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Abstract control problem to begin with (contd)

Setup:

uy
P

where

− P is a plant
may comprise actual controlled process, actuators, sensors, et cetera

− u is a control signal (control input)

− y is a controlled (regulated) signal (output)

Problem: Given P, find u resulting in a desired y .
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Desired behavior

uy
P

“Desired y” may be introduced via the requirement that

y = r

for some signal

− r , called the reference trajectory.

Reference trajectories can be produced

− offline =⇒ available in whole during the operation
e.g. elevator / crane / printer hear position profiles

− online =⇒ retrieved from measured data
e.g. cable-suspended cameras in sport events / missile interceptors
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Control of Σ1

� uy

Our goal:

− find u such that y = r for a given signal r .

Obviously,

y = �u ∧ y = r

⇕
r = �u

⇕

u =
1

�
r ⇐⇒ 1

�

u r
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Control of Σ1: example

� = 1:25m

The choice of the reference signal:

0 1.1839 2.3678

0

1

0 1.1839 2.3678

0

0.84

0 1.1839 2.3678

-1.2

0

1.2

Remarks:

− both ṙ and r̈ are bounded and continuous,

− the fastest rise by 1[m] subject to |r̈(t)| ≤ 1:2 [m/s2] and
| ...r (t)| ≤ 2:5 [m/s3] for all t ≥ 0,

− the final position, viz. limt→∞ y(t) = 1[m], is selected to
emphasize transition regimes.
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Control of Σ1: example (contd)

� = 1:25m

Applying u = 0:8r ,

0 2.3678 4.7356

0

1

0 2.3678 4.7356

0

0.8

This control trajectory is easy to guess.
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Control of Σ2: example

� = 1:25m

k = 40000N sec
m

c = 800 N
m

m = 1410 kg

m = 2820 kg

A guess would be harder for a more complex plant:

0 2.3678 4.7356

0

1

0 2.3678 4.7356

0

0.8

0 1.0858 2.1715

0

0.1

0 1.0858 2.1715

0

0.08
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Control of Σ2

(cs + k)�

ms2 + cs + k

uy

With the same goal as above,

mÿ + cẏ + ky = �(cu̇ + ku) ∧ y = r

⇕

�(cu̇ + ku) = mr̈ + cṙ + kr

⇕
ru ms2 + cs + k

(cs + k)�

(as �(cu̇ + ku) = mr̈ + cṙ + kr ⇐⇒ U(s) = ms2+cs+k
(cs+k)� R(s)).
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Open-loop control

Control systems above can be visualized as

ruy
�

1

�

and

ruy (cs + k)�

ms2 + cs + k

ms2 + cs + k

(cs + k)�

They are both particular cases of the open-loop control scheme

ruy
P Col

where Col is the controller connected in series with the plant and generating
the control signal u = Colr .
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Plant inversion

Moreover, controllers in these schemes,

ruy
�

1

�

ruy (cs + k)�

ms2 + cs + k

ms2 + cs + k

(cs + k)�

act according to the same principle:

ruy
P P−1

i.e. the controller
Col = P−1;

where P−1 is the system such that y = Pu =⇒ u = P−1y , whose transfer
function equals 1=P(s). This strategy is called plant inversion.
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Plant inversion (contd)

As straightforward as it may look, this idea is

− the heart of most (model-based) control strategies.

The controller

ruy
P P−1

guarantees y = r for every r .

Q: Is it that simple ?

A: No, it is not.
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Modeling uncertainty

Remember,

− models of real-world phenomena are never perfect.

Thus, P in Col = P−1 is not the plant, but rather its (more or less accurate)
approximation and the actual controlled system looks more like

ruy
Ptrue P−1

for some “true” plant Ptrue. We then have that

y = PtrueP
−1r

and this y ̸= r whenever Ptrue ̸= P, with the error

e ··= r − y = r − PtrueP
−1r = (1− PtrueP

−1)︸ ︷︷ ︸
∆P

r
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Modeling uncertainty & plant inversion: example

� = 1:25m

k = 40000N sec
m

c = 800 N
m

m = 1410 kg

m = 2820 kg

If the actual mass mismatches that assumed in the design of u:

0 2.3678 4.7356

0

1

0 2.3678 4.7356

0

0.8

− u calculated for m = 1410 applied to m = 2820

− u calculated for m = 2820 applied to m = 1410

Curiously,

− “blue” oscillations are substantially larger than “red” ones.

