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Example 1

� = 1:25m

k = 40000N sec
m

c = 800 N
m

m = 1410 kg

With

Tref(s) =
1

�s + 1

we have

(cs + k)�

ms2 + cs + k

(ms2 + cs + k)

�(cs + k)(�s + 1)

ruy

− implementable for
every � > 0

− arbitrarily fast, if �
is small enough

⇓

− no limitations ?
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Example 1 (contd)

Take a look at the control signal:

0.3 1.2 3
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1.8

4.4

17.6

We can see that

− accelerating y comes at a price of higher control efforts,

both amplitude- and velocity-wise.
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Example 1 (contd)

Magnitude frequency response of Col : r 7→ u
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reveals that

− as � decreases, peak values of |Col(j!)| increase,
causing higher peaks of u. But

− why do we get higher peaks of |Col(j!)|?
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Example 1 (contd)
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Example 1 (contd)

Compare
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Clearly,
|Col(j!)| > 1 ⇐⇒ |Tref(j!)| > |P(j!)|

The question:

− is there a simple indicator of the latter?
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Example 2

� = 1:25m

k = 40000N sec
m

c = 800 N
m

m = 1410 kg

This plant has

P(s) =
(cs + k)�

ms2 + cs + k
=

1:25(0:1065 · 5:326s + 5:3262)

s2 + 2 · 0:053 · 5:326s + 5:3262

and the plot of |P(j!)| has a slope of about

− −40 dB/dec for 5:311 < ! < 50 !n=˛ = 50

− −20 dB/dec for ! > 50
√

1− 2�2!n = 5:311

Thus, the decay of |P(j!)| is way faster than that of |Tref(j!)|
(−20 dB/dec for all ! > 1=�) over about a decade. Moreover,
this imbalance exceeds the bandwidth !b = 1=� of Tref for all
studied � . This may suggest that

− if the required !b < 50, then we would better haveTref(s)
with a pole excess of at least 2,

to have it like P in, say, a decade beyond the bandwidth.
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Example 2 (contd)

So choose

Tref(s) =
!2
n

s2 +
√
2!ns + !2

n

;

which is a 2-order Butterworth, whose bandwidth !b = !n. In this case

Col(s) =
Tref(s)

P(s)
=

(ms2 + cs + k)!2
n

�(cs + k)(s2 +
√
2!ns + !2

n)

is stable for all !n, which is a tuning parameter. The control system is then

(cs + k)�

ms2 + cs + k

(ms2 + cs + k)!2
n

�(cs + k)(s2 +
√
2!ns + !2

n)

ruy
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Example 2 (contd)

With step responses

0 1 2 3
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we can see that

− accelerating y still comes at a price of higher control efforts,

both amplitude- and velocity-wise.
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Example 2 (contd)

Magnitude frequency response of Col : r 7→ u
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still sugegsts that

− as !n increases, peak values of |Col(j!)| increase,
causing higher peaks of u.
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Example 2 (contd)

But comparing now frequency responses
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we see that |Col(j!)| = |Tref(j!)|=|P(j!)| starts to grow above |Col(0)| as
− the bandwidth !b of Tref(s) starts to exceeds that of the plant P(s).
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Required bandwidth vs. control efforts

Rule of thumb (quite practical):

− be careful in trying to achieve bandwidth wider than that of the plant.

It often requires extra control effort to render the controlled response faster
than the natural response of the plant itself, provided they both exhibit low-
pass structures.

