

### Controlled dynamics



By linearity,

\_

$$y = P(d + C_{ol}r) = Pd + PC_{ol}r$$

has two independent components,

- disturbance response,  $y_d = Pd$ 
  - reference response,  $y_r = PC_{ol}r$

cannot be affected by  $C_{ol}$ can be affected by  $C_{ol}$ 

3/4

We concentrate on what we can affect, the controlled dynamics

 $T_{yr} = PC_{ol},$ 

and their steady-state and transient responses.

## Plant inversion: so far



#### Aims at

- perfect control, y = r, for a given reference signal r.

#### But

- is never attainable in practical situations
   because of uncertainty, like modeling errors and disturbances
- might be illegal
   because of internal instability caused by unstable cancellations
   might be too expensive

in terms of control efforts, reasons not explained yet

Direction we explore today:

- how to formalize relaxing y = r to  $y \approx r$ 

# Magnitude frequency response of LPFs (from LS)



#### where

- bandwidth is the largest  $\omega_{\rm b}$  such that  $|{\cal G}({\rm j}\omega)|\geq 1/\sqrt{2}$  for all  $\omega\leq\omega_{\rm b}$ 

- resonance peak  $M_{
m r} := \max_{\omega} |G({
m j}\omega)| > 1$ 

and we assume that |G(0)| = 1.

4/4



### Steady-state error in terms of $T_{yr}$ : example

Let

$$T_{yr}(s) = \frac{1}{\tau s + 1}$$

(low-pass filter with the bandwidth  $\omega_b = 1/\tau$ ).  $S_{yr}$  is a high-pass filter with the cut-off frequency  $1/\tau$  then,

$$S_{yr}(s) = rac{ au s}{ au s + 1} \implies |S_{yr}(j\omega)| = rac{ au \omega}{\sqrt{1 + au^2 \omega^2}} = \int_{-20}^{-\frac{9}{3}} \int_{$$

In terms of the asymptotic Bode plot,

 $\begin{array}{rrrr} - & e_{ss} \leq 0.1 & \Longrightarrow & \omega \leq 0.1/\tau & \Longrightarrow & \tau \leq 0.1/\omega & \Longrightarrow & \omega_b \geq 10\omega \\ - & e_{ss} \leq 0.01 & \Longrightarrow & \omega \leq 0.01/\tau & \Longrightarrow & \tau \leq 0.01/\omega & \Longrightarrow & \omega_b \geq 100\omega \end{array}$ If we need to be precise,

$$e_{ss} = |S_{yr}(j\omega)| \le \epsilon \in [0, 1] \quad \iff \quad \tau \omega = \frac{\omega}{\omega_{b}} \le \frac{\epsilon}{\sqrt{1 - \epsilon^{2}}} = \int_{0}^{\tau \omega} \int_{0}^{1} \int_{0}^{1}$$

with the same qualitative conclusion:

 $-\,$  the larger  $\omega$  we wanna follow, the larger bandwidth  $\omega_{\rm b}$  of  ${\cal T}_{yr}$  we need.

## Steady-state error in terms of $T_{yr}$

Let  $y = T_{yr}r$  for a stable  $T_{yr}$ . We are interested in quantifying e = r - y in steady state. In this case

$$r(t) = \sin(\omega t + \phi) \mathbb{1}(t) \implies e_{ss} = |1 - T_{yr}(j\omega)|$$

(the step corresponds to  $\omega = 0$ ). In other words,

- error equals the magnitude of the frequency response of  $\mathcal{S}_{yr}:=1-\mathcal{T}_{yr}$  "Small" error,

 $e_{\rm ss} \ll 1 \quad \Longrightarrow \quad |S_{
m yr}({
m j}\omega)| \ll 1,$ 

In some situations it may be convenient to think of it as

 $T_{yr}(j\omega) \approx 1$ 

(i.e. both  $|T_{yr}(j\omega)| \approx 1$  and arg  $T_{yr}(j\omega) \approx 0$ ).

