Introduction to Control (00340040) lecture no. 3

Leonid Mirkin

Faculty of Mechanical Engineering Technion—IIT

 $\bf \overline{N}$

Outline

Open-loop control

Abstract control problem to begin with (contd) Setup:

 $\frac{y}{p}$ $\frac{u}{q}$

where

 $-$ P is a plant

may comprise actual controlled process, actuators, sensors, et cetera

- $-$ u is a control signal (control input)
- − y is a controlled (regulated) signal (output)

Problem: Given P , find u resulting in a desired v .

Desired behavior

 $\frac{y}{p}$ $\frac{u}{q}$

2/52

4/52

"Desired y " may be introduced via the requirement that

 $v = r$

for some signal

− r, called the reference trajectory.

Reference trajectories can be produced

- $-$ offline \implies available in whole during the operation e.g. elevator / crane / printer hear position profiles
- − online =⇒ retrieved from measured data e.g. cable-suspended cameras in sport events / missile interceptors

Control of
$$
\Sigma_2
$$

\nWith the same goal as above,

\n
$$
m\ddot{y} + c\dot{y} + ky = \rho(c\dot{u} + ku) \quad \wedge \quad y = r
$$
\n
$$
\uparrow \qquad \qquad \uparrow \qquad \uparrow \qquad \uparrow
$$
\n
$$
\rho(c\dot{u} + ku) = m\ddot{r} + c\dot{r} + kr
$$
\n
$$
\updownarrow
$$
\n
$$
\downarrow
$$
\n
$$
\
$$

Plant inversion

Moreover, controllers in these schemes,

act according to the same principle:

i.e. the controller

 $C_{ol} = P^{-1},$

where P^{-1} is the system such that $y = Pu \implies u = P^{-1}y$, whose transfer function equals $1/P(s)$. This strategy is called plant inversion.

Open-loop control

Control systems above can be visualized as

and

They are both particular cases of the open-loop control scheme

where C_{ol} is the controller connected in series with the plant and generating the control signal $u = C_0/r$.

11/52

Plant inversion: some limitations

Modeling uncertainty

Remember,

− models of real-world phenomena are never perfect.

Thus, P in $C_{ol} = P^{-1}$ is not the plant, but rather its (more or less accurate) approximation and the actual controlled system looks more like

for some "true" plant P_{true} . We then have that

$$
y = P_{\text{true}} P^{-1} r
$$

and this $y \neq r$ whenever $P_{true} \neq P$, with the error

$$
e := r - y = r - P_{true}P^{-1}r = (1 - P_{true}P^{-1})r
$$

14/52

16/52

Disturbances

Controlled systems

− always interact with the environment.

A way to express such interactions is by introducing disturbances, which are exogenous signals (i.e. independent of control actions) affecting the system. An example is the load disturbance d acting at the input and leading to

In this case

$$
y = P(P^{-1}r + d) = r + Pd
$$

and this $y \neq r$ whenever $Pd \neq 0$, with the error

$$
e=r-y=-Pd
$$

15/52

The control signal

 $u = P^{-1}r$

is fed to an actuator. Every physical actuator has limitations, like

- − bounded input amplitude
- − bounded input rate

− . . . We also prefer "smaller" and "smoother" control signals because of other considerations (like energy consumption, equipment wear and tear, etc)

Dynamic relations between r and u might result in

− unacceptable control signals from seemingly innocent references.

Control of Σ_3 : example

We still have perfect response

Control of Σ_3 : example (contd)

 \circ \vdash

 $y(t)$

Let the controller be implemented digitally, so that the control trajectory is piecewise-constant: 1 **|** 5009

 $\rho = 1.25$ m $k = 40000 \frac{\text{N sec}}{\text{m}}$ $c = 800 \frac{\text{N}}{\text{m}}$

 $m = 1410$ kg $J = 11 \text{ kg m}^2$ $b = 0$

Now, seemingly small deviations of the control signal from its designed waveform yields a steady drift of the regulated signal away from the required value. Explanations ?!!

Preliminaries: BIBO stability (from LS)

A linear $G: u \mapsto v$ is said to be BIBO stable if

 $-$ ∃γ \geq 0, independent of *u*, such that $||y||_{\infty} \leq \gamma ||u||_{\infty}$ for all $u \in L_{\infty}$ [\(i.e. a bounde](#page-0-1)d input always results in a bounded output, hence the name).

