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Internal stability of feedback systems

remu

d

y

ymn

CP −

Let

P(s) =
NP(s)

DP(s)
and C (s) =

NC (s)

DC (s)

with
�cl(s) = NP(s)NC (s) + DP(s)DC (s)

(the characteristic polynomial of the closed loop system).

Theorem
If P(s) and C (s) are proper and deg�cl(s) = degDP(s) + degDC (s), then
the closed-loop system is (internally) stable iff �cl(s) is Hurwitz, i.e. has no
roots in the closed RHP C̄0 =

{
s ∈ C | Re s ≥ 0

}
.
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Qualitative observations

Example 1: With C (s) = kp,

P(s) =
1

s − 1
=⇒ �cl(s) = s + (kp − 1):

It is Hurwitz iff (�0 > 0) kp > 1. Hence,

¨̂ feedback can stabilize unstable systems.

Example 2: With C (s) = kp,

P(s) =
1

(s + 0:1)3
=⇒ �cl(s) = s3 +

3

10
s2 +

3

100
s +

(
kp +

1

1000

)
:

It is Hurwitz iff (�i > 0 and �2�1 > �4�0) −0:001 < kp < 0:008. Hence

_̈ feedback can destabilize stable systems.
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Example 3

which corresponds to

remu
d

f

y

ymn

kp
(cs + k)�

ms2 + cs + k

− 1

(cs + k)�

−

Characteristic polynomial

�cl(s) = ms2 + cs + k + (cs + k)�kp

= ms2 + c(1 + �kp)s + k(1 + �kp)

stable iff kp > −1=�, so we may use high-gain feedback here.

Note that

− d is bounded whenever so is f (as 1=(cs + k)� is stable)

so we do not need to account for the form of disturbance d .
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Example 4: stabilizing DC motor

We remember, Lecture 2, that the t.f. of a DC motor (voltage 7→ angle) is

P� (s) =
Km

s
(
(Las + Ra)(Js + f ) + KbKm

)

or, if we neglect La,

P� (s) ≈
Km

s(Ra(Js + f ) + KbKm)
:

Let’s try to stabilize it by feedback with the controller C (s) = kp:

reu

d

�
kpP�(s) −



Stability and feedback Root locus: motivation Root locus rules

Example 4: stabilizing approximate model

reu

d

�
kp

Km

s
(
Ra(Js + f ) + KbKm

)
−

Characteristic polynomial

�cl(s) = s(Ra(Js + f ) + KbKm) + Kmkp

= RaJs
2 + (Raf + KbKm)s + Kmkp

is Hurwitz iff kp > 0. This suggests that we

− can use high-gain feedback

for this system and effectively implement the plant inversion strategy.
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Example 4: stabilizing “full” model

reu

d

�
kp

Km

s
(
(Las + Ra)(Js + f ) + KbKm

)
−

Characteristic polynomial

�cl(s) = s
(
(Las + Ra)(Js + f ) + KbKm

)
+ Kmkp

= LaJs
3 + (Laf + RaJ)s

2 + (Raf + KbKm)s + Kmkp

is Hurwitz iff

kp > 0 and (Laf + RaJ)(Raf + KbKm) > LaJKmkp

i.e.

0 < kp < kp,sup ··=
(Laf + RaJ)(Raf + KbKm)

LaJKm
:
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Example 4: stabilizing “full” model (contd)

reu

d

�
kp

Km

s
(
(Las + Ra)(Js + f ) + KbKm

)
−

Thus

− the conclusion derived on the basis of approximate model is erroneous

and we can increase the gain only up to (not including)

kp,sup =
(Laf + RaJ)(Raf + KbKm)

LaJKm
(≈ 1412:8 for motor in Lecture 2)

Thus, stability requirement might impose limitations on feedback gains. We
might be interested to understand,

− if this is a general property.

