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Plant inversion: so far

u

. P p-1
L=
Aims at
— perfect control, y = r, for a given reference signal r.
But

— is never attainable in practical situations

because of uncertainty, like modeling errors and disturbances
— might be illegal

because of internal instability caused by unstable cancellations

— might be too expensive
in terms of control efforts, reasons not explained yet
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Direction we explore today:

— how to formalize relaxing y =rtoy ~ r



Controlled dynamics

d

y = P(d+ Cyr) = Pd + PCyr

By linearity,

has two independent components,
— disturbance response, yy = Pd cannot be affected by C

— reference response, y, = PCyr can be affected by G,

We concentrate on what we can affect, the controlled dynamics
Tyr = PCO|1

and their steady-state and transient responses.



Magnitude frequency response of LPFs

20 log M,
/\ Resonant peak, M,
0

N\

[G(jo)] (dB)

Bandwidth, wy

w (rad/sec)

where
— bandwidth is the largest wy, such that |G(jo)| > 1/v/2 for all o < wy,
— resonance peak M, := maxy|G(jw)| > 1

and we assume that |G(0)| = 1.
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Steady-state performance

Transient performance: modal perspective

Transient performance: frequency-response perspective
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Steady-state performance

Steady-state error in terms of T,

Let y = T,,r for a stable T,,. We are interested in quantifying e = r — y in
steady state. In this case

() =sin(@t+$)Ut)  — e =[1— Ty (jo)|

(the step corresponds to w = 0). In other words,

— error equals the magnitude of the frequency response of S, :=1— T,
“Small” error,
s K1l = |[S,(jo)| <1,

In some situations it may be convenient to think of it as
Tyr(jo) =1

(i.e. both | T, (jw)| = 1 and arg T, (jw) ~ 0).



Steady-state performance

Steady-state error in terms of T,,: example

Let
1

Ty,(s) - s+ 1

(low-pass filter with the bandwidth wp, = 1/7). S, is a high-pass filter with
the cut-off frequency 1/t then,

Q

TS . TWw -
Syr(s) = s 11 = [Sp(jo)| = \/ﬁ =

w. =1/t

In terms of the asymptotic Bode plot,
— 65<0l = w<0l/t = 1<0l/o = w,> 10w
— 6s<001 = 0w <001/t = <001/ = w, > 100w



Steady-state performance

Steady-state error in terms of T,,: example

Let
1

Ty,(s) - s+ 1

(low-pass filter with the bandwidth wp, = 1/7). S, is a high-pass filter with
the cut-off frequency 1/t then,

TS . TWw -
Syr(s) = s 11 = [Sp(jo)| = \/ﬁ =

w. =1/t

In terms of the asymptotic Bode plot,
— 65<0l = w<0l/t = 1<0l/o = w,> 10w
— 6s<00] = w<00l/t = 1<00l/0 = wp, > 100w
If we need to be precise,

w
s = |Syr(jo)| < e e (0,1 — — i
€ ‘Y(Jw)| € [ ] Tw = wh \/ﬁ

with the same qualitative conclusion:

— the larger @ we wanna follow, the larger bandwidth wy, of T, we need.



Steady-state performance

Controllers for zero steady-state errors: interpolation

f— P — G

If r is a sine wave with frequency w > 0 and T,, = PC,, then
s =1 - Ty(jw)| =0 = T,(jo)=1 = C(jo)= o)’
This is
— plant inversion at one given frequency (or several frequencies)
which only requires P(jw) # 0, milder than requirements for C, = P~ 1.

Remark: If we work with systems with real parameters, then Cy(jw) = 1/P(jw) must be
complemented by Co(—jw) = 1/P(—jw) = Cu(jw) whenever o > 0.




Steady-state performance

Controllers for zero steady-state errors: interpolation

L P £ Gol :

If r is a sine wave with frequency w > 0 and T,, = PC,, then
s =1 - Ty(jw)| =0 = T,(jo)=1 = C(jo)= o)’
This is
— plant inversion at one given frequency (or several frequencies)
which only requires P(jw) # 0, milder than requirements for C, = P~ 1.

Remark: If we work with systems with real parameters, then Cy(jow) = 1/P(jw) must be
complemented by Co(—jw) = 1/P(—jw) = Cu(jw) whenever o > 0.

Ifw=0,ier=1, then )

P(0)’

meaning all we need is to set a right static gain to the controller.