If G_1 and G_2 are stable, then so are G_2G_1 and $G_2 + G_1$.

Remember [\(from LS\) that](#page-4-0)

$$
L_q:=\big\{x:\mathbb{R}\to\mathbb{R}\mid \|x\|_q<\infty\big\},\;\text{where}\; \|x\|_\infty:=\sup_{t\in\mathbb{R}}|x(t)|\; \text{and}\; \|x\|_1:=\int_\mathbb{R}|x(t)|\,\mathsf{d} t.
$$

If G is LTI, then

− G [is BIBO stable iff its impu](#page-0-0)lse response $g \in L_1$.

If G is LTI and its transfer function $G(s)$ is rational, i.e. $G(s) = \frac{N_G(s)}{D_G(s)}$ $\frac{G(s)}{D_G(s)}$ for polynomials $N_G(s)$ and $D_G(s)$, then it is BIBO stable iff

1. $G(s)$ is proper (deg $D_G(s) \geq$ deg $N_G(s)$)

2.
$$
G(s)
$$
 has no poles in the closed RHP $\overline{C}_0 := \{ s \in \mathbb{C} \mid \text{Re } s \geq 0 \}$

Outline

25/52

27/52

Limitations of plant inversion: internal stability

Preliminaries: pole/zero cancellations

$$
\bullet \quad y \quad G_2 \quad G_1 \quad \bullet \quad u
$$

26/52

28/52

We say that there is a cancellation in the series interconnection above if

− the order of the mapping $u \mapsto y$ is smaller than the sum of the orders of its components, G_1 and G_2 .

Cancellations mean that some dynamics of the components disappear from the mapping $u \mapsto y$. If disappearing dynamics are unstable, i.e. their pole(s) is in \overline{C}_0 , we say that the cancellation is unstable. In the SISO case poles of one component can only be canceled by zeros of the other, hence the term pole/zero cancellations.

Example: Let

$$
G_1(s)=\frac{1}{s-a}\quad\text{and}\quad G_2(s)=\frac{s-a}{s+1}\quad\implies\quad G_2(s)G_1(s)=\frac{1}{s+1}
$$

i.e. the pole of $G_2(s)$ at a is canceled by a zero of $G_2(s)$ (unstable if $a > 0$).

Control of Σ_3 : cancellations

The plant

 $b=0$

$$
P(s) = \frac{(cs + k)\rho}{s^2((J + \rho^2 m)(ms^2 + cs + k) + \rho^2 m (cs + k))}
$$

is unstable because of a double pole at the origin. But

$$
C_{\text{ol}}(s) = \frac{s^2((J+\rho^2 m)(ms^2 + cs + k) + \rho^2 m (cs + k))}{(cs + k)\rho}
$$

cancels all poles and zeros of $P(s)$, so the controlled system $T_{yr} = PC_{ol} : r \mapsto y$ has

$$
\mathcal{T}_{yr}(s)=1
$$

29/52

31/52

and is obviously stable. But

− are those cancellations innocent?

Control of
$$
\Sigma_3
$$
: cancellations and implementation accuracy

\n\n $\frac{y}{s^2((J+\rho^2m)ms^2 + (J+2\rho^2m)(cs+k))} \cdot \frac{u}{s^2((J+\rho^2m)ms^2 + (J+2\rho^2m)(cs+k))} \cdot \frac{v}{(cs+k)\rho}$ \n

\n\n $\frac{s^2((J+\rho^2m)ms^2 + (J+2\rho^2m)(cs+k))}{(cs+k)\rho}$ \n

\n\n yields $T_{yr}(s) = 1$ only if the controller is implemented without any errors. If even a small inaccuracy occurs, then the result is different. For example, let the actual controller be

\n\n $\frac{y}{s^2((J+\rho^2m)ms^2 + (J+2\rho^2m)(cs+k))} \cdot \frac{u}{(cs+k)\rho}$ \n

\n\n for some ϵ . In this case\n

\n\n ϵ is the result in the image. The result is different in the image, we can use the actual controller to find the actual controller.\n

 $T_{yr}(s) = \frac{s + \epsilon}{s}$

is unstable whenever $\epsilon \neq 0$, regardless its size. In other words,

− implementation errors might prevent intended cancellations to happen, keeping remnants of unwanted plant dynamics in T_{vr} . This explains what we had with the digital implementation.