Why?
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Disturbances

Controlled systems

− always interact with the environment.

A way to express such interactions is by introducing disturbances, which are
exogenous signals (i.e. independent of control actions) affecting the system.
An example is the load disturbance d acting at the input and leading to

ru
d

y
P P−1

In this case
y = P(P−1r + d) = r + Pd

and this y ̸= r whenever Pd ̸= 0, with the error

e = r − y = −Pd
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Disturbances & plant inversion: example

� = 1:25m

k = 40000N sec
m

c = 800 N
m

m = 1410 kg

m = 2820 kg

The effect of external force f corresponds to the diagram

uy

f

d
(cs + k)�

ms2 + cs + k

− 1

(cs + k)�

i.e. this d is a low-pass filtered and scaled (by 1
k� ) version of f .

Open-loop controlled system is then

ruy

f

d
(cs + k)�

ms2 + cs + k

− 1

(cs + k)�

ms2 + cs + k

(cs + k)�
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Disturbances & plant inversion: example (contd)

� = 1:25m

k = 40000N sec
m

c = 800 N
m

m = 1410 kg

m = 2820 kg

Leta

f = −250g(S−0:741 − S−1:921) = t
0

−250g

(think of a jump of somebody heavy, like , in an elevator).
Responses:

0 0.7405 1.9235 2.3678 4.7356

0

1

0 2.3678 4.7356

0

0.8

Now“red” oscillations are substantially larger than “blue” ones.
Why?

aThe time shift operator S� acts as (S�x)(t) = x(t + �).
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Control effort

ruy
P P−1

The control signal
u = P−1r

is fed to an actuator. Every physical actuator has limitations, like

− bounded input amplitude

− bounded input rate

− . . .

We also prefer “smaller” and “smoother” control signals because of other
considerations (like energy consumption, equipment wear and tear, etc)

Dynamic relations between r and u might result in

− unacceptable control signals from seemingly innocent references.
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Control effort & plant inversion: example

� = 1:25m

k = 40000N sec
m

c = 800 N
m

m = 2820 kg

Fastest rise by 1[m] under |r̈(t)| ≤ amax and | ...r (t)| ≤ jmax for
various amax and jmax:

0 0.286 0.639 2.368

0

1

This might require high control effort (large amplitude of u).
Why?
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Control of Σ3

With u = � (torque),

u� !y

�ms2

(cs + k)�

ms2 + cs + k

1

(J + �2m)s + b

1

s

−

for which

P(s) =
(cs + k)�

s((J + �2m)s + b)(ms2 + cs + k) + �2ms2(cs + k)

Plant inversion works then as follows:

(cs + k)�

s((J + �2m)s + b)(ms2 + cs + k) + �2ms2(cs + k)

s((J + �2m)s + b)(ms2 + cs + k) + �2ms2(cs + k)

(cs + k)�

ruy
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Control of Σ3: example

� = 1:25m

k = 40000N sec
m

c = 800 N
m

m = 1410 kg

J = 11 kgm2

b = 0

We still have perfect response

0 2.3678 4.7356

0

1

0 2.3678 4.7356

-5009

0

5009

requiring sophisticated control trajectory
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Control of Σ3: adding disturbances

If an external force f applies to the mass, we have:

u� !y

f

�ms2

1

(cs + k)�

(cs + k)�

ms2 + cs + k

1

(J + �2m)s + b

�

1

s

−
−−

which is equivalent to applying input disturbance d such that

D(s) = −(J + �2m)s2 + (b + �2c)s + �2k

(cs + k)�
F (s)