G(0) =



Steady-state performance

Example 1

For every t > 0 the controller in

y | (stRp | u |
{m52+cs+k‘ ‘

inverts P(0) = p and renders e;s = O:

1851

p=1256m <
k = 40000 M2 -
c=2800"Y c.
m = 1410kg g

0 5 10 15 20
Time, ¢

although with different transients.



Steady-state performance
Example 2
If now r(t) = sin(wt + ¢)1(t), then ess = 0 iff

1
P(—jw)

Go(jow) = and Cy(—jw) = = G(jw).

1
P(jw)
A way to solve that is to fix, for whatever v > 0,

bis + bg
Gl =51

and find by and by via by £ b1jo = (1 + jtw)/P(L+jw), i.e.

I Rt

Vandermonde matrix

This equation is solvable for all @ # 0.




Steady-state performance

Example 2 (contd)

Let @ = 4. For every t > 0 the controller in

y [ (cs+ k)p l u ‘bls+b2‘ r
{m52+cs+kJ ‘rs+1‘

inverts P(£j4) and renders ess = 0:

|
p=1256m i
k = 40000 Nz R
c =800 3
m = 1410 kg Z |
—r(t — 7=0.02=c/k
== g i

Time, ¢

([bo b1] =[0.436 0.02] and [ by by | = [0.081 —0.89]).



Modal analysis

Outline

Transient performance: modal perspective



Modal analysis

1st order systems revised

The transfer function
kst

has one (real) pole at
1

s=—= =1,
T

where A, > 0 is the absolute value (of the real part) of the pole. Therefore,

0 3/A  39/A, t

and
— the larger A, is, the faster the transients are.



Modal analysis

2nd order underdamped systems revised
The transfer function

2 2
kSt a)n kSt a)n

T 24 2bwns + w2 (54 Lwn)? + (1 — £2)w?

G(s)

has two poles at

s=—Cw, V12w, = =\, LA,

i.e. A, and A; are the absolute values of the real and imaginary parts of the
poles.



Modal analysis

2nd order underdamped systems revised

The transfer function

2 2
kSt a)n kSt a)n

T 24 2wns + w2 (s+ Con)2+ (1— 2)w2

G(s)

has two poles at

s=—Cw, V12w, = =\, LA,

i.e. A, and A; are the absolute values of the real and imaginary parts of the
poles. It is readily seen that

&:L and A2 422 = w?

LV
i.e.
— the ratio between pole real and imaginary parts depends only on ¢

— the absolute value of the pole depends only on w,



Modal analysis

2nd order underdamped systems revised (contd)

ke (14+ €775 k(T e

kg Lo N =

90% S g
% x
& P

10%

0 ty =/ tss to t

Thus,
— OS depends only on the ratio % (in fact, OS = e~ 7(A/4) . 100%)

— speed of transients proportional to the absolute value of the poles



Modal analysis

Overshoot level curves

Constant OS <= constant ratio % Hence, OS level curves are radial lines:
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Overshoot level curves

Constant OS <= constant ratio '}U Hence, OS level curves are radial lines:

Ims

0S < 05"

Res

Os-

Os .

Given some OS* € (0%, 100%), the
— all poles producing OS < OS*.

shaded area contains



Modal analysis

Overshoot level curves

Constant OS <= constant ratio r Hence, OS level curves are radial lines:
A

Ims

0S < 05"

Res

Os-

Os .

Given some OS* € (0%, 100%), the shaded area contains
— all poles producing OS < OS*.

Note that damping factor level ({ = const) curves are the same radial lines.



Modal analysis

Natural frequency level curves

Constant w,, <= constant Af + kiz. Hence, w, level curves are concentric
semi-circles:

Ims

w, =03

Res




Modal analysis

Natural frequency level curves

Constant w,, <= constant Af + kiz. Hence, w, level curves are concentric
semi-circles:

Ims
Ims

Res

Given some w;; > 0, the shaded area contains

— all poles producing @, > ;.



Modal analysis

Area of (relatively) fast and smooth transients

Assume we need both fast (w, > ;) and not too oscillatory (OS < OS¥)
transients. In terms of pole location, we need to

— use the intersection of these regions :

Ims
Ims

0S < 0S” m

Res

s Os-




Modal analysis

Area of (relatively) fast and smooth transients

Assume we need both fast (w, > ;) and not too oscillatory (OS < OS¥)
transients. In terms of pole location, we need to

— use the intersection of these regions :

Ims
Ims
ms

0S < 0S” m

Res Res

&
o
A
©
¢}

In other words, the

— shaded area is where poles shall be placed to have “fast enough” and
“smooth enough” step responses.