The answer is affirmative, but to apprehend this we need to learn more.
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Example

Consider

kp
1

s(s + 2)

remu

d

y

ymn

−

The closed-loop characteristic polynomial �cl(s) = s2 + 2s + kp has roots
at p1;2 = −1±

√
1− kp. Some examples (for different values of kp):

Re s

Im
s

−1

−0.5

0.5

1

−2 −1

kp = 0kp = 0 kp = 0.8kp = 0.8 kp = 1kp = 1

kp = 1.25

kp = 1.25

kp = 2

kp = 2
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Example (contd)

The complete picture is obtained if we plot

− locations of the roots of �cl(s) as a function of all kp’s

Re s

Im
s

−1

−0.5

0.5

1

−2 −1

kp = 0kp = 0 kp = 0.8kp = 0.8 kp = 1kp = 1

kp = 1.25

kp = 1.25

kp = 2

kp = 2

This plot is called the root-locus plot, with

− root loci are paths of the roots of �cl(s) = 0 in the s-plane

as some parameter changes.
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Example: what can we learn from root locus

Re s

Im
s

−1

−0.5

0.5

1

−2 −1

kp = 0kp = 0 kp = 0.8kp = 0.8 kp = 1kp = 1

kp = 1.25

kp = 1.25

kp = 2

kp = 2

For small kp (kp ≤ 1, overdamped 2-order system): as kp increases,

− the closed-loop system becomes faster (slowest mode moves leftward)

For large kp (kp > 1, underdamped 2-order system): as kp increases,

− the system becomes faster (!n increases)

− the system becomes less damped (� decreases)
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Example: what can we learn from root locus (contd)

Re s

Im
s

−1

−0.5

0.5

1

−2 −1

kp = 0kp = 0 kp = 0.8kp = 0.8 kp = 1kp = 1

kp = 1.25

kp = 1.25

kp = 2

kp = 2

Thus, qualitatively,

− limitations on OS =⇒ limitations on feedback gain kp

− “faster” might conflict with “non-oscillatory”
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Why root locus ?

remu

d

y

ymn

CP −

Through root locations we can

− analyze stability
(closed-loop system stable ⇐⇒ all roots of �cl(s) are in the open LHP)

− analyze transient performance
(damping ratio/natural frequency of poles connected with OS/speed of transients)

− design controller to meet performance specifications

− understand limitations of high-gain feedback
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Root-locus form of characteristic equation

Consider

remu

d

y

ymn

kC̃P −

for some given P and C̃ and k > 0 to be played with. The characteristic
equation, �cl(s) = 0, writes then

kNP(s)NC̃ (s) + DP(s)DC̃ (s) = 0

or, equivalently, as

−1

k
= Gk(s) ··= P(s)C̃ (s):

This form called the root-locus form of the characteristic equation and we
assume hereafter w.l.o.g.1 that Gk(s) is proper.

1Otherwise, we can replace k with 1=k and end up with a proper Gk(s).
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Root-locus form of characteristic equation: remark

Root-locus form can be obtained from other parameters too. For example,

remu

d

y

ymn

1 + k
sP(s) −

yields
�cl(s) = (s + k)NP(s) + sDP(s) = 0;

which leads to the following root-locus form:

−1

k
= Gk(s) =

NP(s)

s(NP(s) + DP(s))
:
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Root-locus procedure

Given

−1

k
= Gk(s) or, equivalently, Dk(s) + kNk(s) = 0

with

Gk(s) =
Nk(s)

Dk(s)
=

bms
m + bm−1s

m−1 + · · ·+ b1s + b0
sn + an−1sn−1 + · · ·+ a1s + a0

=
bm

∏m
i=1(s − zi )∏n

i=1(s − pi )
;

where n ≥ m, we are interested to

− sketch root locus as k changes from 0 to ∞.

To this end, we’ll develop a set of rules, called the root-locus procedure.

