

k=125

Thus, qualitatively,
— limitations on OS = limitations on feedback gain k,

“faster” might conflict with “non-oscillatory”



Root locus: motivation

Why root locus?

Through root locations we can
— analyze stability
(closed-loop system stable <= all roots of y.(s) are in the open LHP)
— analyze transient performance

(damping ratio/natural frequency of poles connected with OS/speed of transients)



Root locus: motivation

Why root locus?

Through root locations we can

analyze stability
(closed-loop system stable <= all roots of y.(s) are in the open LHP)

analyze transient performance

(damping ratio/natural frequency of poles connected with OS/speed of transients)
design controller to meet performance specifications

understand limitations of high-gain feedback



Some root locus rules



Root locus rules

Root-locus form of characteristic equation

Consider

for some given P and C and k > 0 to be played with. The characteristic
equation, xi(s) = 0, writes then

kNp(s)Ng(s) + Dp(s)De(s) =0

or, equivalently, as

—% = Gi(s) = P(s)C(s).

This form called the root-locus form of the characteristic equation and we
assume hereafter w.l.o.g.! that Gi(s) is proper.

!Otherwise, we can replace k with 1/k and end up with a proper Gk(s).



Root locus rules

Root-locus form of characteristic equation: remark

Root-locus form can be obtained from other parameters too. For example,

yields

xa(s) = (s + k)Np(s) + sDp(s) = 0,

which leads to the following root-locus form:

NP(S)

= Gk(s) =

1
k ~ s(Np(s) + Dp(s))’



Root locus rules

Root-locus procedure

Given )
—z = Gk(s) or, equivalently, Dy(s)+ kNk(s) =0
with
Nk(S) bms™ + [),,7,15"7_:l + -+ bis+ by bm H;nzl(s — Z,')
Gi(s) = = =

Dy(s) s"+ap_1s" 1+ ---+as+a [Ie(s—pi) °

where n > m, we are interested to
— sketch root locus as k changes from 0 to co.

To this end, we'll develop a set of rules, called the root-locus procedure.



Root locus rules

Root-locus procedure

Given )
—z = Gk(s) or, equivalently, Dy(s)+ kNk(s) =0
with
Nk(S) bms™ + [),,7,15"7_:l + -+ bis+ by bm H;nzl(s — Z,')
Gi(s) = = =

Dy(s) s"+ap_1s" 1+ ---+as+a [Ie(s—pi) °

where n > m, we are interested to
— sketch root locus as k changes from 0 to co.

To this end, we'll develop a set of rules, called the root-locus procedure.

Remark 1: there are exactly n root loci, each represents a closed-loop pole
Remark 2: root locus is symmetric with respect to the real axis

Remark 3: if negative k's are required, just replace Gy — —G



Root locus rules

Gain and phase rules

Rewrite root-locus form as

% e = |Gy (s)] eI 28 Cx(5),

Thus, the following equalities must hold for every s € C belonging to root
locus:

— [Gk(s)| = 1/k (gain rule)
— arg Gx(s) = (mod 27) (phase rule?)

Notation a = b (mod c) reads: 3i € Z so that a= b+ci (e.g. =37 = 7 (mod 27)).



Root locus rules

Gain and phase rules

Rewrite root-locus form as

1

7 e = |Gy (s)] eI 28 Cx(5),

Thus, the following equalities must hold for every s € C belonging to root
locus:

— [Gk(s)| = 1/k (gain rule)
— arg Gg(s) = (mod 27) (phase rule)

Gain k > 0 satisfying the gain rule always exists. Hence, to check whether
a point sp € C belongs to the root locus of Gy,

— we only need to check whether arg Gi(sp) = 7 (mod 27).

If no, this sp is not a part of the locus. If yes, it is for
— k= 1/‘Gk(50)’.



