Introduction to Control (00340040) lecture no. 6

Leonid Mirkin

Faculty of Mechanical Engineering Technion—IIT

Internal stability of feedback systems

Let

with

$$\chi_{\rm cl}(s) = N_P(s)N_C(s) + D_P(s)D_C(s)$$

(the characteristic polynomial of the closed loop system).

Theorem

If P(s) and C(s) are proper and deg $\chi_{cl}(s) = \deg D_P(s) + \deg D_C(s)$, then the closed-loop system is (internally) stable iff $\chi_{cl}(s)$ is Hurwitz, i.e. has no roots in the closed RHP $\overline{\mathbb{C}}_0 = \{s \in \mathbb{C} \mid \operatorname{Re} s \ge 0\}$.

Root locus rules

Outline

Stability and feedback

Root locus: motivation

Some root locus rules

Stability and feedback

Root locus: motivation

Root locus rules

Outline

Stability and feedback

Root locus: motivation

Some root locus rules

Qualitative observations

Example 1: With $C(s) = k_p$,

$${\sf P}(s)=rac{1}{s-1} \quad \Longrightarrow \quad \chi_{\sf cl}(s)=s+(k_{\sf p}-1).$$

It is Hurwitz iff $(\chi_0 > 0)$ $k_p > 1$. Hence,

∴ feedback can stabilize unstable systems.

Example 2: With $C(s) = k_{\rm p},$

 $P(s) = \frac{1}{(s+0.1)^3} \implies \chi_{\rm cl}(s) = s^3 + \frac{3}{10}s^2 + \frac{3}{100}s + \left(k_{\rm p} + \frac{1}{1000}\right)$

It is Hurwitz iff $(\chi_0 > 0$ and $\chi_2 \chi_1 > \chi_4 \chi_0) = 0.001 < k_p < 0.008$. Hence \Rightarrow feedback can destabilize stable systems.

Qualitative observations

Example 1: With $C(s) = k_p$,

$${\sf P}(s)=rac{1}{s-1} \quad \Longrightarrow \quad \chi_{\sf cl}(s)=s+(k_{\sf p}-1).$$

It is Hurwitz iff $(\chi_0 > 0)$ $k_p > 1$. Hence,

∴ feedback can stabilize unstable systems.

Example 2: With $C(s) = k_p$,

$$P(s) = rac{1}{(s+0.1)^3} \implies \chi_{cl}(s) = s^3 + rac{3}{10}s^2 + rac{3}{100}s + \Big(k_p + rac{1}{1000}\Big).$$

It is Hurwitz iff ($\chi_i > 0$ and $\chi_2 \chi_1 > \chi_4 \chi_0$) $-0.001 < k_p < 0.008$. Hence

∴ feedback can destabilize stable systems.

Example 3

Characteristic polynomial

$$\chi_{cl}(s) = ms^2 + cs + k + (cs + k)\rho k_{p}$$
$$= ms^2 + c(1 + \rho k_{p})s + k(1 + \rho k_{p})$$

stable iff $k_{\rm p} > -1/\rho$, so we may use high-gain feedback here.

- d is bounded whenever so is f (as $1/(cs + k)\rho$ is stable) so we do not need to account for the form of disturbance d.

Example 3

Characteristic polynomial

$$\chi_{cl}(s) = ms^2 + cs + k + (cs + k)\rho k_p$$

= $ms^2 + c(1 + \rho k_p)s + k(1 + \rho k_p)$

stable iff $k_p > -1/\rho$, so we may use high-gain feedback here. Note that

- *d* is bounded whenever so is *f* (as $1/(cs + k)\rho$ is stable) so we do not need to account for the form of disturbance *d*.

Example 4: stabilizing DC motor

We remember, Lecture 2, that the t.f. of a DC motor (voltage \mapsto angle) is

$$P_{\theta}(s) = \frac{K_{\rm m}}{s((L_{\rm a}s + R_{\rm a})(Js + f) + K_{\rm b}K_{\rm m})}$$

or, if we neglect L_a ,

$$P_{ heta}(s) pprox rac{K_{
m m}}{s(R_{
m a}(Js+f)+K_{
m b}K_{
m m})}.$$

Let's try to stabilize it by feedback with the controller $C(s) = k_p$:

Example 4: stabilizing approximate model

Characteristic polynomial

$$\chi_{cl}(s) = s(R_a(Js + f) + K_bK_m) + K_mk_p$$
$$= R_aJs^2 + (R_af + K_bK_m)s + K_mk_p$$

is Hurwitz iff $k_p > 0$. This suggests that we

can use high-gain feedback

for this system and effectively implement the plant inversion strategy.

