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Plant inversion: so far

ruy
P P−1

Aims at

− perfect control, y = r , for a given reference signal r .

But

− is never attainable in practical situations
because of uncertainty, like modeling errors and disturbances

− might be illegal
because of internal instability caused by unstable cancellations

− might be too expensive
in terms of control efforts, reasons not explained yet

Direction we explore today:

− how to formalize relaxing y = r to y ≈ r
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Controlled dynamics

ru
d

y
P Col

By linearity,
y = P(d + Colr) = Pd + PColr

has two independent components,

− disturbance response, yd = Pd cannot be affected by Col

− reference response, yr = PColr can be affected by Col

We concentrate on what we can affect, the controlled dynamics

Tyr = PCol;

and their steady-state and transient responses.
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Magnitude frequency response of LPFs (from LS)
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Resonant peak, Mr

Bandwidth, !b

where

− bandwidth is the largest !b such that |G (j!)| ≥ 1=
√
2 for all ! ≤ !b

− resonance peak Mr ··= max! |G (j!)| > 1

and we assume that |G (0)| = 1.
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Outline

Steady-state performance

Transient performance: modal perspective

Transient performance: frequency-response perspective (from LS)

5/42

Steady-state error in terms of Tyr

Let y = Tyr r for a stable Tyr . We are interested in quantifying e = r − y in
steady state. In this case

r(t) = sin(!t + �)1(t) =⇒ ess = |1− Tyr (j!)|

(the step corresponds to ! = 0). In other words,

− error equals the magnitude of the frequency response of Syr ··= 1−Tyr

“Small” error,
ess ≪ 1 =⇒ |Syr (j!)| ≪ 1;

In some situations it may be convenient to think of it as

Tyr (j!) ≈ 1

(i.e. both |Tyr (j!)| ≈ 1 and argTyr (j!) ≈ 0).
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Steady-state error in terms of Tyr : example

Let

Tyr (s) =
1

�s + 1

(low-pass filter with the bandwidth !b = 1=�). Syr is a high-pass filter with
the cut-off frequency 1=� then,

Syr (s) =
�s

�s + 1
=⇒ |Syr (j!)| =

�!√
1 + �2!2

=

!c = 1=�
−20

−3
0

In terms of the asymptotic Bode plot,

− ess ≤ 0:1 =⇒ ! ≤ 0:1=� =⇒ � ≤ 0:1=! =⇒ !b ≥ 10!

− ess ≤ 0:01 =⇒ ! ≤ 0:01=� =⇒ � ≤ 0:01=! =⇒ !b ≥ 100!

If we need to be precise,

ess = |Syr (j!)| ≤ � ∈ [0; 1] ⇐⇒ �! =
!

!b
≤ �√

1− �2
=

�

�!

0 1=
√
2 1

0

1

with the same qualitative conclusion:

− the larger ! we wanna follow, the larger bandwidth !b of Tyr we need.
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Controllers for zero steady-state errors: interpolation

ruy
P Col

If r is a sine wave with frequency ! ≥ 0 and Tyr = PCol, then

ess = |1− Tyr (j!)| = 0 ⇐⇒ Tyr (j!) = 1 ⇐⇒ Col(j!) =
1

P(j!)
:

This is

− plant inversion at one given frequency (or several frequencies)

which only requires P(j!) ̸= 0, milder than requirements for Col = P−1.

Remark: If we work with systems with real parameters, then Col(j!) = 1=P(j!) must be
complemented by Col(−j!) = 1=P(−j!) = Col(j!) whenever ! > 0.