Control system is then

(cs + k)�

s((J + �2m)s + b)(ms2 + cs + k) + �2ms2(cs + k)

s((J + �2m)s + b)(ms2 + cs + k) + �2ms2(cs + k)

(cs + k)�

−(J + �2m)s2 + (b + �2c)s + �2k

(cs + k)�

r

f

d

uy
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Control of Σ3: example (contd)

� = 1:25m

k = 40000N sec
m

c = 800 N
m

m = 1410 kg

J = 11 kgm2

b = 0

If
f = −25g(S−1:36781 − S−2:36781) = t

0

−25g

(like a jump of somebody light, like , in an elevator), then

0 1.3678 2.3678 4.7356

0

1

0 2.3678 4.7356

-5009

0

5009

Oops . . . Explanations ?
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Control of Σ3: example (contd)

� = 1:25m

k = 40000N sec
m

c = 800 N
m

m = 1410 kg

J = 11 kgm2

b = 0

Let the controller be implemented digitally, so that the control
trajectory is piecewise-constant:

0 2.3678 4.7356

0

1

0 2.3678 4.7356

-5009

0

5009

Now, seemingly small deviations of the control signal from its
designed waveform yields a steady drift of the regulated signal
away from the required value. Explanations ?!!
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Preliminaries: BIBO stability (from LS)

A linear G : u 7→ y is said to be BIBO stable if

− ∃ ≥ 0, independent of u, such that ∥y∥∞ ≤ ∥u∥∞ for all u ∈ L∞
(i.e. a bounded input always results in a bounded output, hence the name).
If G1 and G2 are stable, then so are G2G1 and G2 + G1.

Remember (from LS) that

Lq ··=
{
x : R → R | ∥x∥q <∞

}
; where ∥x∥∞ ··= sup

t∈R

|x(t)| and ∥x∥1 ··=
∫

R

|x(t)|dt:

If G is LTI, then

− G is BIBO stable iff its impulse response g ∈ L1.

If G is LTI and its transfer function G (s) is rational, i.e. G (s) =
NG (s)

DG (s)
for

polynomials NG (s) and DG (s), then it is BIBO stable iff

1. G (s) is proper (degDG (s) ≥ degNG (s))

2. G (s) has no poles in the closed RHP C̄0 ··= {s ∈ C | Re s ≥ 0}
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Preliminaries: pole/zero cancellations

G1G2
uy

We say that there is a cancellation in the series interconnection above if

− the order of the mapping u 7→ y is smaller than the sum of the orders
of its components, G1 and G2.

Cancellations mean that some dynamics of the components disappear from
the mapping u 7→ y . If disappearing dynamics are unstable, i.e. their pole(s)
is in C̄0, we say that the cancellation is unstable. In the SISO case poles of
one component can only be canceled by zeros of the other, hence the term
pole/zero cancellations.

Example: Let

G1(s) =
1

s − a
and G2(s) =

s − a

s + 1
=⇒ G2(s)G1(s) =

1

s + 1

i.e. the pole of G2(s) at a is canceled by a zero of G2(s) (unstable if a ≥ 0).
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Control of Σ3: cancellations

b = 0

The plant

P(s) =
(cs + k)�

s2
(
(J + �2m)(ms2 + cs + k) + �2m(cs + k)

)

is unstable because of a double pole at the origin. But

Col(s) =
s2
(
(J + �2m)(ms2 + cs + k) + �2m(cs + k)

)

(cs + k)�

cancels all poles and zeros of P(s), so the controlled system
Tyr = PCol : r 7→ y has

Tyr (s) = 1

and is obviously stable. But

− are those cancellations innocent?
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Control of Σ3: cancellations and disturbances

Still with b = 0,

(cs + k)�

s2
(
(J + �2m)ms2 + (J + 2�2m)(cs + k)

) s2
(
(J + �2m)ms2 + (J + 2�2m)(cs + k)

)