Example 4: stabilizing "full" model

Characteristic polynomial

$$\begin{split} \chi_{\rm cl}(s) &= s \big((L_{\rm a}s + R_{\rm a})(Js + f) + K_{\rm b}K_{\rm m} \big) + K_{\rm m}k_{\rm p} \\ &= L_{\rm a}Js^3 + (L_{\rm a}f + R_{\rm a}J)s^2 + (R_{\rm a}f + K_{\rm b}K_{\rm m})s + K_{\rm m}k_{\rm p} \end{split}$$

is Hurwitz iff

$$k_{\rm p}>0$$
 and $(L_{\rm a}f+R_{\rm a}J)(R_{\rm a}f+K_{\rm b}K_{\rm m})>L_{\rm a}JK_{\rm m}k_{\rm p}$

i.e.

$$0 < k_{\rm p} < k_{\rm p,sup} := \frac{(L_{\rm a}f + R_{\rm a}J)(R_{\rm a}f + K_{\rm b}K_{\rm m})}{L_{\rm a}JK_{\rm m}}.$$

Example 4: stabilizing "full" model (contd)

Thus

 the conclusion derived on the basis of approximate model is erroneous and we can increase the gain only up to (not including)

$$k_{\rm p,sup} = \frac{(L_{\rm a}f + R_{\rm a}J)(R_{\rm a}f + K_{\rm b}K_{\rm m})}{L_{\rm a}JK_{\rm m}} \quad (\approx 1412.8 \text{ for motor in Lecture 2})$$

Thus, stability requirement might impose limitations on feedback gains.

if this is a general property.

The answer is affirmative, but to apprehend this we need to *learn more*.

Example 4: stabilizing "full" model (contd)

Thus

 the conclusion derived on the basis of approximate model is erroneous and we can increase the gain only up to (not including)

$$k_{\rm p,sup} = \frac{(L_{\rm a}f + R_{\rm a}J)(R_{\rm a}f + K_{\rm b}K_{\rm m})}{L_{\rm a}JK_{\rm m}} \quad (\approx 1412.8 \text{ for motor in Lecture 2})$$

Thus, stability requirement might impose limitations on feedback gains. We might be interested to understand,

- if this is a general property.

The answer is affirmative, but to apprehend this we need to learn more.

Stability and feedback

Root locus: motivation

Root locus rules

Outline

Stability and feedback

Root locus: motivation

Some root locus rules

Example

Consider

The closed-loop characteristic polynomial $\chi_{cl}(s) = s^2 + 2s + k_p$ has roots at $p_{1,2} = -1 \pm \sqrt{1-k_p}$.

Example

Consider

The closed-loop characteristic polynomial $\chi_{cl}(s) = s^2 + 2s + k_p$ has roots at $p_{1,2} = -1 \pm \sqrt{1 - k_p}$. Some examples (for different values of k_p):

Example (contd)

The complete picture is obtained if we plot

- locations of the roots of $\chi_{cl}(s)$ as a function of all k_p 's

This plot is called the root-locus plot, with

- root loci are paths of the roots of $\chi_{cl}(s) = 0$ in the *s*-plane as some parameter changes.

Example: what can we learn from root locus

For small k_p ($k_p \leq 1$, overdamped 2-order system): as k_p increases,

- the closed-loop system becomes faster (slowest mode moves leftward)

For large k_p ($k_p > 1$, underdamped 2-order system): as k_p increases,

- the system becomes faster (ω_n increases)
- the system becomes less damped (ζ decreases)

Example: what can we learn from root locus (contd)

Thus, qualitatively,

- limitations on OS \implies limitations on feedback gain k_p
- "faster" might conflict with "non-oscillatory"

Why root locus?

Through root locations we can

analyze stability

(closed-loop system stable \iff all roots of $\chi_{cl}(s)$ are in the open LHP)

 analyze transient performance (damping ratio/natural frequency of poles connected with OS/speed of transients)

design controller to meet performance specifications

understand limitations of high-gain feedback

Why root locus?