Remark 1: there are exactly n root loci, each represents a closed-loop pole

Remark 2: root locus is symmetric with respect to the real axis

Remark 3: if negative k ’s are required, just replace Gk → −Gk
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Gain and phase rules

Rewrite root-locus form as

1

k
ej� = |Gk(s)|ej argGk (s):

Thus, the following equalities must hold for every s ∈ C belonging to root
locus:

− |Gk(s)| = 1=k (gain rule)

− argGk(s) ≡ � (mod 2�) (phase rule2)

Gain k > 0 satisfying the gain rule always exists. Hence, to check whether
a point s0 ∈ C belongs to the root locus of Gk ,

− we only need to check whether argGk(s0) = � (mod 2�).

If no, this s0 is not a part of the locus. If yes, it is for

− k = 1=|Gk(s0)|.

2Notation a ≡ b (mod c) reads: ∃i ∈ Z so that a = b+ ci (e.g.−3� ≡ � (mod 2�)).
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Analytic determination of gain and phase of Gk(s0)

Consider

Gk(s) =
bm

∏m
i=1(s − zi )∏n

i=1(s − pi )

for some bm ̸= 0. Then for any s0 ∈ C we have:

− argGk(s0) = arg bm +
∑m

i=1 arg(s0 − zi )−
∑n

i=1 arg(s0 − pi )

and

− |Gk(s0)| =
|bm|

∏m
i=1|s0 − zi |∏n

i=1|s0 − pi |
.

Remark: because bm ∈ R \ {0}, we have that arg bm =

{
0 if bm > 0
� if bm < 0

.
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Graphic determination of gain and phase of Gk(s0)

Re s

Im
s

|s0 − p
1 |

arg(s0 − p1)

p1

|s 0
−
p 2
|

arg
(s0

− p2)

p2

|s0− p3|

arg(s0 − p3)p3

|s0
−
z1
|

ar
g(
s 0
−
z 1
)

z1

s0

− angles measured in the counterclockwise direction
(so that arg(s0 − p1) < 0, arg(s0 − p2) > 0, arg(s0 − p3) > 0, and arg(s0 − z1) > 0)

− does not account for bm
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Start points (k = 0)

From
Dk(s) + kNk(s) = 0

it follows that

− all n loci begin at roots of Dk(s) = 0.

These points marked on the s-plane by “×”.

Remark: Because −1=k = Gk(s), roots of Dk(s) can belong to a loci only
at k = 0. For all nonzero k we have 1=k <∞, so no equality.
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End points (k = ∞)

From
1

k
Dk(s) + Nk(s) = 0

it follows that

− m loci end at roots of Nk(s) = 0.

These points marked on the s-plane by “◦”.

From
−1

k
= Gk(s)

we can guess that

− as k → ∞, the other n −m loci go to infinity in the s-plane

(because Gk(s) has n −m “zeros at infinity”). The question is how ?

Remark: Because −1=k = Gk(s), roots of Nk(s) can belong to a loci only
at k = ∞. For all finite k we have 1=k > 0, so no equality.
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Asymptotes (k → ∞)

It can be shown that

− n −m loci approach infinity along asymptotes centered at

�c =

∑n
i=1 pi −

∑m
i=1 zi

n −m

(called the center of gravity) and directed with angles

�i =
arg bm − � + 2� i

n −m
; i = 0; 1; : : : ; n −m − 1:

For example:

bm > 0 : n −m �1 �2 �3 �4 �5
1 �

2 �
2

3�
2

3 �
3

� 5�
3

4 �
4

3�
4

5�
4

7�
4

5 �
5

3�
5

� 7�
5

9�
5

bm < 0 : n −m �1 �2 �3 �4 �5
1 0
2 0 �

3 0 2�
3

4�
3

4 0 �
2

� 3�
2

5 0 2�
5

4�
5

6�
5

8�
5
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Asymptotes (k → ∞): example

Assume the following pole / zero map of Gk(s) (and that bm > 0):

Re s

Im
sp1

p2

p3
z1

In this case, n −m = 2, �c =
p1+p2+p3−z1

2 , and �1 =
�
2 and �2 =

3�
2 .
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Root locus on real axis

Re s

Im
s

arg(s0 −
p
1 )

p1

arg
(s0

− p2)

p2

arg(s0 − p3) = 0p3

ar
g(
s 0
−
z 1
)
=

�

z1

s0

− net sum of arg’s from any pair of complex-conjugate singularities is 0
(e.g. arg(s0 − p1) = − arg(s0 − p2))

− arg of any real singularity to the right of s0 is �

− arg of any real singularity to the left of s0 is 0
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Root locus on real axis (contd)

Thus, for every s0 ∈ R

− only singularities (poles and zeros) to the right of s0 matter.