Remark: All this makes sense only if we assume that |Col(j!)| ≤ 1 determines “small”
control effort. In principle, we may always assume that, which merely means that the
control input is normalized. It is thus a healthy habit to normalize (regularize) the control
signal u before starting to think about control effort.
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Open-loop control: strategy

ruy
P Col

Plant inversion with reference model:

Col = P−1Tref i.e. Col(s) =
Tref(s)

P(s)
;

where Tref embodies requirements to reference response

steady-state: − Tref(j!) ≈ 1 over the spectrum of r

transients: − either dominant poles of Tref(s) are in “good” region
− or no high resonant peaks, sufficiently wide bandwidth

Technically, Tref(s) is constrained to have

− all nonminimum-phase zeros of P(s) as its own zeros

− pole excess ≥ poles excess of P(s) (unless derivatives of r measurable)

− not too wide bandwidth (w.r.t. that of P(s)), if control effort is limited
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Open-loop control: limitations

ru
d

y
Ptrue Col

Inefficient in handling uncertainties, like

_̈ modeling inaccuracies in P

_̈ disturbances

Cannot be applied

_̈ if plant P is unstable
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Unity feedback configuration

Let y be measurable. Consider the following control configuration:

reuy
CP −

In this scheme control signal u is formed on basis of the

− mismatch between the regulated signal y and the reference signal r

(denoted as e). This setup

− called unity feedback configuration

and is the simplest feedback control strategy. Basic relations:

e = r − y = r − PCe ⇐⇒ (1 + PC )e = r ⇐⇒ e = (1 + PC )−1r ;

so that

u = Ce = C (1 + PC )−1r and y = Pu = PC (1 + PC )−1r :
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Closed-loop transfer functions

reuy
CP −

Thus,

r 7→ u:
C (s)

1 + P(s)C (s)
=·· Tc(s) control sensitivity

r 7→ y :
P(s)C (s)

1 + P(s)C (s)
=·· T (s) = P(s)Tc(s) complementary sensitivity

r 7→ e:
1

1 + P(s)C (s)
=·· S(s) = 1− T (s) sensitivity

We assume hereafter that P(s) and C (s) are proper. The loop is said to be

− well posed if 1 + P(∞)C (∞) ̸= 0 =⇒ S(s) is proper.

We may think of

− Tc as the closed-loop counterpart of Col

− T as the closed-loop counterpart of Tyr = PCol
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Static high-gain controller

Choose C (s) = kp for some gain kp (simplest choice):

reuy
kpP −

Then,

Tc(s) =
kp

1 + kpP(s)
=

1

1=kp + P(s)
:

Important is that

− if kp → ∞, then Tc → P−1,

i.e. u → P−1r and y → r . Thus, loosely speaking

reuy ∞P − ⇒ ruy
P P−1

although in the feedback scheme controller does not depend on P(s) !!!
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Effect of disturbances

Now assume that there is an input disturbance signal:

reu

d

y
CP −

Closed-loop transfer functions

d 7→ u: − P(s)C (s)

1 + P(s)C (s)
= −T (s)

d 7→ y :
P(s)

1 + P(s)C (s)
=·· Td(s) disturbance sensitivity

The four systems

− S , T , Td, and Tc,

colloquially known as the Gang of Four, completely determine properties of
the controlled closed-loop system.
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Static high-gain controller and disturbances

Choose again C (s) = kp:

reu

d

y
kpP −

leading to

T (s) =
kpP(s)

1 + kpP(s)
=

1

1=(kpP(s)) + 1
:

If kp → ∞, then T (s) → 1 (∀s ∈ C such that P(s) ̸= 0), which effectively
implies that u → P−1r − d and then, again, y → r . Thus, loosely speaking

reu

d

y ∞P − ⇒ ruy

d

P P−1
−

although in the feedback scheme we do not (directly) measure d !!!
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Effect of measurement noise

The availability of perfect measurements of y is an unrealistic assumption.
Sensor imperfections may be modeled as measurement noise:

remu

d

y

ymn

CP −

Closed-loop transfer functions

n 7→ u: − C (s)

1 + P(s)C (s)
= −Tc(s)

n 7→ y : − P(s)C (s)

1 + P(s)C (s)
= −T (s)

As a matter of fact, summarizing the effects of all inputs we have:

u = Tcr − Td − Tcn and y = Tr + Tdd − Tn :

Do memorize these relations well.
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Static high-gain controller and measurement noise

Choose C (s) = kp yet again:

remu

d

y

ymn

kpP −

If now kp → ∞, we end up with u → P−1r −P−1n− d , so that y → r − n.
Thus, loosely speaking

remu

d

y

ymn

∞P − ⇒ r − nuy

d

P P−1
−

and we actually follow corrupted reference r − n rather than r . This is not
what we need. Moreover, the term