Control of Σ_3 : cancellations and disturbances

Still with
$$
b = 0
$$
,

\n
$$
\frac{\sqrt{(\frac{(J + \rho^2 m)s^2 + \rho^2 c s + \rho^2 k}{(cs + k)\rho})}}{\sqrt{(\frac{(J + \rho^2 m)s^2 + (\rho^2 c s + \rho^2 k)}{1 - (cs + k)\rho})}} \cdot \frac{d}{\sqrt{(\frac{(J + \rho^2 m)ms^2 + (J + 2\rho^2 m)(cs + k)}{1 - (cs + k)\rho})}} \cdot \frac{d}{\sqrt{(\frac{(J + \rho^2 m)ms^2 + (J + 2\rho^2 m)(cs + k)}{1 - (cs + k)\rho})}}}{\sqrt{(\frac{(J + \rho^2 m)s^2 + (J + 2\rho^2 m)(cs + k)}{1 - (cs + k)\rho})}} \cdot \frac{d}{\sqrt{(\frac{(J + \rho^2 m)s^2 + (J + 2\rho^2 m)(cs + k)}{1 - (cs + k)\rho})}}}{\sqrt{(\frac{(J + \rho^2 m)s^2 + (J + 2\rho^2 m)(cs + k)}{1 - (cs + k)\rho})}}.
$$

and the system $T_{\mathsf{y}f} : f \mapsto y$ has the transfer function

$$
T_{\mathsf{y}f}(s) = -\frac{(J+\rho^2 m)s^2 + \rho^2 c s + \rho^2 k}{s^2((J+\rho^2 m)ms^2 + (J+2\rho^2 m)(cs+k))}.
$$

with a double pole at the origin. Hence, T_{vf} is unstable, which explains the problem that we had with the disturbance response.

Internal stability of interconnected systems

The notion of internal stability aims at accounting for implications of − effects of all exogenous signals on all internal signals in interconnected systems. Applying to general open-loop control

we consider all mappings between inputs r and d and outputs y and u , i.e.

 $\lceil y \rceil$ u $\overline{}$ = $\lceil PC_{\text{ol}} \rceil$ $C_{\rm ol}$ 0 $\lceil \lceil r \rceil$ d 1 :

The open-loop control system is said to be

 $-$ internally stable if P, C_{ol} , and P C_{ol} are all stable.

Because the stability of P and C_{ol} implies that of PC_{ol} ,

 $-$ the system is internally stable iff both P and C_{ol} are stable.

Internal stability and unstable cancellations

By considering

 $\lceil y \rceil$ u 1 = $\begin{bmatrix} PC_{ol} & P \end{bmatrix}$ C_{ol} 0 \lceil \lceil r d 1

rather than PC_{ol} only, the requirement of internal stability aims at making

 $-$ unstable cancellations between P and C_{ol} illegal,

because canceled dynamics of PC_{ol} are still those of P or C_{ol} . Indeed,

- − a pole of $P(s)$ canceled by a zero of $C_{0}(s)$ is still in $P : d \mapsto y$,
- − a pole of $C_0(s)$ canceled by a zero of $P(s)$ is still in C_0 : $r \mapsto u$.

 $-$ *i* is bounded and measurable

This might be feasible (esp. if we know the waveform of r in advance), but

 $-$ hard (if not impossible) to implement if r is obtained online, thought a measurement channel.

Internal stability: implications on open-loop control

1. not applicable to unstable plants no C_{ol} can internally stabilize such systems anyway

- 2. not applicable to¹ nonminimum-phase plants would result in a controller $\mathcal{C}_{\textup{ol}} = P^{-1}$ with pole(s) in $\bar{\mathbb{C}}_0$, so unstable
- 3. might not be applicable to plants with strictly proper transfer functions would result in a controller with a non-proper transfer function, so unstable

¹We say that G is nonminimum-phase if $G(s)$ has at least one zero in \overline{C}_0 .

deg $\tilde{D}_P(s)=m$. Hence, this \mathcal{C}_{ol} is stable and implementable iff

 $- N_P(s)$ is Hurwitz and

33/52

35/52

 $-$ n – m derivatives of r are measurable and bounded.

