Introduction to Control (00340040)
lecture no. 4

Leonid Mirkin

Faculty of Mechanical Engineering
Technion—IIT

—~

¥

Plant inversion: so far

Aims at
— perfect control, y = r, for a given reference signal r.
But

— is never attainable in practical situations
because of uncertainty, like modeling errors and disturbances

— might be illegal

because of internal instability caused by unstable cancellations

— might be too expensive

in terms of control efforts, reasons not explained yet

Direction we explore today:

— how to formalize relaxing y =rtoy = r

Controlled dynamics
d

y = P(d+ Co|r) = Pd + PCyr

By linearity,

has two independent components,
cannot be affected by
can be affected by (g

— disturbance response, yqg = Pd

— reference response, y, = PCyr

We concentrate on what we can affect, the controlled dynamics
7}[‘ = PCOlv

and their steady-state and transient responses.
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where
— bandwidth is the largest wyp, such that |G(jw)| > 1//2 for all < wy
— resonance peak M, := maxy,|G(jw)| > 1

and we assume that |G(0)| = 1.




Outline

Steady-state performance

Steady-state error in terms of T,

Let y = T, r for a stable 7,,. We are interested in quantifying e = r —y in
steady state. In this case

r(t) =sin(ot+¢)1(t) =  es=[1- T,(jo)|

(the step corresponds to w = 0). In other words,
— error equals the magnitude of the frequency response of 5., :=1— T,

“Small” error,
s <1l = |S,(jo) <1,

In some situations it may be convenient to think of it as
Tyr(jo) ~ 1

(i.e. both | T, (jw)| = 1 and arg T, (jw) = 0).

Steady-state error in terms of T,: example

Let
1

Ty,(s) - ts+1

(low-pass filter with the bandwidth wp, = 1/7). S, is a high-pass filter with
the cut-off frequency 1/t then,

(s) = —  S,(0) = —2 =
o +1 NS Ty T

w. =1/t

In terms of the asymptotic Bode plot,
— 6s<01l = w<0l/t = <01/ = w, > 10w
— 6s<00l = w<00l/t = <001/ = w, > 100w
If we need to be precise,

w
SS: Sr i S 6 0.1 @ -
e |Syr(jo)| <€ [0.1] Tw = o \/ﬁ J i

with the same qualitative conclusion:

— the larger @ we wanna follow, the larger bandwidth w}, of T,, we need.

Controllers for zero steady-state errors: interpolation

24 P = C. 4

If r is a sine wave with frequency w > 0 and T,, = P(, then
. : _ 1
s =|1—T,(jw)| =0 <= T, (jo)=1 = C(jo)= Pla)’
This is
— plant inversion at one given frequency (or several frequencies)
which only requires P(jw) # 0, milder than requirements for C, = P71,

Remark: If we work with systems with real parameters, then Cy(jw) = 1/P(jw) must be
complemented by Cyi(—jw) = 1/P(—jw) = Co(jo) whenever > 0.

If w=0,ier=1, then

Co(0) = P(lo)

meaning all we need is to set a right static gain to the controller.




Example 1

For every 7 > 0 the controller in

y (cs+k)p u 1 1 r

ms? + ¢s + k prs+1

inverts P(0) = p and renders e;s = 0:

1.85

p=125m =)
k = 40000 Nz 2
c=28002 M
m = 1410kg ’

0 5 10 15 20
Time, t

although with different transients.

Example 2
If now r(t) =sin(wt + ¢)1(t), then ess = 0 iff

Caljoo) = P(}w) and  Cy(—jo) = P(_ljw) — CalGo).

A way to solve that is to fix, for whatever 7 > 0,

bis + by
Cl) ="t

and find by and by via by £+ bijo = (1 + jtw)/P(Ljw), i.e.

| e

Vandermonde matrix

This equation is solvable for all w # 0.

Example 2 (contd)
Let w = 4. For every t > 0 the controller in

y (es+ k)p u bis + by r
ms?+cs+ k ts+1

inverts P(+j4) and renders e;s = 0:

1.39 -
1 ﬂ

p=125m ‘:‘
k = 40000Mse< g 0

c=8002 :
m = 1410 kg Z

4 |

134 “* r(t) — 7=0.02= C/]g‘ [—— 2‘7

0 4 8 12 16

Time, t

([bo b1 ] =[0.436 0.02] and [ by by | = [0.081 —0.89 |).