Through root locations we can

- analyze stability

(closed-loop system stable \iff all roots of $\chi_{cl}(s)$ are in the open LHP)

- analyze transient performance (damping ratio/natural frequency of poles connected with OS/speed of transients)
- *design* controller to meet performance specifications
- understand limitations of high-gain feedback

Root locus rules

Outline

Stability and feedback

Root locus: motivation

Some root locus rules

Root-locus form of characteristic equation

Consider

for some given P and \tilde{C} and k > 0 to be played with. The characteristic equation, $\chi_{cl}(s) = 0$, writes then

$$kN_P(s)N_{\tilde{C}}(s) + D_P(s)D_{\tilde{C}}(s) = 0$$

or, equivalently, as

$$-\frac{1}{k}=G_k(s):=P(s)\tilde{C}(s).$$

This form called the root-locus form of the characteristic equation and we assume hereafter w.l.o.g.¹ that $G_k(s)$ is proper.

¹Otherwise, we can replace k with 1/k and end up with a proper $G_k(s)$.

Root-locus form of characteristic equation: remark

Root-locus form can be obtained from other parameters too. For example,

yields

$$\chi_{\rm cl}(s)=(s+k)N_P(s)+sD_P(s)=0,$$

which leads to the following root-locus form:

$$-\frac{1}{k}=G_k(s)=\frac{N_P(s)}{s(N_P(s)+D_P(s))}.$$

Root-locus procedure

Given

$$-rac{1}{k}=G_k(s)$$
 or, equivalently, $D_k(s)+kN_k(s)=0$

with

$$G_k(s) = \frac{N_k(s)}{D_k(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0} = \frac{b_m \prod_{i=1}^m (s-z_i)}{\prod_{i=1}^n (s-p_i)},$$

where $n \ge m$, we are interested to

- sketch root locus as k changes from 0 to ∞ .
- To this end, we'll develop a set of rules, called the root-locus procedure.

Remark 1: there are exactly *n* root loci, each represents a closed-loop pole Remark 2: root locus is symmetric with respect to the real axis Remark 3: if negative *k*'s are required, just replace $G_k \rightarrow -G_k$

Root-locus procedure

Given

$$-rac{1}{k}=G_k(s)$$
 or, equivalently, $D_k(s)+kN_k(s)=0$

with

$$G_k(s) = \frac{N_k(s)}{D_k(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0} = \frac{b_m \prod_{i=1}^m (s-z_i)}{\prod_{i=1}^n (s-p_i)},$$

where $n \ge m$, we are interested to

- sketch root locus as k changes from 0 to ∞ .

To this end, we'll develop a set of rules, called the root-locus procedure.

Remark 1: there are exactly *n* root loci, each represents a closed-loop pole Remark 2: root locus is symmetric with respect to the real axis Remark 3: if negative *k*'s are required, just replace $G_k \rightarrow -G_k$

Gain and phase rules

Rewrite root-locus form as

$$rac{1}{k}\,\mathrm{e}^{\mathrm{j}\pi}=|G_k(s)|\mathrm{e}^{\mathrm{j}\,\mathrm{arg}\,G_k(s)}.$$

Thus, the following equalities must hold for every $s \in \mathbb{C}$ belonging to root locus:

- $|G_k(s)| = 1/k$ (gain rule)
- arg $G_k(s) \equiv \pi \pmod{2\pi}$ (phase rule²)

Gain k > 0 satisfying the gain rule always exists. Hence, to check whether a point $s_0 \in \mathbb{C}$ belongs to the root locus of G_k ,

— we only need to check whether $\arg G_k(s_0) = \pi \pmod{2\pi}$.

If no, this *s*₀ is not a part of the locus. If yes, it is for

 $-k = 1/|G_k(s_0)|.$

²Notation $a \equiv b \pmod{c}$ reads: $\exists i \in \mathbb{Z}$ so that $a = b + ci (\text{e.g.} - 3\pi \equiv \pi \pmod{2\pi})$.