− P−1n might cause high-magnitude fast oscillations of control signal u

because P−1 is typically a high-pass filter and n is fast. This is undesirable.
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Example 3

� = 1:25m

k = 40000N sec
m

c = 800 N
m

m = 1410 kg

m = 2820 kg

Unity feedback configuration with a static C is then

remu
d

f

y

ymn

kp
(cs + k)�

ms2 + cs + k

− 1

(cs + k)�

−

where n is inaccuracy in measuring y . We choose

kp = 1000;

which should be high enough.
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Example 3: f ≡ 0, n ≡ 0

� = 1:25m

k = 40000N sec
m

c = 800 N
m

m = 1410 kg

m = 2820 kg

Closed-loop control (controller is independent of m):
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Example 3: f (t) = −250g(1(t − 1)− 1(t − 2:2)), n ≡ 0
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Example 3: f (t) = 0, n(t) = 0:01 sin(20�t)

� = 1:25m

k = 40000N sec
m

c = 800 N
m

m = 1410 kg

m = 2820 kg

Closed-loop control (senses f via y):
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Static low-gain controller

Return to the unity feedback scheme

remu

d

y

ymn

kpP −

and assume that kp → 0 (low-gain feedback). In this case

T → 0; S → 1; Tc → 0; and Td → P :

In other words,
u → 0 and y → Pd :

Thus,

− low-gain feedback does nothing, effectively opening the loop.

Yet this “does nothing” also includes “does not let the measurement noise
pass through,” which is what we might need (more about this later on).
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Feedback control: is it a panacea?

remu

d

y

ymn

kpP −

Feedback does what open-loop control can never do:

¨̂ performs in spite of modeling inaccuracies in P

¨̂ performs in spite of disturbances

Sounds like a miracle . . . or something too good to be true.

Up to this point we did not mention the stability of the closed-loop system,
which is

− the first thing to take care of.

Without addressing (and guaranteeing) stability any analysis is meaningless.



Control effort Open-loop control: summary Intro to feedback Internal stability

Feedback control: is it a panacea?

remu

d

y

ymn

kpP −

Feedback does what open-loop control can never do:

¨̂ performs in spite of modeling inaccuracies in P

¨̂ performs in spite of disturbances

Sounds like a miracle . . . or something too good to be true.

Up to this point we did not mention the stability of the closed-loop system,
which is

− the first thing to take care of.

Without addressing (and guaranteeing) stability any analysis is meaningless.



Control effort Open-loop control: summary Intro to feedback Internal stability

Outline

Control effort

Open-loop control: summary

(Näıve) introduction to feedback

Internal stability of feedback systems



Control effort Open-loop control: summary Intro to feedback Internal stability

Stability of closed-loop systems: Example 1

Consider

reu

d

y s − 1

s + 1

1

s − 1 −

Then
y = Tr + Tdd =·· yr + yd :

Since

yr =
1

s + 2
r ;

it is bounded whenever so is r . However,

yd =
s + 1

(s − 1)(s + 2)
d ;

i.e. there is (arbitrarily small) d that causes unbounded y .
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Stability of closed-loop systems: Example 2

Consider now

reu

d

y 1

s − 1

s − 1

s + 1 −

Then

y = Tr + Tdd =
1

s + 2
r +

s − 1

s + 2
d ;

i.e. it is bounded whenever so are r and d . However,

u = Tcr − Td =
s + 1

(s − 1)(s + 2)
r − 1

s + 2
d ;

i.e. response of the control signal u to a bounded r is unbounded.
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Moral

reu

d

y
CP −

Even in this relatively simple closed-loop system

− the stability of any single closed-loop system is not enough

to conclude about the stability of the whole system.

Like in open-loop control, this is sorted out by the use of the notion of

− internal stability.
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Internal stability of closed-loop systems: definition

The closed-loop system

remu

d

y

ymn

CP −

said to be internally stable if

− transfer functions from all possible inputs to all possible outputs stable.