Outline

Transient performance: modal perspective




1st order systems revised

The transfer function

has one (real) pole at

kst ”””””””””””””””””” =

90%

2% 5%
2% 2%

22/,

0 3/A 3.9/A t

and

— the larger A, is, the faster the transients are.

2nd order underdamped systems revised

The transfer function

2 2
kSt a)n kSt a)n

G(s) = ¥ 2wns + @2 (5+ Cwn)2 + (1 — 2)w?

has two poles at
s=—Clwn t V12w, = —A, A,

i.e. A, and A; are the absolute values of the real and imaginary parts of the
poles. It is readily seen that

A S A2 422 = w2

A J1=02
i.e.
— the ratio between pole real and imaginary parts depends only on ¢

— the absolute value of the pole depends only on wy,

2nd order underdamped systems revised (contd)

)e

Ve

)

0 ty =1/ ts5 to t

Thus,
— OS depends only on the ratio % (in fact, 0S = e~ *(A/4) . 100%)

— speed of transients proportional to the absolute value of the poles

Overshoot level curves

Constant OS <= constant ratio % Hence, OS level curves are radial lines:

0o
Ims

0S < 0S*

S
A
5

Given some OS* € (0%, 100%), the shaded area contains
— all poles producing OS < OS*.

Note that damping factor level (¢ = const) curves are the same radial lines.




Natural frequency level curves

Constant w,, <= constant )L? + )Liz. Hence, w, level curves are concentric
semi-circles:

Ims

Given some w; > 0, the shaded area contains

— all poles producing w, > w;.

Area of (relatively) fast and smooth transients

Assume we need both fast (w, > w;) and not too oscillatory (OS < OS*)
transients. In terms of pole location, we need to

— use the intersection of these regions :

0 w0
E £
O\f\\
O
2
w, > W] wy = Wy
0S < 0S* m wn <@ —

Res

Res \ Res

In other words, the

8
g
(&)

— shaded area is where poles shall be placed to have “fast enough” and
“smooth enough” step responses.

Effect of additional pole
Let

c B kstwr%
o(s) = (52 + 26wns + @2)((B/@wn)s + 1)

for B > 0, which may be viewed as the series of 1- and 2-order systems?. If
we consider the resulting response as

y f? r 1 I—
2428 wns+w? (B/wn)s+1

we may view the step response of G; as the response of a standard 2-order

system to a “smoothed step” input. The response may then be expected to
be

— slower

— smoother (less oscillatory)

We have t = B/w, to have w, scaling the time in all components of the response.

Effect of additional pole (contd)

o

™ ™ ™ ™

aN o

0 7T/ wy 27wy 37 /wqy

-+

As B (and therefore t = B/w,) grows,
— the overshoot OS decreases

— the raise time t, increases




Effect of additional zero

Let )
kstws ((o/wp)s + 1)
52 + zé‘a)ns + Cl)rzl

Gu(s) =

for « € R. In this case
1 o o .
Ya(s) = Gu(s)= = Yo(s) + —sYo(s) <= a(t) = yo(t) + —yo(t)
S a)n a)n

where yg is the response with @ = 0 (no zeros). In other words,

y ©n M ‘ ksta)r% ‘ Ji

2428 wns+w?2

As a matter of fact,

0O = g (VL o)

(and sin — sinh if £ > 1).

Effect of additional zero on underdamped systems

ke - NN kit f NN
—_—a=0 —a=0
a=2¢ o« =-2¢
a=35¢ a=-35¢
o =5¢ a=-5¢
0 7/wa 27/ wq 31/ wy t 0 7/wq 27wy 37/ wq t

As || grows,
— the overshoot OS increases
— the undershoot US increases, if « <0
— the raise time t, decreases

— the settling time £ increases

Effect of additional zero on overdamped systems

responses for « > 0 responses for « <0
i [ e — K
—_—a=0 —_—a=0
a<{+/2-1 o>\ -1
a=C+4/2-1 a=-—/2-1
a>{+\/ZZj a<—{—\/§'2_—1
0 t 0] ts t

As || grows,
— the overshoot OS increases, provided o > ¢ + /% — 1
— the undershoot US increases, provided o < 0

— the raise time t, decreases

Modal analysis: beyond 1st and 2nd order dynamics

As we just saw,
— adding more poles and / or zeros may render modal analysis void.
For example,
— we may have (large) overshoot for systems with only real poles / zeros

— we may have no overshoot for systems with lightly damped poles

In some cases, however, we may extend modal insight of low-order systems
to higher-order systems. This is possible if

— dominant dynamics of a system is low order.