If ! = 0, i.e. r = 1, then

Col(0) =
1

P(0)
;

meaning all we need is to set a right static gain to the controller.
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Example 1

� = 1:25m

k = 40000N sec
m

c = 800 N
m

m = 1410 kg

For every � > 0 the controller in

ruy (cs + k)�

ms2 + cs + k

1

�

1

�s + 1

inverts P(0) = � and renders ess = 0:

0 5 10 15 20

0

1

1.85

although with different transients.
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Example 2

If now r(t) = sin(!t + �)1(t), then ess = 0 iff

Col(j!) =
1

P(j!)
and Col(−j!) =

1

P(−j!)
= Col(j!):

A way to solve that is to fix, for whatever � > 0,

Col(s) =
b1s + b0
�s + 1

and find b0 and b1 via b0 ± b1 j! = (1± j�!)=P(±j!), i.e.

[
1 j!
1 −j!

]

︸ ︷︷ ︸
Vandermonde matrix

[
b0
b1

]
=

[
(1 + j�!)=P(j!)
(1− j�!)=P(−j!)

]

This equation is solvable for all ! ̸= 0.
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Example 2 (contd)

� = 1:25m

k = 40000N sec
m

c = 800 N
m

m = 1410 kg

Let ! = 4. For every � > 0 the controller in

ruy (cs + k)�

ms2 + cs + k

b1s + b2
�s + 1

inverts P(±j4) and renders ess = 0:

0 4 8 12 16

-1.34

-1

0

1

1.39

(
[
b0 b1

]
=

[
0:436 0:02

]
and

[
b0 b1

]
=

[
0:081 −0:89

]
).
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Outline

Steady-state performance

Transient performance: modal perspective

Transient performance: frequency-response perspective (from LS)
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1st order systems revised

The transfer function

G (s) =
kst

�s + 1

has one (real) pole at

s = −1

�
=·· −�r;

where �r > 0 is the absolute value (of the real part) of the pole. Therefore,

t0

10%

90%

2.2=�r

2
×

5%

3=�r

2
×

2%

3.9=�r

kst

and

− the larger �r is, the faster the transients are.
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2nd order underdamped systems revised

The transfer function

G (s) =
kst!

2
n

s2 + 2�!ns + !2
n

=
kst!

2
n

(s + �!n)2 + (1− �2)!2
n

has two poles at

s = −�!n ± j
√
1− �2 !n =·· −�r ± j�i;

i.e. �r and �i are the absolute values of the real and imaginary parts of the
poles. It is readily seen that

�r

�i
=

�√
1− �2 and �2r + �

2
i = !2

n

i.e.

− the ratio between pole real and imaginary parts depends only on �

− the absolute value of the pole depends only on !n
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2nd order underdamped systems revised (contd)

t0

tr
10%

90%

2
×

2%

ts,2

2
×

5%

ts,5

kst

10%

90%

kst
(
1 + e

−� �r
�i

)

tp = �=�i

kst

(
1−

√
1 +

(
�r

�i

)2
e−�rt

)

kst
(
1 +

√
1 +

(
�r

�i

)2
e−�rt

)

Thus,

− OS depends only on the ratio �r
�i

(in fact, OS = e−�(�r=�i) · 100%)

− speed of transients proportional to the absolute value of the poles
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Overshoot level curves

Constant OS ⇐⇒ constant ratio �r
�i
. Hence, OS level curves are radial lines:

Im
s

Re s

O
S
=
20%

O
S
=
5%

OS = 0.1%

Re s

Im
s

O
S
=
O
S ∗

OS < OS∗

O
S

>
O
S
∗

Given some OS∗ ∈ (0%; 100%), the shaded area contains

− all poles producing OS < OS∗.

Note that damping factor level (� = const) curves are the same radial lines.
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Natural frequency level curves

Constant !n ⇐⇒ constant �2r + �
2
i . Hence, !n level curves are concentric

semi-circles:

Im
s

Re s

!n = 0.3

!n = 0.6

!n = 0.9

Re s

Im
s

!n = !∗
n!n > !∗

n

!n < !∗
n

Given some !∗
n > 0, the shaded area contains

− all poles producing !n > !
∗
n .
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Area of (relatively) fast and smooth transients

Assume we need both fast (!n > !
∗
n) and not too oscillatory (OS < OS∗)

transients. In terms of pole location, we need to

− use the intersection of these regions :

Re s

Im
s

O
S
=
O
S ∗

OS < OS∗

O
S

>
O
S
∗

∩
Re s

Im
s

!n = !∗
n!n > !∗

n

!n < !∗
n =

Re s

Im
s

O
S
=
O
S ∗

!
n
=

!
∗

n

O
S

<
O
S
∗
&

!
n

>
!