Root locus rules

Analytic determination of gain and phase of Gk(sp)

Consider m
_ b [TiZ1(s — zi)

[[i(s = pi)
for some by, # 0. Then for any sp € C we have:

— arg Gi(so) = arg bm + > arg(so — zi) — Yy arg(so — pi)
and

Gk(S)

bl 174 150 — 2
|Gl = Pl = i
[T J5 - i

Remark: because b, € R\ {0}, we have that arg b, = {0 if by >0



Root locus rules

Graphic determination of gain and phase of Gg(sp)

Plx

Ims

S0

P3

X
(0]

2 Res

sz

— angles measured in the counterclockwise direction
(so that arg(so — p1) < 0, arg(so — p2) > 0, arg(so — p3) > 0, and arg(sp — z1) > 0)

— does not account for b,



Root locus rules
Start points (k = 0)
From
Dy (s) + kNi(s) =0
it follows that
— all n loci begin at roots of Di(s) = 0.

These points marked on the s-plane by “x".



Root locus rules
Start points (k = 0)
From
Dy (s) + kNi(s) =0
it follows that
— all n loci begin at roots of Di(s) = 0.

These points marked on the s-plane by “x".

Remark: Because —1/k = G(s), roots of Di(s) can belong to a loci only
at k = 0. For all nonzero k we have 1/k < 0o, so no equality.



Root locus rules
End points (k = c0)
From 1
;Dk(s) + Ne(s) =0
it follows that
— m loci end at roots of Ni(s) =0.

These points marked on the s-plane by “o".



Root locus rules
End points (k = o0)

From 1
;Dk(s) + Ni(s) =0
it follows that

— m loci end at roots of Ni(s) =0.

These points marked on the s-plane by “o".

From 1
—— = Gk(s

L = Ck(s)
we can guess that

— as k — oo, the other n — m loci go to infinity in the s-plane

(because Gi(s) has n — m "“zeros at infinity”). The question is how ?



Root locus rules
End points (k = o0)
From 1
;Dk(s) + Ne(s) =0
it follows that
— m loci end at roots of Ni(s) =0.

These points marked on the s-plane by “o".

From 1
—— = Gk(s
L = Ck(s)
we can guess that
— as k — oo, the other n — m loci go to infinity in the s-plane

(because Gi(s) has n — m "“zeros at infinity”). The question is how ?

Remark: Because —1/k = G(s), roots of Ni(s) can belong to a loci only
at k = co. For all finite k we have 1/k > 0, so no equality.



Asymptotes (k — o0)

It can be shown that

— n— m loci approach infinity along asymptotes centered at

Do Pi— 27

n—m

Oc =

(called the center of gravity) and directed with angles

_argby — 7 +2mi

Root locus rules

oi , i=01,....,n—m—1.

n—m



Root locus rules

Asymptotes (k — o0)

It can be shown that

— n— m loci approach infinity along asymptotes centered at

Do Pi— 27

n—m

Oc =

(called the center of gravity) and directed with angles

_argby — 7 +2mi

i , i=0,1,...,n—m—1.
n—m
For example:
bm >0: n—m‘(ﬁl $2 @3 P4 Ps bm<0: n—m|¢1 ¢o ¢35 ¢a o5
1 T 1 0
2 z 3777 2 0 =
5 27 4
3 % 377[1 é 141 X 0 ér TH 3
M B S e s M O A A S
5 5 T 5 5 5 5 5



Root locus rules

Asymptotes (k — o0): example

Assume the following pole / zero map of Gk(s) (and that b, > 0):

P 0
x £
P3_, -
- he Res
sz
In this case, n— m =2, 0. = %, and ¢1 =%

and ¢, = 37”



Root locus rules

Asymptotes (k — o0): example

Assume the following pole / zero map of Gk(s) (and that b, > 0):

P 0
x £
(TcA P3, -
T he Res
sz
In this case, n— m =2, 0. = %, and ¢1 =%

and ¢, = 37”



Root locus rules

Root locus on real axis

Plx

Ims

P3Xarg(50 —p3)=0 =50

(0]

“ Res

PQX

net sum of arg's from any pair of complex-conjugate singularities is 0
(e.g. arg(so — p1) = —arg(so — p2))

arg of any real singularity to the right of sp is 7

arg of any real singularity to the left of sy is 0



Root locus rules

Root locus on real axis (contd)