(cs + k)�

−(J + �2m)s2 + �2c s + �2k

(cs + k)�

r

f

d

uy

and the system Tyf : f 7→ y has the transfer function

Tyf (s) = − (J + �2m)s2 + �2c s + �2k

s2
(
(J + �2m)ms2 + (J + 2�2m)(cs + k)

) :

with a double pole at the origin. Hence, Tyf is unstable, which explains the
problem that we had with the disturbance response.
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Control of Σ3: cancellations and implementation accuracy

(cs + k)�

s2
(
(J + �2m)ms2 + (J + 2�2m)(cs + k)

) s2
(
(J + �2m)ms2 + (J + 2�2m)(cs + k)

)

(cs + k)�

ruy

yields Tyr (s) = 1 only if the controller is implemented without any errors. If
even a small inaccuracy occurs, then the result is different. For example, let
the actual controller be

(cs + k)�

s2
(
(J + �2m)ms2 + (J + 2�2m)(cs + k)

) s(s + �)
(
(J + �2m)ms2 + (J + 2�2m)(cs + k)

)

(cs + k)�

ruy

for some �. In this case

Tyr (s) =
s + �

s

is unstable whenever � ̸= 0, regardless its size. In other words,

− implementation errors might prevent intended cancellations to happen,

keeping remnants of unwanted plant dynamics inTyr . This explains what we
had with the digital implementation.
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Internal stability of interconnected systems

The notion of internal stability aims at accounting for implications of

− effects of all exogenous signals on all internal signals

in interconnected systems. Applying to general open-loop control

ru
d

y
P Col

we consider all mappings between inputs r and d and outputs y and u, i.e.

[
y
u

]
=

[
PCol P
Col 0

] [
r
d

]
:

The open-loop control system is said to be

− internally stable if P, Col, and PCol are all stable.

Because the stability of P and Col implies that of PCol,

− the system is internally stable iff both P and Col are stable.
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Internal stability and unstable cancellations

ru
d

y
P Col

By considering [
y
u

]
=

[
PCol P
Col 0

] [
r
d

]

rather than PCol only, the requirement of internal stability aims at making

− unstable cancellations between P and Col illegal,

because canceled dynamics of PCol are still those of P or Col. Indeed,

− a pole of P(s) canceled by a zero of Col(s) is still in P : d 7→ y ,

− a pole of Col(s) canceled by a zero of P(s) is still in Col : r 7→ u.
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Internal stability: implications on open-loop control

ruy
P Col

1. not applicable to unstable plants
no Col can internally stabilize such systems anyway

ruy
P P−1

2. not applicable to1 nonminimum-phase plants
would result in a controller Col = P−1 with pole(s) in C̄0, so unstable

3. might not be applicable to plants with strictly proper transfer functions
would result in a controller with a non-proper transfer function, so unstable

1We say that G is nonminimum-phase if G(s) has at least one zero in C̄0.
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Control of Σ2: properness

If c ̸= 0,

ruy (cs + k)�

ms2 + cs + k

ms2 + cs + k

(cs + k)�

then

U(s) =
ms2 + cs + k

(cs + k)�
R(s)

=
m

c�
sR(s) +

(c − km=c)s + k

(cs + k)�︸ ︷︷ ︸
stable

R(s)

This control law implementable only if

− ṙ is bounded and measurable

This might be feasible (esp. if we know the waveform of r in advance), but

− hard (if not impossible) to implement if r is obtained online,

thought a measurement channel.
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Controller properness

ruy
P Col

If P(s) = NP(s)=DP(s) with degDP(s) =·· n > m ··= degNP(s), then

Col(s) =
1

P(s)
=

DP(s)

NP(s)
= cn−m sn−m + · · ·+ c1s +

D̃P(s)

NP(s)

for certain coefficients ci with cn−m ̸= 0 and a polynomial D̃P(s) such that
deg D̃P(s) = m. Hence, this Col is stable and implementable iff

− NP(s) is Hurwitz and

− n −m derivatives of r are measurable and bounded.