Controllers for zero steady-state errors: interpolation

$$- \underbrace{y}_{P} \underbrace{P}_{C_{ol}} \underbrace{r}_{r}$$

If r is a sine wave with frequency  $\omega \geq 0$  and  $T_{yr} = PC_{ol}$ , then

$$e_{ss} = |1 - T_{yr}(j\omega)| = 0 \iff T_{yr}(j\omega) = 1 \iff C_{ol}(j\omega) = \frac{1}{P(j\omega)}.$$

This is

- plant inversion at one given frequency (or several frequencies) which only requires  $P(j\omega) \neq 0$ , milder than requirements for  $C_{ol} = P^{-1}$ .

Remark: If we work with systems with real parameters, then  $C_{ol}(j\omega) = 1/P(j\omega)$  must be complemented by  $C_{ol}(-j\omega) = 1/P(-j\omega) = \overline{C_{ol}(j\omega)}$  whenever  $\omega > 0$ .

If  $\omega = 0$ , i.e. r = 1, then

$$C_{\mathsf{ol}}(0) = \frac{1}{P(0)},$$

meaning all we need is to set a right static gain to the controller.

8/4









#### 1st order systems revised

The transfer function

$$G(s) = \frac{k_{\rm st}}{\tau s + 1}$$

has one (real) pole at

 $s = -\frac{1}{\tau} =: -\lambda_{\mathsf{r}},$ 





and

- the larger  $\lambda_r$  is, the faster the transients are.



#### 2nd order underdamped systems revised

The transfer function

$$G(s) = \frac{k_{\rm st}\omega_{\rm n}^2}{s^2 + 2\zeta\omega_{\rm n}s + \omega_{\rm n}^2} = \frac{k_{\rm st}\omega_{\rm n}^2}{(s + \zeta\omega_{\rm n})^2 + (1 - \zeta^2)\omega_{\rm n}^2}$$

has two poles at

$$s = -\zeta \omega_{n} \pm j\sqrt{1-\zeta^{2}} \omega_{n} =: -\lambda_{r} \pm j\lambda_{i},$$

i.e.  $\lambda_r$  and  $\lambda_i$  are the absolute values of the real and imaginary parts of the poles. It is readily seen that

$$rac{\lambda_{\mathsf{r}}}{\lambda_{\mathsf{i}}} = rac{\zeta}{\sqrt{1-\zeta^2}} \qquad ext{and} \qquad \lambda_{\mathsf{r}}^2 + \lambda_{\mathsf{i}}^2 = \omega_{\mathsf{n}}^2$$

i.e.

13/4

 $-\,$  the ratio between pole real and imaginary parts depends only on  $\zeta$ 

14/42

 $-\,$  the absolute value of the pole depends only on  $\omega_{\rm n}$ 



Note that damping factor level ( $\zeta = \text{const}$ ) curves are the same radial lines.

## Natural frequency level curves

Constant  $\omega_n \iff \text{constant } \lambda_r^2 + \lambda_i^2$ . Hence,  $\omega_n$  level curves are concentric semi-circles:



$$-$$
 all poles producing  $\omega_{\rm n} > \omega_{\rm n}^*$ 

## Effect of additional pole

Let

$$G_{\tau}(s) = \frac{k_{\rm st}\omega_{\rm n}^2}{(s^2 + 2\zeta\omega_{\rm n}s + \omega_{\rm n}^2)((\beta/\omega_{\rm n})s + 1)}$$

for  $\beta>$  0, which may be viewed as the series of 1- and 2-order systems  $^1.$  If we consider the resulting response as



we may view the step response of  $G_{\tau}$  as the response of a standard 2-order system to a "smoothed step" input. The response may then be expected to be

slower

smoother (less oscillatory)

<sup>1</sup>We have  $\tau = \beta/\omega_n$  to have  $\omega_n$  scaling the time in all components of the response.

19/42

## Area of (relatively) fast and smooth transients

Assume we need both fast  $(\omega_n > \omega_n^*)$  and not too oscillatory (OS < OS<sup>\*</sup>) transients. In terms of pole location, we need to

use the intersection of these regions :





### Effect of additional zero

Let

$$G_{\alpha}(s) = \frac{k_{\rm st}\omega_{\rm n}^2((\alpha/\omega_{\rm n})s+1)}{s^2 + 2\zeta\omega_{\rm n}s + \omega_{\rm n}^2}$$

for  $\alpha \in \mathbb{R}$ . In this case

$$Y_lpha(s) = \mathcal{G}_lpha(s) rac{1}{s} = Y_0(s) + rac{lpha}{\omega_{\mathsf{n}}} s Y_0(s) \iff y_lpha(t) = y_0(t) + rac{lpha}{\omega_{\mathsf{n}}} \dot{y}_0(t)$$

where  $y_0$  is the response with  $\alpha = 0$  (no zeros). In other words,



As a matter of fact,

$$\frac{\alpha}{\omega_{n}}\dot{y}_{0}(t) = \frac{\alpha}{\sqrt{1-\zeta^{2}}}e^{-\zeta\omega_{n}t}\sin(\sqrt{1-\zeta^{2}}\omega_{n}t)$$

(and sin  $\rightarrow$  sinh if  $\zeta > 1$ ).