This may be the case if r is generated analytically, by us, but rarely so if r is obtained via sensing a priori unknown signals.

Conclusions

Perfect control, $y = r$,

- − is never attainable in practical situations because of uncertainty, like modeling errors and disturbances
- − might be illegal because of internal instability caused by unstable cancellations
- − might be too expensive in terms of control efforts, reasons not explained yet

We then shall

- − resort to approximate attainment of a desired y, i.e. $y \approx r$
- − for a limited class of reference signals r

What could be the meaning of those approximate relation and limited class?

Outline

Steady-state and transient performance

Requirements on y revisited

With the elevator interpretation in mind, we may dream up requirements like:

- 1."move to a given position and stop there," which is our ultimate goal, where do we need to go
- 2."move fast / slow / smooth / etc," which reflects our [anti](#page-4-0)cipations of how requirement 1 is met

The control terminology for such requirements is

- 1. steady-state [requirements](#page-0-0)
- 2. transient requirements

applicable in various kinds of problems / contexts.

Steady-state and transient responses

The response of a *stable* LTI system to a regular (e.g. constant, polynomial, periodic) persistent (i.e. non-decaying) input signal u can be decomposed as

$$
y=y_{ss}+y_{tr},
$$

where the steady-state component, y_{ss} , has the same² "regularity" as u and the transient component, y_{tr} , decays, i.e. satisfies

$$
\lim_{t\to\infty}y_{\text{tr}}(t)=0.
$$

Examples:

37/52

39/52

²For example, if *u* is constant (or periodic), then so is y_{ss} .

Regular signals that we use

We study mainly responses to polynomial regular signals, like

step:
$$
r(t) = \mathbb{1}(t) = \frac{1}{\sqrt{t}}
$$
 with $R(s) = \frac{1}{s}$
range: $r(t) = \text{ramp}(t) = (\mathbb{1} * \mathbb{1})(t) = \frac{1}{\sqrt{t}}$ with $R(s) = \frac{1}{s^2}$

and

sine wave:
$$
r(t) = \sin(\omega t + \phi) \mathbb{1}(t) = \sqrt[3]{\sqrt{\frac{1}{t}}}
$$
 with $R(s) = \frac{s \sin \phi + \omega \cos \phi}{s^2 + \omega^2}$

Steady-state specifications: harmonic signals

If $r(t) = \sin(\omega t + \phi) \mathbb{1}(t)$, then the relation

 $r - v = (1 - T_{vr})r$

and the frequency-response theorem yield

$$
r_{ss}(t) - y_{ss}(t) = |1 - T_{yr}(j\omega)|\sin(\omega t + \phi + \arg(1 - T_{yr}(j\omega)))
$$

whenever T_{vr} is stable. It is natural to choose

$$
e_{\text{ss}}=|1-T_{\text{yr}}(j\omega)|=\underset{t\in[0,2\pi/\omega]}{\max}|r_{\text{ss}}(t)-y_{\text{ss}}(t)|
$$

as the measure of steady-state mismatch between r and y in this case then (i.e. this e_{ss} is again the steady-state error).

```
Remark: Mind that |1 - T_{vr}(j\omega)| \ll 1 \iff |T_{vr}(j\omega)| \approx 1 \land \arg T_{vr}(j\omega) \approx 0.
```
Steady-state specifications: polynomial signals

For polynomial regular signals, like step or ramp, we have clear measure of steady-state performance,

− steady-state error e_{ss}

defined as

$$
e_{ss}:=\lim_{t\to\infty}|r(t)-y(t)|,
$$

where y is the controlled signal. If the controlled system is stable, then the steady-state error can be calculated by the final value theorem. Indeed,

$$
y = T_{yr}r \qquad \Longrightarrow \qquad e := r - y = (1 - T_{yr})r
$$

If T_{vr} is stable, then

$$
e_{ss} = |\text{lim}_{s\to 0} s(1 - T_{yr}(s))R(s)|.
$$

and if r is

41/52

43/52

step:
$$
e_{ss} = |1 - T_{yr}(0)|
$$
 and $T_{yr}(0)$ called static gain of T_{yr}
ramp: $e_{ss} = |\lim_{s \to 0} \frac{1 - T_{yr}(s)}{s}| = |T'_{yr}(0)|$ (provided $T_{yr}(0) = 1$)