∗ n

In other words, the

− shaded area is where poles shall be placed to have “fast enough” and
“smooth enough” step responses.
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Effect of additional pole

Let

G� (s) =
kst!

2
n

(s2 + 2�!ns + !2
n)((ˇ=!n)s + 1)

for ˇ > 0, which may be viewed as the series of 1- and 2-order systems1. If
we consider the resulting response as

y 1
(ˇ=!n)s+1

kst!2
n

s2+2�!ns+!2
n

we may view the step response of G� as the response of a standard 2-order
system to a “smoothed step” input. The response may then be expected to
be

− slower

− smoother (less oscillatory)

1We have � = ˇ=!n to have !n scaling the time in all components of the response.
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Effect of additional pole (contd)

t

kst

0 �=!d 2�=!d 3�=!d

ˇ = 0
ˇ = 1
ˇ = 2.5
ˇ = 5

As ˇ (and therefore � = ˇ=!n) grows,

− the overshoot OS decreases

− the raise time tr increases
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Effect of additional zero

Let

G˛(s) =
kst!

2
n((˛=!n)s + 1)

s2 + 2�!ns + !2
n

;

for ˛ ∈ R. In this case

Y˛(s) = G˛(s)
1

s
= Y0(s) +

˛

!n
sY0(s) ⇐⇒ y˛(t) = y0(t) +

˛

!n
ẏ0(t)

where y0 is the response with ˛ = 0 (no zeros). In other words,

y0˛
!n
ẏ0

y kst!2
n

s2+2�!ns+!2
n

s˛
!n

As a matter of fact,

˛

!n
ẏ0(t) =

˛√
1− �2

e−�!nt sin(
√
1− �2!nt)

(and sin → sinh if � > 1).
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Effect of additional zero on underdamped systems

t

kst

0 �=!d 2�=!d 3�=!d

˛ = 0
˛ = 2�

˛ = 3.5�

˛ = 5�

t

kst

0 �=!d 2�=!d 3�=!d

˛ = 0
˛ = −2�

˛ = −3.5�

˛ = −5�

As |˛| grows,
− the overshoot OS increases

− the undershoot US increases, if ˛ < 0

− the raise time tr decreases

− the settling time ts increases
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Effect of additional zero on overdamped systems

t

kst

0 tp

˛ = 0

˛ < � +
√

�2 − 1

˛ = � +
√

�2 − 1

˛ > � +
√

�2 − 1

responses for ˛ ≥ 0

t

kst

0 tus

˛ = 0

˛ > −� −
√

�2 − 1

˛ = −� −
√

�2 − 1

˛ < −� −
√

�2 − 1

responses for ˛ ≤ 0

As |˛| grows,
− the overshoot OS increases, provided ˛ > � +

√
�2 − 1

− the undershoot US increases, provided ˛ < 0

− the raise time tr decreases
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Modal analysis: beyond 1st and 2nd order dynamics

As we just saw,

− adding more poles and / or zeros may render modal analysis void.

For example,

− we may have (large) overshoot for systems with only real poles / zeros

− we may have no overshoot for systems with lightly damped poles

In some cases, however, we may extend modal insight of low-order systems
to higher-order systems. This is possible if

− dominant dynamics of a system is low order.
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Dominant poles

A group of poles / zeros is said to be dominant if either of below holds:

− all other poles / zeros are at least 5 times further away from the j!-axis

− the closer poles / zeros “almost cancel” each other

e.g.2

Im
s

�r

5�r

Re s

Im
s

�r

5�r

Re s

Non-dominant poles and zeros may be safe to neglect in the modal analysis
(still, required caution).