Modal analysis

Effect of additional pole
Let
ksta)r%
(s2 4+ 2¢wns + w?)((B/wn)s + 1)
for B > 0, which may be viewed as the series of 1- and 2-order systems®. If
we consider the resulting response as

(Fr2tensiat] Fren)si2

we may view the step response of G; as the response of a standard 2-order
system to a “smoothed step” input. The response may then be expected to
be

— slower

G.(s) =

— smoother (less oscillatory)

We have t = B/wn to have w, scaling the time in all components of the response.



Modal analysis

Effect of additional pole (contd)

™™ ™ ™
(RN
o

~

0 7/ws 2] wa 3] wa

As B (and therefore T = /wy) grows,
— the overshoot OS decreases

— the raise time t, increases



Modal analysis

Effect of additional zero

Let
kstw?((ot/wn)s + 1)

Gals) = ,
o(s) s2 + 2Lwns + w?

for « € R. In this case
1 o o .
Ya(s) = Ga(s)g = Yo(s) + w—sYo(s) = ya(t) = yo(t) + ;yo(t)

where yg is the response with & = 0 (no zeros). In other words,

A e
y ©n m kstws J:

2428 wns+w?

As a matter of fact,

wiyo(t) = \/loijegw"tsin(\/ 1 —2w,t)

(and sin — sinh if ¢ > 1).



Modal analysis

Effect of additional zero on underdamped systems

ki =it NG ——— kit N =
—_—=0 —a=0
a=2¢ a=-2¢
a=35¢ o =-35¢
a=5¢ a=-5¢
0 /w4 27wy 3 /wy t 0 /Wy 27wy 37 /wy

As || grows,
— the overshoot OS increases
— the undershoot US increases, if « < 0
— the raise time t, decreases

— the settling time t5 increases



Modal analysis

responses for « > 0

Effect of additional zero on overdamped systems

responses for o < 0

L T e——— Kot fommmm e g _
—_— =0 —a=0

D‘<Z+\/§2_*1 a>—[—\/§2T1

a=t+ VO 0= —t- /1

a>Z+\/§2771 a<—§—\/§2j

0| & t 0 t

As |a| grows,
— the overshoot OS increases, provided o > ¢ + /¢2 — 1
— the undershoot US increases, provided o < 0

— the raise time t, decreases




Modal analysis

Modal analysis: beyond 1st and 2nd order dynamics

As we just saw,
— adding more poles and / or zeros may render modal analysis void.
For example,
— we may have (large) overshoot for systems with only real poles / zeros

— we may have no overshoot for systems with lightly damped poles



Modal analysis

Modal analysis: beyond 1st and 2nd order dynamics

As we just saw,
— adding more poles and / or zeros may render modal analysis void.
For example,
— we may have (large) overshoot for systems with only real poles / zeros

— we may have no overshoot for systems with lightly damped poles

In some cases, however, we may extend modal insight of low-order systems
to higher-order systems. This is possible if

— dominant dynamics of a system is low order.



Modal analysis

Dominant poles

A group of poles / zeros is said to be dominant if either of below holds:
— all other poles / zeros are at least 5 times further away from the jw-axis

— the closer poles / zeros “almost cancel” each other

eg?

Ims
Ims

Non-dominant poles and zeros may be safe to neglect in the modal analysis
(still, required caution).

w_on w_n

2Hereafter we denote a pole by “x” and a zero by “o” on pole-zero maps.