This may be the case if r is generated analytically, by us, but rarely so if r
is obtained via sensing a priori unknown signals.
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Conclusions

Perfect control, y = r ,

− is never attainable in practical situations
because of uncertainty, like modeling errors and disturbances

− might be illegal
because of internal instability caused by unstable cancellations

− might be too expensive
in terms of control efforts, reasons not explained yet

We then shall

− resort to approximate attainment of a desired y , i.e. y ≈ r

− for a limited class of reference signals r

What could be the meaning of those approximate relation and limited class?
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Requirements on y revisited

With the elevator interpretation in mind, we may dream
up requirements like:

1.“move to a given position and stop there,” which is
our ultimate goal, where do we need to go

2.“move fast / slow / smooth / etc,” which reflects our
anticipations of how requirement 1 is met

The control terminology for such requirements is

1. steady-state requirements

2. transient requirements

applicable in various kinds of problems / contexts.
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Steady-state and transient responses

The response of a stable LTI system to a regular (e.g. constant, polynomial,
periodic) persistent (i.e. non-decaying) input signal u can be decomposed as

y = yss + ytr;

where the steady-state component, yss, has the same2 “regularity” as u and
the transient component, ytr, decays, i.e. satisfies

lim
t→∞

ytr(t) = 0:

Examples:

= + or = +

2For example, if u is constant (or periodic), then so is yss.
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Regular signals that we use

We study mainly responses to polynomial regular signals, like

step: r(t) = 1(t) =
t0
with R(s) =

1

s

ramp: r(t) = ramp(t) = (1 ∗ 1)(t) =
t0

with R(s) =
1

s2

and

sine wave: r(t) = sin(!t + �)1(t) = t0
with R(s) =

s sin� + ! cos�

s2 + !2
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Steady-state specifications: polynomial signals

For polynomial regular signals, like step or ramp, we have clear measure of
steady-state performance,

− steady-state error ess

defined as
ess ··= limt→∞|r(t)− y(t)|;

where y is the controlled signal. If the controlled system is stable, then the
steady-state error can be calculated by the final value theorem. Indeed,

y = Tyr r =⇒ e ··= r − y = (1− Tyr )r

If Tyr is stable, then

ess = |lims→0 s(1− Tyr (s))R(s)|:

and if r is

step: ess = |1− Tyr (0)| and Tyr (0) called static gain of Tyr

ramp: ess =
∣∣lims→0

1−Tyr (s)
s

∣∣ = |T ′
yr (0)| (provided Tyr (0) = 1)
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Steady-state specifications: harmonic signals

If r(t) = sin(!t + �)1(t), then the relation

r − y = (1− Tyr )r

and the frequency-response theorem yield

rss(t)− yss(t) = |1− Tyr (j!)| sin(!t + � + arg(1− Tyr (j!)))

whenever Tyr is stable. It is natural to choose

ess = |1− Tyr (j!)| = max
t∈[0;2�=!]

|rss(t)− yss(t)|

as the measure of steady-state mismatch between r and y in this case then
(i.e. this ess is again the steady-state error).

Remark: Mind that |1− Tyr (j!)| ≪ 1 ⇐⇒ |Tyr (j!)| ≈ 1 ∧ argTyr (j!) ≈ 0.
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Steady-state specifications: moral

If the system is stable, then the steady-state error

ess =

{
|1− Tyr (j!)| if r(t) = sin(!t + �)1(t)

|T ′
yr (0)| if r(t) = ramp(t) and Tyr (0) = 1

(step corresponds to ! = 0 and � = �=2) depends only on the

− value of the transfer function Tyr (s) at one point at the imaginary axis

or, equivalently, the frequency response Tyr (j!) at one frequency.
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Transient specifications

We prefer transients to be short and smooth. These requirements are often

− intrinsically conflicting

− hard to quantify

− heavily dependent on r

It is convenient (e.g. easier to compare, easier to analyze) to

− define transient specifications in terms of the response to a fixed signal

even if the system will actually experience different input signals. Such fixed
(test) signal in control is usually the unit step:

1(t) =
t0

because it is

− (relatively) easy to analyze

− “shaky” enough to reveal properties of systems
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Step response transient specifications

y (t)

t0

yss

tp

ypeak

yus

2y
ı

ts

tr

10%

90%

OS ··= yos
yss

overshoot (in %)

US ··= −yus
yss

undershoot (in %)

tr rise time

tp peak time

ts settling time

ı ··= yı
yss

settling level (in %)

− OS and, sometimes, US reflect the “shakiness” of transients

− tr and, sometimes, tp reflect the speed of transients

− ts reflects the duration of transients (given the “duration criterion” ı)
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1st order systems

General form:
G (s) =

kst
�s + 1

where

kst static gain

� time constant (we assume that � > 0)

Step response:
y(t) = kst(1− e−t=� )

or

t0

10%

90%

2.2�

2
×

5%

3�

2
×

2%

3.9�

kst

with OS = 0%.
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2nd order systems

General form:
G (s) =

kst!
2
n

s2 + 2�!ns + !2
n

where

kst static gain

!n natural frequency (we assume that !n > 0)

� damping factor (we assume that � ≥ 0)

This is a second-order system with no zeros.

Classification:

− if � > 1 system called overdamped (two distinct real poles)

− if � = 1 system called critically damped (double real pole)

− if � < 1 system called underdamped (two complex conjugate poles)
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2nd order critically and overdamped systems

Step response

y(t) = kst

(
1− � +

√
�2 − 1

2
√
�2 − 1

e−(�−
√
�2−1)!nt +

� −
√
�2 − 1

2
√
�2 − 1

e−(�+
√
�2−1)!nt

)

(for critically damped systems, y(t) = kst(1− e−!nt − !nt e
−!nt)1(t)) or

t0

kst

tr
10%

90%

2
×
5%

ts,5

2
×

2%

ts,2

tr ≈
1

!n

{
4.9� − 1.5 if 1 ≤ � < 2

4.4� − 0.5 if � ≥ 2

ts,5 ≈
1

!n

{
−0.6�2 + 8.5� − 3.1 if 1 ≤ � < 2

6� − 0.5 if � ≥ 2

ts,2 ≈
1

!n

{
−1.1�2 + 12.3� − 5.3 if 1 ≤ � < 2

7.9� − 0.9 if � ≥ 2

with OS = 0%. Note that all time characteristics inversely proportional to
!n, meaning that

− transients become faster as !n grows.
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2nd order underdamped systems

Step response, where !d ··= !n

√
1− �2 is the damped natural frequency,

y(t) = kst

(
1− 1√

1− �2 e
−�!nt sin(!dt + arccos �)

)
1(t)

or3

t0

tr
10%

90%

2
×

2%

ts,2

2
×

5%

ts,5

tr ≈
1.6�3 − 0.17�2 + 0.92� + 1.02

!n

ts,5 ≈
2.88

(−�2 + 0.64� + 0.96) �!n

ts,2 ≈
6.49

(−�2 + 0.45� + 1.65) �!n

kst

10%

90%

kst
(
1 + e−��=

√
1−�2 )

tp = �=!d

kst
(
1− e−�!nt=

√
1− �2

)

kst
(
1 + e−�!nt=

√
1− �2

)

with OS = e−��=
√
1−�2 ·100% (depends only on �) and time characteristics

again inversely proportional to !n.

3Simpler estimates ts;5 ≈ 3
�!n

and ts;2 ≈ 3:9
�!n

may be used if � ≪ 1; however, as � ↑ 1
they might fail by a factor of ≈ 1:5.
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Important points

Static gain kst has

− no effect on transients

in both 1st and 2nd order systems, it merely scales the y -axis.

Time constant � & natural frequency !n affect transients only through

− scaling the time axis

and do not affect the shape of transient response (smaller �/ larger !n yield
faster response).

Damping factor � affects both

− shape of transients

and

− speed of transients

(as � decreases, transients become faster albeit more oscillatory).
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