Gain and phase rules

Rewrite root-locus form as

$$rac{1}{k}\,\mathrm{e}^{\mathrm{j}\pi}=|G_k(s)|\mathrm{e}^{\mathrm{j}\,\mathrm{arg}\,G_k(s)}.$$

Thus, the following equalities must hold for every $s \in \mathbb{C}$ belonging to root locus:

- $|G_k(s)| = 1/k$ (gain rule)
- arg $G_k(s) \equiv \pi \pmod{2\pi}$ (phase rule)

Gain k > 0 satisfying the gain rule always exists. Hence, to check whether a point $s_0 \in \mathbb{C}$ belongs to the root locus of G_k ,

- we only need to check whether $\arg G_k(s_0) = \pi \pmod{2\pi}$. If no, this s_0 is not a part of the locus. If yes, it is for

$$- k = 1/|G_k(s_0)|.$$

Analytic determination of gain and phase of $G_k(s_0)$

Consider

$$G_k(s) = \frac{b_m \prod_{i=1}^m (s-z_i)}{\prod_{i=1}^n (s-p_i)}$$

for some $b_m \neq 0$. Then for any $s_0 \in \mathbb{C}$ we have:

- arg
$$G_k(s_0)$$
 = arg $b_m + \sum_{i=1}^m rg(s_0 - z_i) - \sum_{i=1}^n rg(s_0 - p_i)$
and

$$- |G_k(s_0)| = \frac{|b_m|\prod_{i=1}^m |s_0 - z_i|}{\prod_{i=1}^n |s_0 - p_i|}$$

Remark: because $b_m \in \mathbb{R} \setminus \{0\}$, we have that $\arg b_m = \begin{cases} 0 & \text{if } b_m > 0 \\ \pi & \text{if } b_m < 0 \end{cases}$.

Graphic determination of gain and phase of $G_k(s_0)$

- angles measured in the counterclockwise direction (so that $\arg(s_0 - p_1) < 0$, $\arg(s_0 - p_2) > 0$, $\arg(s_0 - p_3) > 0$, and $\arg(s_0 - z_1) > 0$)
- does not account for b_m

Start points (k = 0)

From

$$D_k(s) + kN_k(s) = 0$$

it follows that

- all *n* loci begin at roots of $D_k(s) = 0$.

These points marked on the *s*-plane by " \times ".

Remark: Because $-1/k = G_k(s)$, roots of $D_k(s)$ can belong to a loci only at k = 0. For all nonzero k we have $1/k < \infty$, so no equality.

Start points (k = 0)

From

$$D_k(s) + kN_k(s) = 0$$

it follows that

- all *n* loci begin at roots of $D_k(s) = 0$.

These points marked on the *s*-plane by " \times ".

Remark: Because $-1/k = G_k(s)$, roots of $D_k(s)$ can belong to a loci only at k = 0. For all nonzero k we have $1/k < \infty$, so no equality.

End points $(k = \infty)$

From

$$\frac{1}{k}D_k(s)+N_k(s)=0$$

it follows that

- m loci end at roots of $N_k(s) = 0$.

These points marked on the s-plane by "o".

From

we can guess that

- as $k \to \infty$, the other n - m loci go to infinity in the s-plane (because $C_{n}(s)$ has $n \to m$ "screepet infinite"). The question is here

Remark: Because $-1/k = G_k(s)$, roots of $N_k(s)$ can belong to a loci only at $k = \infty$. For all finite k we have 1/k > 0, so no equality.

End points $(k = \infty)$

From

$$\frac{1}{k}D_k(s)+N_k(s)=0$$

it follows that

- m loci end at roots of $N_k(s) = 0$.

These points marked on the s-plane by "o".

From

$$-rac{1}{k}=G_k(s)$$

we can guess that

- as $k \to \infty$, the other n - m loci go to infinity in the *s*-plane (because $G_k(s)$ has n - m "zeros at infinity"). The question is how?

Remark: Because $-1/k = G_k(s)$, roots of $N_k(s)$ can belong to a loci only at $k = \infty$. For all finite k we have 1/k > 0, so no equality.

End points $(k = \infty)$

From

$$\frac{1}{k}D_k(s)+N_k(s)=0$$

it follows that

- m loci end at roots of $N_k(s) = 0$.

These points marked on the s-plane by "o".

From

$$-rac{1}{k}=G_k(s)$$

we can guess that

- as $k \to \infty$, the other n - m loci go to infinity in the *s*-plane (because $G_k(s)$ has n - m "zeros at infinity"). The question is how?

Remark: Because $-1/k = G_k(s)$, roots of $N_k(s)$ can belong to a loci only at $k = \infty$. For all finite k we have 1/k > 0, so no equality.