Dominant poles

A group of poles/ zeros is said to be dominant if either of below holds:
— all other poles / zeros are at least 5 times further away from the jw-axis

— the closer poles / zeros “almost cancel” each other

e.g?

Ims
Ims

0]

Res Res

Non-dominant poles and zeros may be safe to neglect in the modal analysis
(still, required caution).

won “w_n

2Hereafter we denote a pole by “x" and a zero by “o” on pole-zero maps.

Dominant poles: Example 1

For any o > 0, define

Gl(S)

a(s+8)

8 s/8+1

T (s+1)(s2+12s+a) s+1

s2/a +12s/a + 1

(poles at s € {—1,—6 ++/36 — '} and zero at s = —8) and

Dominant poles: Example 2

For any |e| < 1, define

8 x8
s2+4s+8

Gi(s) 64(s/(1+€) +1)?

1
_ ms_"l 2
T (21451 8)(st 12 X( st1 )

(polesat s € {—2+j2,—1,—1} and zerosat s € {—1 —¢,—1 —¢}) and

Go(s) 8 x8
o2\S) = —————.
s>+4s+38
Then:
8 8 8
— step response of Gy(s) — step response of Gy(s) — step response of Gy(s)
— step response of Gi(s), € = 0.01 — step response of Gy(s), € = —0.01 — step response of Gi(s), € = —0.2
0 t 0 t 0 t

8
G2 S)= .
(s) s+1
Then:
8 8 8
— step response of Gy(s) ‘ — step response of Gy(s) — step response of Gy(s)
— step response of Gy(s), @ = 100 — step response of Gi(s), & = 1000 — step response of Gi(s), @ = 20
0 t 0 t o t
Example 1 (contd)
For every T > 0 the controller in
(cs+k)p u 11 r
ms? + cs + k prs+1
inverts P(0) = p and renders e, = 0:
185 F 532 X
p=125m )
_ N g )
k=140000% £ | ol
c=2800N -
m=1410kg
0 532 X

(the zero at s = —50 has virtually no effect on transients).

5

10 15
Time, ¢

20 -1 -0.284
Res
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Transient performance: frequency-response perspective

Magnitude frequency response of 1-order systems

|G(jw)|, dB

-20
0.1/t wp, =1/t 10/

Bandwidth wy

— increases as 7 decreases (and the step response becomes faster)

1-order systems: bandwidth vs. raise time
If

Magnitude (dB)
Step response, y(t)

. . ol . .
107! 10° 10" 0 0.46 2.3 4.61
Frequency (rad/sec) Time (sec)

showing that

— wider w, == shorter t, (faster transients)

Magnitude frequency response of 2-order systems

20 log M,
g wb:\/1—2§2+ 1+ (1-282)2w,
@ wp > Wy ifFZ<1/\/§
2
g X o = /1- 28w, (defined iff ¢ < 1/1/2)
1
M, = i
e (M, > 1iff £ < 1//2)
—40

@

Bandwidth wy,

— increases as wy, increases (and the step response becomes faster)

— increases, a bit, as ¢ decreases (and the step response becomes faster)
Resonant peak M,

— increases as ¢ decreases (and the step response becomes more shaky)




2-order systems: bandwidth vs. raise time

If )

w,
G(s) = n
(s) s2 + 2lwps + w3

then with { =1 and w, € {0.25,1, 4},

Magnitude (dB)
Step response, y(t)

10! 10° 10!
Frequency (rad/sec)

showing that

— wider w, == shorter t, (faster transients)

2-order systems: resonance vs. overshoot

If )

w,
G(s) = n
(s) s2 + 2lwps + w3

then with ¢ € {0.5,1/3,0.2} and w, =1,

814F " \ ] 153F
1331
0
3 116
g S ol &/
o g 09r
3 2
= z'
e :
< 2
= 3
&
— (=05 \ —_— (=05
—_—(=1/3 \ —_—=1/3
ok (=02 N 01t/ ¢=02|
T . ) ol . . T
10 100 10' 0 2.14 8 16
Frequency (rad/sec) Time (sec)

showing that
— larger M, = larger OS

— wider w, = shorter t, (faster transients)

3-order systems with zeros

If
owns + w2

G(s) =

then with { =1, w, =1, and « € {2, 3,5},

~ (s/2 +1)(52 + 2¢wns + w?)

ree

o

737l I i I ] 1.98F
= <137
= =z
e Z 111
E: 21
E g 09
%L =
= 2

&
0.1
n . . 0
107! 100 10 0 144

Frequency (rad/sec)

showing that
— larger M, = larger OS
— wider @, = shorter t, (faster transients)

3-order systems with zeros (contd)

If
6(s) = awns + w?