2Hereafter we denote a pole by “×” and a zero by “◦” on pole-zero maps.
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Dominant poles: Example 1

For any ˛ > 0, define

G1(s) =
˛(s + 8)

(s + 1)(s2 + 12s + ˛)
=

8

s + 1
× s=8 + 1

s2=˛ + 12s=˛ + 1

(poles at s ∈ {−1;−6±
√
36− ˛} and zero at s = −8) and

G2(s) =
8

s + 1
:

Then:

t0

8

step response of G2(s)
step response of G1(s), ˛ = 100

t0

8

step response of G2(s)
step response of G1(s), ˛ = 1000

t0

8

step response of G2(s)
step response of G1(s), ˛ = 20
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Dominant poles: Example 2

For any |�| < 1, define

G1(s) =
64(s=(1 + �) + 1)2

(s2 + 4s + 8)(s + 1)2
=

8× 8

s2 + 4s + 8
×
( 1

1+� s + 1

s + 1

)
2

(poles at s ∈ {−2± j2;−1;−1} and zeros at s ∈ {−1− �;−1− �}) and

G2(s) =
8× 8

s2 + 4s + 8
:

Then:

t0

8

step response of G2(s)
step response of G1(s), � = 0.01

t0

8

step response of G2(s)
step response of G1(s), � = −0.01

t0

8

step response of G2(s)
step response of G1(s), � = −0.2
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Example 1 (contd)

� = 1:25m

k = 40000N sec
m

c = 800 N
m

m = 1410 kg

For every � > 0 the controller in

ruy (cs + k)�

ms2 + cs + k

1

�

1

�s + 1

inverts P(0) = � and renders ess = 0:

0 5 10 15 20

0

1

1.85

-1 -0.284 0

-5.32

0

5.32

(the zero at s = −50 has virtually no effect on transients).
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Outline

Steady-state performance

Transient performance: modal perspective

Transient performance: frequency-response perspective (from LS)
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Magnitude frequency response of 1-order systems

0.1=� !b = 1=� 10=�
!

−20

−3

0

|G
(j

!
)|,

dB

Bandwidth !b

− increases as � decreases (and the step response becomes faster)
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1-order systems: bandwidth vs. raise time

If

G (s) =
1

�s + 1

then with � ∈ {0:2; 1; 2},

showing that

− wider !b =⇒ shorter tr (faster transients)

31/42

Magnitude frequency response of 2-order systems

!r !b

!

−40

−20

−3
0

20 logMr

|G
(j

!
)|,

dB

!b =
√

1− 2�2 +
√
1 + (1− 2�2)2 !n

!b > !n iff � < 1=
√
2

!r =
√

1− 2�2 !n (defined iff � < 1=
√
2)

Mr =
1

2�
√

1− �2
(Mr > 1 iff � < 1=

√
2)

Bandwidth !b

− increases as !n increases (and the step response becomes faster)

− increases, a bit, as � decreases (and the step response becomes faster)

Resonant peak Mr

− increases as � decreases (and the step response becomes more shaky)
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2-order systems: bandwidth vs. raise time

If
G (s) =

!2
n

s2 + 2�!ns + !2
n

then with � = 1 and !n ∈ {0:25; 1; 4},

showing that

− wider !b =⇒ shorter tr (faster transients)
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2-order systems: resonance vs. overshoot

If
G (s) =

!2
n

s2 + 2�!ns + !2
n

then with � ∈ {0:5; 1=3; 0:2} and !n = 1,

showing that

− larger Mr =⇒ larger OS

− wider !b =⇒ shorter tr (faster transients)
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3-order systems with zeros