Asymptotes $(k \to \infty)$

It can be shown that

- n-m loci approach infinity along asymptotes centered at

$$\sigma_{\rm c} = \frac{\sum_{i=1}^n p_i - \sum_{i=1}^m z_i}{n-m}$$

(called the center of gravity) and directed with angles

$$\phi_i = rac{rg b_m - \pi + 2\pi i}{n - m}, \qquad i = 0, 1, \dots, n - m - 1.$$

For example:

Asymptotes $(k \to \infty)$

It can be shown that

- n-m loci approach infinity along asymptotes centered at

$$\sigma_{\rm c} = \frac{\sum_{i=1}^n p_i - \sum_{i=1}^m z_i}{n-m}$$

(called the center of gravity) and directed with angles

$$\phi_i = rac{rg b_m - \pi + 2\pi i}{n - m}, \qquad i = 0, 1, \dots, n - m - 1.$$

For example:

$b_m > 0$:	n-m	ϕ_1	ϕ_2	ϕ_3	ϕ_4	ϕ_5		$b_m < 0$:	n-m	ϕ_1	ϕ_2	ϕ_3	ϕ_4	ϕ_5
	1	π					-		1	0				
	2	$\frac{\pi}{2}$	$\frac{3\pi}{2}$						2	0	π			
	3	$\frac{\pi}{2}$	π	$\frac{5\pi}{2}$					3	0	$\frac{2\pi}{3}$	$\frac{4\pi}{3}$		
	4	$\frac{3}{\pi}$	$\frac{3\pi}{4}$	$\frac{5\pi}{4}$	$\frac{7\pi}{4}$				4	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}_{6\pi}$	
	5	$\frac{\pi}{2\pi} \frac{\pi}{3\pi} \frac{\pi}{4\pi} \frac{\pi}{5}$	$\frac{3\pi}{5}$	π^4	$\frac{\frac{7\pi}{4}}{\frac{7\pi}{5}}$	$\frac{9\pi}{5}$			5	0	$\frac{2\pi}{5}$	$\frac{4\pi}{5}$	$\frac{6\pi}{5}$	$\frac{8\pi}{5}$

Asymptotes $(k \to \infty)$: example

Assume the following pole / zero map of $G_k(s)$ (and that $b_m > 0$):

In this case, n - m = 2, $\sigma_c = \frac{p_1 + p_2 + p_3 - z_1}{2}$, and $\phi_1 = \frac{\pi}{2}$ and $\phi_2 = \frac{3\pi}{2}$.

Asymptotes $(k \rightarrow \infty)$: example

Assume the following pole / zero map of $G_k(s)$ (and that $b_m > 0$):

In this case, n - m = 2, $\sigma_c = \frac{p_1 + p_2 + p_3 - z_1}{2}$, and $\phi_1 = \frac{\pi}{2}$ and $\phi_2 = \frac{3\pi}{2}$.

Root locus on real axis

- net sum of arg's from any pair of complex-conjugate singularities is 0 (e.g. arg(s₀ - p₁) = - arg(s₀ - p₂))
- $-\,$ arg of any real singularity to the right of s_0 is $\pi\,$
- $-\,$ arg of any real singularity to the left of s_0 is 0 $\,$

Root locus on real axis (contd)

Thus, for every $s_0 \in \mathbb{R}$

- only singularities (poles and zeros) to the right of s_0 matter. Therefore,

if $b_m > 0$, we have that

arg $G(s_0) = \pi \cdot (\text{no. of real singularities to the right of } s_0)$

and, by the phase rule, root locus lies in

 $-\,$ all sections of ${\mathbb R}$ to the left of an odd number of singularities

if $b_m < 0$, we have that

and, by the phase rule, root locus lies in and, by the phase rule, root locus lies in \sim all sections of \mathbb{R} to the left of an even number of singularities

Root locus on real axis (contd)

Thus, for every $s_0 \in \mathbb{R}$

- only singularities (poles and zeros) to the right of s_0 matter. Therefore,

if $b_m > 0$, we have that

arg $G(s_0) = \pi \cdot (\text{no. of real singularities to the right of } s_0)$

and, by the phase rule, root locus lies in

- all sections of $\mathbb R$ to the left of an odd number of singularities

if $b_m < 0$, we have that

arg $G(s_0) = \pi + \pi \cdot (\text{no. of real singularities to the right of } s_0)$

and, by the phase rule, root locus lies in

- all sections of $\mathbb R$ to the left of an even number of singularities

Root locus on real axis: example

Assuming $b_m > 0$, in this case there is one real axis segment:

Breakaway / break-in points on real axis

Breakaway / break-in points can be characterized as

– points on \mathbb{R} where $\chi_{cl}(s)$ has multiple roots.