Therefore,

if bm > 0, we have that

argG (s0) = � · (no. of real singularities to the right of s0)

and, by the phase rule, root locus lies in

− all sections of R to the left of an odd number of singularities

if bm < 0, we have that

argG (s0) = � + � · (no. of real singularities to the right of s0)

and, by the phase rule, root locus lies in

− all sections of R to the left of an even number of singularities
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Root locus on real axis (contd)
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Root locus on real axis: example

Assuming bm > 0, in this case there is one real axis segment:

Re s

Im
sp1

p2

p3
z1
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Breakaway / break-in points on real axis

Breakaway / break-in points can be characterized as

− points on R where �cl(s) has multiple roots.

Hence, � ∈ R is breakaway / break-in points for some k ̸= 0 if

�cl(�) = 0 and
d

d�
�cl(�) = 0:

It can be shown that at each � such that �cl(�) = Dk(�) + kNk(�) = 0,

d

d�
�cl(�) = kDk(�) ·

d

d�
Gk(�):

Because Dk(�) ̸= 0 for all k > 0, the breakaway/in condition reads

d

d�
Gk(�) = 0 for � ∈ R belonging to the root locus:

Remark: alternatively, we may look for extremal points of the real function
Gk(�) located within real axis segments of the root locus.
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Crossing j!-axis

Points where root locus crosses j!-axis may be especially important as they

− may indicate boundaries of stabilizing k .

These points solve

−1

k
= Gk(j!)

and effectively depend on the phase of the frequency response of Gk only2.
There are two alternative approaches to determine these points:

1. via the phase rule argGk(j!) ≡ � (mod 2�)
(results in transcendental equations, thus efficiently can be solved only for low-order

systems+whatever number of integrators)

2. via the Routh-Hurwitz test
(results in polynomial equations, also not so simple task for high-order polynomials)

2If the phase rule argGk(j!) ≡ � (mod 2�) holds for some finite ! > 0, there always
is k for which the gain rule k|Gk(j!)| = 1 holds.
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Crossing j!-axis: frequency plots insight

Note that the condition

argGk(j!) ≡ � (mod 2�)

can be verified using frequency response plots. Required ! are frequencies
at which

− polar plot of Gk(j!) crosses the negative real semi-axis

− phase Bode plot of Gk(j!) crosses any of the levels −180 (mod 360)
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Departure and arrival angles (simple poles)

Let pi (i = 1; : : : ; n) be a simple (i.e. of multiplicity 1) pole of Gk(s). The
corresponding locus departs then this pole at the angle

�dep;i = � − arg bm −
n∑

j=1
j ̸=i

arg(pi − pj) +
m∑

j=1

arg(pi − zj):

Let zi (i = 1; : : : ;m) be a simple (i.e. of multiplicity 1) zero of Gk(s). The
corresponding locus arrives then at this zero at the angle

�arr;i = � + arg bm +
n∑

j=1

arg(zi − pj)−
m∑

j=1
j ̸=i

arg(zi − zj):
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Departure and arrival angles (simple poles): example
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Example: final sketch
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Useful MATLAB commands

− rlocus (calculates and plots root locus of its argument)

− rlocfind (finds root-locus gain for a given set of roots, interactively)

− sisotool (could be fun)

Root locus for the example above with MATLAB:

Gk = zpk([-.4],[-1.5+j,-1.5-j,-2],1);

rlocus(Gk)

grid on % plots grid (const "zeta" and "wn" curves)

rlocfind(Gk) % prompts to select a point in the plot and

% then returns the gain corresponding to the

% selected point and marks the other points

% having the same gain on each locus
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