## Modal analysis: beyond 1st and 2nd order dynamics

As we just saw,

 $-\,$  adding more poles and / or zeros may render modal analysis void. For example,

- we may have (large) overshoot for systems with only real poles / zeros
- we may have no overshoot for systems with lightly damped poles

In some cases, however, we may extend modal insight of low-order systems to higher-order systems. This is possible if

- dominant dynamics of a system is low order.

### Dominant poles

A group of poles / zeros is said to be dominant if either of below holds:

- all other poles / zeros are at least 5 times further away from the j $\omega$ -axis —
- the closer poles / zeros "almost cancel" each other \_



Non-dominant poles and zeros may be safe to neglect in the modal analysis (still, required caution).

<sup>2</sup>Hereafter we denote a pole by " $\times$ " and a zero by " $\circ$ " on pole-zero maps.

### Dominant poles: Example 2

For any  $|\epsilon| < 1$ , define

$$G_1(s) = rac{64(s/(1+\epsilon)+1)^2}{(s^2+4s+8)(s+1)^2} = rac{8 imes 8}{s^2+4s+8} imes \left(rac{1}{1+\epsilon}s+1
ight)^2$$

(poles at  $s \in \{-2 \pm j2, -1, -1\}$  and zeros at  $s \in \{-1 - \epsilon, -1 - \epsilon\}$ ) and



### Dominant poles: Example 1

For any  $\alpha > 0$ , define

$$G_1(s) = rac{lpha(s+8)}{(s+1)(s^2+12s+lpha)} = rac{8}{s+1} imes rac{s/8+1}{s^2/lpha+12s/lpha+1}$$

(poles at  $s \in \{-1, -6 \pm \sqrt{36 - \alpha}\}$  and zero at s = -8) and

$$G_2(s)=\frac{8}{s+1}$$

Then:

25/42









## Magnitude frequency response of 1-order systems



#### Bandwidth $\omega_{\rm b}$

- increases as  $\tau$  decreases (and the step response becomes faster)



#### Bandwidth $\omega_{\rm b}$

31/42

- increases as  $\omega_n$  increases (and the step response becomes faster)

 $-\,$  increases, a bit, as  $\zeta$  decreases (and the step response becomes faster) Resonant peak  $M_{\rm r}$ 

- increases as  $\zeta$  decreases (and the step response becomes more shaky)









## Rules of thumb

In general, we may *expect* that

- the higher  $\ensuremath{\textit{M}_{r}}$  is, the larger the OS / US might be typically,
  - $-\,$  narrow peaks indicate oscillatory responses, with oscillation frequencies close to frequencies of peak on the Bode magnitude plot
  - $-\,$  wide peaks indicate overshoot / undershoot without oscillations
- $-\,$  the larger  $\omega_{\rm b}$  is, the faster time response is

think of the Fourier transform frequency scaling property<sup>3</sup>,  $\mathfrak{F} \{ \mathbb{P}_{\varsigma} y \} = \frac{1}{\varsigma} \mathbb{P}_{1/\varsigma} (\mathfrak{F} \{ y \})$ 

<sup>3</sup>The time scale operator  $\mathbb{P}_{\varsigma}$  acts as  $(\mathbb{P}_{\varsigma}x)(t) = x(\varsigma t)$  for every  $\varsigma \in \mathbb{R}$ .



## Rules of thumb (contd)

Relation should be taken with a grain of salt. For example, consider the 9-order low-pass Butterworth filter with the transfer function

$$\frac{1}{(s+1)(s^2+0.347s+1)(s^2+s+1)(s^2+1.532s+1)(s^2+1.879s+1)}$$

whose frequency response has no resonant peaks...