Thus, for every sp € R

— only singularities (poles and zeros) to the right of sy matter.
Therefore,

if b, > 0, we have that

arg G(sp) = 7 - (no. of real singularities to the right of sp)

and, by the phase rule, root locus lies in
— all sections of R to the left of an odd number of singularities



Root locus rules

Root locus on real axis (contd)

Thus, for every sop € R

— only singularities (poles and zeros) to the right of sy matter.
Therefore,

if b, > 0, we have that

arg G(sp) = 7 - (no. of real singularities to the right of sp)

and, by the phase rule, root locus lies in
— all sections of R to the left of an odd number of singularities

if b, <0, we have that

arg G(sp) = m + 7 - (no. of real singularities to the right of sp)

and, by the phase rule, root locus lies in

— all sections of R to the left of an even number of singularities



Root locus rules

Root locus on real axis: example

Assuming b, > 0, in this case there is one real axis segment:

p
"%

Ims

P3

2 Res




Root locus rules

Breakaway / break-in points on real axis

Breakaway / break-in points can be characterized as
— points on R where y¢(s) has multiple roots.

Hence, o € R is breakaway / break-in points for some k # 0 if

d

@Xd(a) =0.

(o) =0 and

It can be shown that at each o such that y (o) = Di(0) + kNk(o) =0,

2 o) = kDo) - Gi(o).

Because Dy (o) # 0 for all k > 0, the breakaway/in condition reads
d .
EG;((O) =0 for o € R belonging to the root locus.

Remark: alternatively, we may look for extremal points of the real function
Gk (o) located within real axis segments of the root locus.



Root locus rules
Crossing jw-axis

Points where root locus crosses jw-axis may be especially important as they
— may indicate boundaries of stabilizing k.

These points solve

—% = Gk(jow)

and effectively depend on the phase of the frequency response of Gy only?.
There are two alternative approaches to determine these points:
1. via the phase rule arg Gx(jow) = w (mod 27)
(results in transcendental equations, thus efficiently can be solved only for low-order
systems + whatever number of integrators)
2. via the Routh-Hurwitz test

(results in polynomial equations, also not so simple task for high-order polynomials)

2If the phase rule arg Gk(jw) = m (mod 27) holds for some finite w > 0, there always
is k for which the gain rule k|G (jw)| = 1 holds.



Root locus rules

Crossing jw-axis: frequency plots insight

Note that the condition
arg Gi(jo) =7 (mod 27)

can be verified using frequency response plots. Required w are frequencies
at which

— polar plot of Gi(jw) crosses the negative real semi-axis

— phase Bode plot of Gi(jw) crosses any of the levels —180 (mod 360)



Root locus rules

Departure and arrival angles (simple poles)

Let p; (i=1,...,n) be a simple (i.e. of multiplicity 1) pole of Gk(s). The
corresponding locus departs then this pole at the angle

n
@dep,i = T — arg by, — Z arg(pi — pj) + Z arg(pi — zj).
J=1
JF#i

Let z; (i =1,...,m) be a simple (i.e. of multiplicity 1) zero of Gk(s). The
corresponding locus arrives then at this zero at the angle

n
Parri = T +arg bm + Y _arg(z — Z arg(z; — z)).
j=1
J#l



Root locus rules

Departure and arrival angles (simple poles): example

Pdep 1
~_F
P

P2

-

Ims

X

P1

NJ

1

Res



Root locus rules

Res

s w|

Z1

Example: final sketch




Root locus rules

Useful MATLAB commands

— rlocus (calculates and plots root locus of its argument)
— rlocfind (finds root-locus gain for a given set of roots, interactively)

— sisotool (could be fun)

Root locus for the example above with MATLAB:

Gk = zpk([-.4],[-1.5+j,-1.5-7,-2],1);

rlocus(Gk)

grid on % plots grid (const "zeta" and "wn" curves)

rlocfind(Gk) Y prompts to select a point in the plot and
% then returns the gain corresponding to the
% selected point and marks the other points
% having the same gain on each locus
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