There are four possible closed-loop system for this configuration, S , T , Td,
and Tc, with the relationship[

e
u

]
=

[
S Td

Tc T

] [
r
−d

]
:

So we need to check only these four.
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Internal stability of closed-loop systems: definition

The closed-loop system

remu

d

y

ymn

CP −

said to be internally stable if

− transfer functions from all possible inputs to all possible outputs stable.

There are four possible closed-loop system for this configuration, S , T , Td,
and Tc, with the relationship[

e
u

]
=

[
S Td

Tc T

] [
r
−d

]
:

So we need to check only these four1.

1In fact, only three, because S = 1− T is stable iff T is stable.



Control effort Open-loop control: summary Intro to feedback Internal stability

Poles of closed-loop transfer functions

Let

P(s) =
NP(s)

DP(s)
and C (s) =

NC (s)

DC (s)

be proper, with coprime2 NP(s) and DP(s) and coprime NC (s) and DC (s).
In this case

T (s) =
NP(s)NC (s)

�cl(s)
; Td(s) =

NP(s)DC (s)

�cl(s)
; Tc(s) =

DP(s)NC (s)

�cl(s)
;

where
�cl(s) ··= NP(s)NC (s) + DP(s)DC (s):

These transfer functions have the same denominator, �cl(s), unless there are

− pole/zero cancellation between their numerators and �cl(s).

If there are no cancellations, then all these transfer functions have the same
poles and the situation is simple. Otherwise . . .

2I.e. they have no common roots.
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Pole/zero cancellations in T (s)

In

T (s) =
NP(s)NC (s)

�cl(s)

polynomials

NP(s)NC (s) and �cl(s) = NP(s)NC (s) + DP(s)DC (s)

have common roots iff

− NP(s) and DC (s) have common roots

or

− NC (s) and DP(s) have common roots.

Thus,

− common roots of NP(s) and DC (s) and those of NC (s) and DP(s) are
not poles of T (s).
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Pole/zero cancellations in Td(s)

In

Td(s) =
NP(s)DC (s)

�cl(s)

polynomials

NP(s)DC (s) and �cl(s) = NP(s)NC (s) + DP(s)DC (s)

have common roots

− iff NP(s) and DC (s) have common roots,

− but not if NC (s) and DP(s) have common roots.

Thus,

− common roots of NC (s) and DP(s) are still poles of Td(s).
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Pole/zero cancellations in Tc(s)

In

Tc(s) =
DP(s)NC (s)

�cl(s)

polynomials

DP(s)NC (s) and �cl(s) = NP(s)NC (s) + DP(s)DC (s)

have common roots

− iff NC (s) and DP(s) have common roots,

− but not if NP(s) and DC (s) have common roots.

Thus,

− common roots of NP(s) and DC (s) are still poles of Tc(s).
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Internal stability criteria

remu

d

y

ymn

CP −

Theorem (pole/zero cancellations)

If P(s) and C (s) are proper and 1 + P(∞)C (∞) ̸= 0, then the system is
internally stable iff

1. there are no unstable pole/zero cancellations between P(s) and C (s)

2. either of the closed-loop systems is stable.

In terms of the �cl(s) = NP(s)NC (s) + DP(s)DC (s):

Theorem (characteristic polynomial)

If P(s) and C (s) are proper and deg�cl(s) = degDP(s) + degDC (s), then
the system is internally stable iff its characteristic polynomial �cl(s) has no
roots in the closed RHP C̄0 =

{
s ∈ C | Re s ≥ 0

}
.
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More general setup

Consider

remu

d

y

ymn

CP

H

−

where H can be interpreted as a sensor. This

− changes almost nothing

in definitions / criteria for internal stability. The only modification we need
is to redefine the characteristic polynomial as

�cl(s) ··= NP(s)NC (s)NH(s) + DP(s)DC (s)DH(s);

where NH(s) and DH(s) are coprime numerator and denominator of

H(s) =
NH(s)

DH(s)
:
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