Modal analysis

Dominant poles: Example 1

For any o > 0, define

a(s+8) 8 5 s/8+1
(s+1)(s2+12s+a) s+1° s2/a+12s/a +1

Gi(s) =

(poles at s € {—1,—6 + /36 — &} and zero at s = —8) and

G2 (S ) = .
s+1
Then:
8 8 8
— step response of Gy(s) — step response of Gy(s) — step response of Gy(s)
— step response of Gi(s), « = 100 — step response of Gi(s), @ = 1000 — step response of Gi(s), & = 20
0 t 0 t 0 t




Modal analysis

Dominant poles: Example 2

For any |e| < 1, define

Gu(s) = 64(s/(1+e)+1)2  8x8 X<1ies+1>2

(s2+4s+8)(s+1)2 s2+4s5+8 s+1

(polesat s € {—2+j2,—1,—1} and zeros at s € {—1 —¢,—1 —€}) and

Gols) 8 x8
o2\S) = 57—
s?+4s+38
Then:
8 8 8
— step response of Gy(s) ‘ — step response of Gy(s) ‘ — step response of Gy(s)
— step response of Gi(s), € = 0.01 — step response of Gy(s), € = —0.01 — step response of Gi(s), € = —0.2
0 t 0 t 0 t



p=125m
k = 40000 M=
c=2800"Y

m = 1410 kg

Modal analysis

Example 1 (contd)

For every t > 0 the controller in

y [ (sthp | }

{m52+cs+k‘

inverts P(0) = p and renders e;s = O:

1.85 1

Step response, y(t)

10 15 20
Time, ¢



Modal analysis

Example 1 (contd)

For every t > 0 the controller in

y [ (est+hp | [1 1 |
{m52+cs+k‘ ‘p‘L’S+1‘

inverts P(0) = p and renders e, = 0:

185 532 X
p=125m z
o N sec % 1 w
k = 40000N5< £ ol
N h
c =800~ a
m 2
"
m = 1410 kg
o ‘ ‘ : = 99| 532 X
0 5 10 15 20 -1 0284
Time, ¢

Res
(the zero at s = —50 has virtually no effect on transients).



Frequency-response analysis

Outline

Transient performance: frequency-response perspective



Frequency-response analysis

Magnitude frequency response of 1-order systems

|G (jo)|, dB

-20
0.1/t

w, =1/t 10/t
w
Bandwidth wy

— increases as t decreases (and the step response becomes faster)



Frequency-response analysis

1-order systems: bandwidth vs. raise time

Magnitude (dB)
Step response, y(t)

&
3

Frequency (rad/sec)

showing that
— wider w, = shorter t, (faster transients)



Frequency-response analysis

Magnitude frequency response of 2-order systems

20 log M,
: oy =\/1-202+ T+ (1- 2w,
Q wp > w, iff & <1/y2
3 53
e Y o = /1= 22w, (defined iff { < 1/v/2)
1
M, i /2
N (M, > 1iff ¢ <1/v/2)
—40

Bandwidth wy,

— increases as wy increases (and the step response becomes faster)

— increases, a bit, as { decreases (and the step response becomes faster)
Resonant peak M,

— increases as ¢ decreases (and the step response becomes more shaky)



Frequency-response analysis
2-order systems: bandwidth vs. raise time

If )

w
G(s) = -
() $2 + 2Lwns + w?

then with £ =1 and w, € {0.25, 1,4},

esponse, y(t)

Magnitude (dB)

Step r

0 L I
0 0.96 3.88 15.56

showing that
— wider w, == shorter t, (faster transients)



Frequency-response analysis
2-order systems: resonance vs. overshoot

If )

w
G(s) = L
() s2 + 2Lwns + w3

then with ¢ € {0.5,1/3,0.2} and w, = 1,

Magnitude (dB)

Step res;

Frequency (rad/sec) Time (sec)

showing that
— larger M, = larger OS

— wider w, == shorter t, (faster transients)



Frequency-response analysis

3-order systems with zeros

G(s) = aa)ns+a)§
(s/2+1)(s2 + 2Lwns + w?3)
then with =1, w, =1, and « € {2, 3,5},

737

b o

Magnitude (dB)

9
8

Frequency (rad/sec) Time (sec)

showing that
— larger M, = larger OS
— wider wp == shorter t, (faster transients)



Frequency-response analysis

3-order systems with zeros (contd)

G(s) = aa)ns+a)§
(s/2+1)(s2 + 2Lwns + w?3)
then with =1, w, =1, and « € {2, -3, -5},

737

b o

Magnitude (dB)

9
8

Frequency (rad/sec) Time (sec)

showing that
— larger M, = larger US
— wider w, == faster leap (transients)



Frequency-response analysis

Rules of thumb

In general, we may expect that

— the higher M, is, the larger the OS / US might be
typically,
— narrow peaks indicate oscillatory responses, with oscillation frequencies close to
frequencies of peak on the Bode magnitude plot
— wide peaks indicate overshoot / undershoot without oscillations




Frequency-response analysis

Rules of thumb

In general, we may expect that

— the higher M, is, the larger the OS / US might be
typically,
— narrow peaks indicate oscillatory responses, with oscillation frequencies close to
frequencies of peak on the Bode magnitude plot
— wide peaks indicate overshoot / undershoot without oscillations
— the larger wy, is, the faster time response is
think of the Fourier transform frequency scaling property®, §{Pcy} = é P/ (S{yv})

3The time scale operator Pc acts as (Pcx)(t) = x(st) for every ¢ € R.