If
G (s) =

˛!ns + !
2
n

(s=2 + 1)(s2 + 2�!ns + !2
n)

then with � = 1, !n = 1, and ˛ ∈ {2; 3; 5},

showing that

− larger Mr =⇒ larger OS

− wider !b =⇒ shorter tr (faster transients)
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3-order systems with zeros (contd)

If
G (s) =

˛!ns + !
2
n

(s=2 + 1)(s2 + 2�!ns + !2
n)

then with � = 1, !n = 1, and ˛ ∈ {−2;−3;−5},

showing that

− larger Mr =⇒ larger US

− wider !b =⇒ faster leap (transients)
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Rules of thumb

In general, we may expect that

− the higher Mr is, the larger the OS /US might be
typically,

− narrow peaks indicate oscillatory responses, with oscillation frequencies close to
frequencies of peak on the Bode magnitude plot

− wide peaks indicate overshoot / undershoot without oscillations

− the larger !b is, the faster time response is
think of the Fourier transform frequency scaling property3, F

{
P&y

}
= 1

&
P1=& (F{y})

3The time scale operator P& acts as (P&x)(t) = x(&t) for every & ∈ R.
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Rules of thumb (contd)

Relation should be taken with a grain of salt. For example, consider the 9-
order low-pass Butterworth filter with the transfer function

1

(s + 1)(s2 + 0:347s + 1)(s2 + s + 1)(s2 + 1:532s + 1)(s2 + 1:879s + 1)
;

whose frequency response has no resonant peaks. . .

10
-1

10
0

10
1

-180

-120

-60

0

0 4 8 12

0

1

1.17

. . . yet whose step response exhibits an overshoot of 17%
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Modeling uncertainty & plant inversion: example

� = 1:25m

k = 40000N sec
m

c = 800 N
m

m = 1410 kg

m = 2820 kg

If the actual mass mismatches that assumed in the design of u:

0 2.3678 4.7356

0

1

0 2.3678 4.7356

0

0.8

− u calculated for m = 1410 applied to m = 2820

− u calculated for m = 2820 applied to m = 1410

Curiously,

− “blue” oscillations are substantially larger than “red” ones.

Why?
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Modeling uncertainty & plant inversion: example (contd)

� = 1:25m

k = 40000N sec
m

c = 800 N
m

m = 1410 kg

m = 2820 kg

The error due to modeling uncertainty is

e = (1− PtrueP
−1)r ··= ∆P r

Inspecting frequency responses of ∆P and the spectrum of r ,

10
0

10
1

-80

-60

-40

-20

0

20

10
0

10
1

-80

-60

-40

-23.8

-7.9

0

20

reveals that

− R(j!) vanishes at the resonance of ∆P at ! = 5:31

Therefore, this resonance isn’t excited by r (incidentally). Yet
the resonance of ∆P at ! = 3:76 isn’t canceled.
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Disturbances & plant inversion: example

� = 1:25m

k = 40000N sec
m

c = 800 N
m

m = 1410 kg

m = 2820 kg

Let
f = −250g(S−0:741 − S−1:921) = t

0

−250g

(think of a jump of somebody heavy, like , in an elevator).
Responses:

0 0.7405 1.9235 2.3678 4.7356

0

1

0 2.3678 4.7356

0

0.8

Now“red” oscillations are substantially larger than “blue” ones.
Why?
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Disturbances & plant inversion: example (contd)

� = 1:25m

k = 40000N sec
m

c = 800 N
m

m = 1410 kg

m = 2820 kg

The error due to disturbances is

e = −Pd :

Our D(s) = − 1
(cs+k)�F (s) (independent of the mass). From

10
0

10
1

-60

-40

-24.7

0

20

10
0

10
1

-60

-40

-22.8

-9.2

0

20

we can see that D(j!) vanishes at ! = 5:31 (not incidentally),
which is exactly the resonance of P. Hence, this resonance is
not excited in P. The resonance of P at ! = 3:76 is exited.
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