Hence, $\sigma \in \mathbb{R}$ is breakaway / break-in points for some $\textit{\textbf{k}} \neq \textit{\textbf{0}}$ if

$$\chi_{\mathsf{cl}}(\sigma) = 0$$
 and $\frac{\mathsf{d}}{\mathsf{d}\sigma}\chi_{\mathsf{cl}}(\sigma) = 0.$

It can be shown that at each σ such that $\chi_{\mathsf{cl}}(\sigma) = D_k(\sigma) + k \mathsf{N}_k(\sigma) = \mathsf{0}$,

$$\frac{\mathsf{d}}{\mathsf{d}\sigma}\chi_{\mathsf{cl}}(\sigma) = kD_k(\sigma)\cdot\frac{\mathsf{d}}{\mathsf{d}\sigma}G_k(\sigma).$$

Because $D_k(\sigma) \neq 0$ for all k > 0, the breakaway/in condition reads

$$rac{\mathsf{d}}{\mathsf{d}\sigma}G_k(\sigma)=0 \quad ext{for } \sigma\in\mathbb{R} ext{ belonging to the root locus.}$$

Remark: alternatively, we may look for extremal points of the real function $G_k(\sigma)$ located within real axis segments of the root locus.

Crossing $j\omega$ -axis

Points where root locus crosses $j\omega$ -axis may be especially important as they - may indicate boundaries of stabilizing k.

These points solve

$$-\frac{1}{k}=G_k(\mathrm{j}\omega)$$

and effectively depend on the phase of the frequency response of G_k only². There are two alternative approaches to determine these points:

- 1. via the phase rule arg $G_k(j\omega) \equiv \pi \pmod{2\pi}$ (results in transcendental equations, thus efficiently can be solved only for low-order systems + whatever number of integrators)
- 2. via the Routh-Hurwitz test

(results in polynomial equations, also not so simple task for high-order polynomials)

²If the phase rule arg $G_k(j\omega) \equiv \pi \pmod{2\pi}$ holds for some finite $\omega > 0$, there always is k for which the gain rule $k|G_k(j\omega)| = 1$ holds.

Crossing j ω -axis: frequency plots insight

Note that the condition

$$\arg G_k(j\omega) \equiv \pi \pmod{2\pi}$$

can be verified using frequency response plots. Required $\boldsymbol{\omega}$ are frequencies at which

- polar plot of $G_k(j\omega)$ crosses the negative real semi-axis
- phase Bode plot of $G_k(j\omega)$ crosses any of the levels -180 (mod 360)

Departure and arrival angles (simple poles)

Let p_i (i = 1, ..., n) be a simple (i.e. of multiplicity 1) pole of $G_k(s)$. The corresponding locus departs then this pole at the angle

$$\phi_{\mathrm{dep},i} = \pi - \mathrm{arg} \ b_m - \sum_{\substack{j=1 \ j \neq i}}^n \mathrm{arg}(p_i - p_j) + \sum_{j=1}^m \mathrm{arg}(p_i - z_j).$$

Let z_i (i = 1, ..., m) be a simple (i.e. of multiplicity 1) zero of $G_k(s)$. The corresponding locus arrives then at this zero at the angle

$$\phi_{\mathsf{arr},i} = \pi + rg b_m + \sum_{j=1}^n rg(z_i - p_j) - \sum_{\substack{j=1 \ j \neq i}}^m rg(z_i - z_j).$$

Departure and arrival angles (simple poles): example

Example: final sketch

Useful MATLAB commands

- rlocus (calculates and plots root locus of its argument)
- rlocfind (finds root-locus gain for a given set of roots, interactively)
- sisotool (could be fun)

Root locus for the example above with MATLAB:

```
Gk = zpk([-.4],[-1.5+j,-1.5-j,-2],1);
rlocus(Gk)
grid on  % plots grid (const "zeta" and "wn" curves)
rlocfind(Gk) % prompts to select a point in the plot and
  % then returns the gain corresponding to the
  % selected point and marks the other points
  % having the same gain on each locus
```