Frequency-response analysis

Rules of thumb (contd)

Relation should be taken with a grain of salt. For example, consider the 9-
order low-pass Butterworth filter with the transfer function

1
(s +1)(s2+0.347s + 1)(s? + s + 1)(s2 + 1.532s + 1)(s? + 1.879s + 1)’

whose frequency response has no resonant peaks. . .

0

)

Magnitude (dB)

IS

-180 L
10" 10° 10'
Frequency (rad/sec)




Frequency-response analysis

Rules of thumb (contd)

Relation should be taken with a grain of salt. For example, consider the 9-
order low-pass Butterworth filter with the transfer function

1
(s +1)(s2+0.347s + 1)(s? + s + 1)(s2 + 1.532s + 1)(s? + 1.879s + 1)’

whose frequency response has no resonant peaks. . .

0 { ] L17F /\ T
: \./

-60 -

Magnitude (dB)
Step response, y(t)

-180 L L n |
107! 10° 10' 0 4 8 12
Frequency (rad/sec) Time, ¢

... yet whose step response exhibits an overshoot of 17%



Frequency-response analysis

Modeling uncertainty & plant inversion: example

08

0 23678 47356 0 23678 47356

p=1256m t t
o N sec

e 4000;) m  — u calculated for m = 1410 applied to m = 2820
=800 — .

‘ m — u calculated for m = 2820 applied to m = 1410

m = 1410 kg
m = 2820kg  Curiously,
— “blue” oscillations are substantially larger than “red” ones.

Why?



Frequency-response analysis
Modeling uncertainty & plant inversion: example (contd)

The error due to modeling uncertainty is
e=(1— PyueP Y)r:= Apr

Inspecting frequency responses of Ap and the spectrum of r,

20
— |B(jw)| = [Ap(jw)R(jw)], actual m = 2820
— |E(jw)| = |Ap(jw)R(jw)|, actual m = 1410
o o
% g 79
Erm _; 38
E 3
z £
= a0 g0
p=125m 2 =
N = al[— RG] R
. sec — |Ap(jw)], actual m = 2820
k 40000 m so Ll 1Ap(jw)|, actual m = 1410 30
c=8001%

10" 10'
m Frequency, w [rad/sec]

Frequency, w [rad/sec]
m = 1410 kg Is th
m = 2820 kg reveals that

R(jw) vanishes at the resonance of Ap at w =5.31

Therefore, this resonance isn't excited by r (incidentally). Yet
the resonance of Ap at w = 3.76 isn't canceled.



Frequency-response analysis

Disturbances & plant inversion: example

0
f = ~250g(S—0741 ~S-1.021) = [ [

(think of a jump of somebody heavy, like " in an elevator).
Responses: v

Let

p=125m
k = 40000 M=
c=2800N

m 0 07405 1.9235 2.3678 47356 0 23678 47356
t t

Now “red” oscillations are substantially larger than “blue” ones.
Why?



Frequency-response analysis
Disturbances & plant inversion: example (contd)

The error due to disturbances is

e=—Pd.
-1 i
Our D(s) = GG F(s) (independent of the mass). From
20 20— |E(jw)| = | - P(jw)D(jw)], for m:l4l[l‘
— |E(jw)| = | = P(jw)D(jw)|, for m = 2820
T o = o
= = 92
g ]
£ 20 ‘g 28
p=125m = DG =
— |P(jw)|, for m = 1410
- N sec 60 = |P(jw)|, for m = 2820 0
k o 40000 m 10° 10' 10" 10!
c — 800 N Frequency, w [rad/sec]

Frequency, w [rad/sec]
m

we can see that D(jw) vanishes at w = 5.31 (not incidentally),
which is exactly the resonance of P. Hence, this resonance is
not excited in P. The resonance of P at w = 3.76 is exited.
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