Steady-state specifications: moral

If the system is stable, then the steady-state error

$$
e_{ss} = \begin{cases} |1 - T_{yr}(j\omega)| & \text{if } r(t) = \sin(\omega t + \phi) \mathbb{1}(t) \\ |T'_{yr}(0)| & \text{if } r(t) = \text{ramp}(t) \text{ and } T_{yr}(0) = 1 \end{cases}
$$

(step corresponds to $\omega = 0$ and $\phi = \pi/2$) depends only on the − value of the transfer function $T_{vr}(s)$ at one point at the imaginary axis or, equivalently, the frequency response $T_{vr}(j\omega)$ at one frequency.

Transient specifications

We prefer transients to be short and smooth. These requirements are often

- − intrinsically conflicting
- − hard to quantify
- − heavily dependent on r

It is convenient (e.g. easier to compare, easier to analyze) to

− define transient specifications in terms of the response to a fixed signal even if the system will actually experience different input signals. Such fixed (test) signal in control is usually the unit step:

$$
\mathbb{1}(t)=\boxed{\frac{\ }{0\qquad t}}
$$

45/52

47/52

because it is

- − (relatively) easy to analyze
- − "shaky" enough to reveal properties of systems

Outline

[Transient responses of 1st and 2nd order systems \(self-study, fro](#page-0-0)m LS)

Step response transient specifications

2nd order systems

General form:

$$
G(s) = \frac{k_{\rm st}\omega_{\rm n}^2}{s^2 + 2\zeta\omega_{\rm n}s + \omega_{\rm n}^2}
$$

where

- k_{st} static gain
- $\omega_{\rm n}$ natural frequency (we assume that $\omega_{\rm n} > 0$)
- ξ damping factor (we assume that $\xi \geq 0$)

This is a second-order system with no zeros.

Classification:

- $-$ if $\zeta > 1$ system called overdamped (two distinct real poles)
- $-$ if $\zeta = 1$ system called critically damped (double real pole)
- $-$ if ζ < 1 system called underdamped (two complex conjugate poles)

with $\text{OS} = \text{e}^{-\pi \zeta / \sqrt{1 - \zeta^2}} \cdot 100\%$ (depends only on ζ) and time characteristics again inversely proportional to $\omega_{\rm n}$.

 3 Simpler estimates $t_{\mathsf{s},5} \approx \frac{3}{\zeta\omega_\mathsf{n}}$ and $t_{\mathsf{s},2} \approx \frac{3.9}{\zeta\omega_\mathsf{n}}$ may be used if $\zeta \ll 1$; however, as $\zeta \uparrow 1$ they might fail by a factor of ≈ 1.5 . 51/52

2nd order critically and overdamped systems

Step response

$$
y(t) = k_{st} \left(1 - \frac{\zeta + \sqrt{\zeta^2 - 1}}{2\sqrt{\zeta^2 - 1}} e^{-(\zeta - \sqrt{\zeta^2 - 1})\omega_n t} + \frac{\zeta - \sqrt{\zeta^2 - 1}}{2\sqrt{\zeta^2 - 1}} e^{-(\zeta + \sqrt{\zeta^2 - 1})\omega_n t} \right)
$$

(for critically damped systems, $y(t) = k_{\rm st}(1 - e^{-\omega_n t} - \omega_n t e^{-\omega_n t}) \mathbb{1}(t)$) or

with $OS = 0\%$. Note that all time characteristics inversely proportional to $\omega_{\rm n}$, meaning that

 $-$ transients become faster as $\omega_{\rm n}$ grows.

50/52

Important points

Static gain k_{st} has

49/52

− no effect on transients

in both 1st and 2nd order systems, it merely scales the y-axis.

Time constant τ & natural frequency ω_n affect transients only through

− scaling the time axis

and do not affect the shape of transient response (smaller $\tau /$ larger ω_n yield faster response).

Damping factor ζ affects both

− shape of transients

and

speed of transients

(as ζ decreases, transients become faster albeit more oscillatory).