~ (s/2 +1)(52 + 2¢wns + w?)
then with { =1, w, =1, and @ € {2, -3, -5},

737} 4 1r —
= =
s g 0
<] S
= 2
g 5042
= g
@ or2f
R —
—_—a=-3
a=-5
T | | 1351 | " E|
107! 10" 10! 0 1.36 4 8
Frequency (rad/sec) Time (sec)

showing that
— larger M, = larger US
— wider w, = faster leap (transients)




Rules of thumb

In general, we may expect that
— the higher M, is, the larger the OS / US might be
typically,

— narrow peaks indicate oscillatory responses, with oscillation frequencies close to
frequencies of peak on the Bode magnitude plot
— wide peaks indicate overshoot / undershoot without oscillations

— the larger wy, is, the faster time response is
think of the Fourier transform frequency scaling property?, F{Pey} = é P/ (F{y})

3The time scale operator Pc acts as (P x)(t) = x(ct) for every ¢ € R.

Rules of thumb (contd)

Relation should be taken with a grain of salt. For example, consider the 9-
order low-pass Butterworth filter with the transfer function

1
(s+1)(s®2+0.347s + 1)(s2 + s+ 1)(s2 + 1.532s + 1)(s2 + 1.879s + 1)’

whose frequency response has no resonant peaks. ..

0

L17F

' N T

-60 -

Magnitude (dB)
Step response, y(t)

-180 L
10! 10° 10! 0 4 8
Frequency (rad/sec) Time, ¢

... yet whose step response exhibits an overshoot of 17%

Modeling uncertainty & plant inversion: example

If the actual mass mismatches that assumed in the design of u:

p—125m 0 i 0 i
k = 40000 .
L "o—u calculated for m = 1410 applied to m = 2820
c =800~ .
— u calculated for m = 2820 applied to m = 1410
m = 1410 kg

m = 2820kg  Curiously,

“blue” oscillations are substantially larger than “red” ones.
Why?

Modeling uncertainty & plant inversion: example (contd)

The error due to modeling uncertainty is
e=(1— PyueP 1)r:=Apr

Inspecting frequency responses of Ap and the spectrum of r,

b N —1BGw)| = |Ar(w)R(w)], actual m — 2820
. = 1EG)] = [8p(0)R(w)l, actual m = 1410
) g
gr:u —::T'm‘
Z Z
= g 0
p=125m 2 2
| R A =
o sec — [Ap(jw)|, actual m = 2820
k= 4000’\? m ol 185 ()]; actual m = 1410 o An |
) 10° 10! 10° 10!
¢ =300 m Frequency, w [rad/sec| Frequency, w [rad/sec|
m = 1410 kg Is th
reveals that
m = 2820 kg

— R(jw) vanishes at the resonance of Ap at w = 5.31

Therefore, this resonance isn't excited by r (incidentally). Yet
the resonance of Ap at w = 3.76 isn't canceled.




Disturbances & plant inversion: example

f=—-250g(%5—0.7a1 — S_1.021) :72505' LT

Let

Responses: re

u(t)

p=125m
k = 40000M==
c=800Y

m

0 07405 19235 2.3678
t

47356 0 23678 47356

Now “red” oscillations are substantially larger than “blue” ones.
Why?

(think of a jump of somebody heavy, like ;" in an elevator).

Disturbances & plant inversion: example (contd)

The error due to disturbances is
e=—Pd.

Our D(s) = —mF(s) (independent of the mass). From

0 20— [BGw)] = | - P(w)D(w)], for m = 1410
— |E(jw)| = | - P(jw)D(jw)], for m = 2820

m o m o

=, = g

k= k=

.‘E 4.7 é 228

3 &b

= -40 < -40
p=125m - D) =

— |P(jw)|, for m = 1410
N sec 50 [|— [P(w)], for m = 2820 © [\
k = 40000 /A\WN
m 10° 10! 10° 10!
N Frequency, w [rad/sec] Frequency, w [rad/sec]

c =800~

we can see that D(jw) vanishes at w = 5.31 (not incidentally),
which is exactly the resonance of P. Hence, this resonance is
not excited in P. The resonance of P at @ = 3.76 is exited.
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