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Abstract control problem to begin with
Setup:

u

4 P
L)

where

— Pis a plant
may comprise actual controlled process, actuators, sensors, et cetera

— wu is a control signal (control input)

— y is a controlled (regulated) signal (output)

Problem: Given P, find u resulting in a desired y.
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Modeling

What is it about?

u

A P
L)

Model is a

— description of systems using an abstract (e.g. mathematical) language.

Modeling lets us handle problems of various nature, e.g.
— mechanical,
— electrical,
— biological,
— social,
in a unified manner. It must be realized though that
— models of real-world phenomena are never perfect,

they are just (more or less accurate) approximations of real processes.




Why to model?

y -
From control viewpoint, modeling is necessary just because

— if we do not know how the plant responds to our actions, then control
tasks are hopeless.

In other words,

— model-free control is essentially a coin tossing.

How to model?

Essentially, three ways:
1. from first principles ab initio
2. phenomenological

3. from observing experimental 1/0 relations identification

Outline

Case-study systems and their first-principles modeling

Case-studies

System X;:

e control mass position y e control mass position y e control mass position y
e via pulley angle 6 e via pulley angle 6 e via torque t
o elevator as motivation o elevator with long hoistway as motivation

Data

Consider where
p: pulley radius

mi, My: masses
k: spring constant
c: damping coefficient
J: moment of inertia of pulley + shaft
b: friction coefficient of pulley + shaft
f: external force applied to m; (2nd input)

Denote also

fi1, fyo: tension forces at my and my, respectively
Lo:=yxo—y2at 8 =0
Li:==y10—n
Lo:=mp —y20 — y2
L:= L; + L, length of non-elastic part




Motion equations

Masses dynamics:
—miy1(t) = mg + f(t) — fu(t) and  — may(t) = mag — ko(t)

Spring-damper dynamics:

c(y20(t) — y10(t)) + k(y20(t) — y10(t)) = fua(t)

Pulley dynamics:

JO(t) + bO(t) = ©(t) — pfa(t) + pho(t)

Algebraic constraints:
y1o(t) — ya(t) = Lu,
—y20(t) — y2(t) = Lo — 7p,
y20(t) — ya(t) = Lo + 2p0(t)

Elimination of variables

From algebraic constraints,

Lo—L2+JTp
2 b

Lo+ L—mp

y2 = —pb 5

yio=y1+ L1,y =p0+

Then, spring-damper verifies

N Lo—Lo+m
c(pt —y1) + k(pf — y1) + k (022'0 - Ll) =fa

and the tension forces are

fo = my1 + mg +f,
fio = Majn + mMag = —pmab + mog

System equations

Thus, we have:

L+ —Lo— :
m;g+ o 20 np)zp(c@—{—k@)—f

(J+ pzmg)é + b =17 — pmiyr — p(my — mo)g — pf

miy1 +cy1 + kyr + k(

This is a nonlinear set of equations (superposition principle doesn't hold!).

! Just think of the simpler system y = u+ 1. Since (u1 + o) +1 # (i +1) + (u2 + 1),
it's nonlinear. Such systems are called affine and can be linearized precisely via introducing
deviation variables. For example, define i = u + 1, which yields linear system y = i.

Equilibrium
In equilibrium, the system satisfies algebraic equations

L+L1—L0—7Tp_f+m1g
2 k
T = p(my — m2)g + pf

y1=p0—

If we assume that y; = y» at 6 = 0 and f = 0, an additional constraint

_L+L1—L0—7Tp Mg __Lo—f-Lz—JT,O
2 k 2
yields Lo = L1 + m1g/k, so that

L—np+mg/k f
= pb — - _
yi=p 5 P

T = p(m — mp)g + pf

We then choose the equilibrium corresponding to 6§ = 0 and f = 0.




Linearization Block-diagram

Defining deviation variables Thus, can be modeled as

L—mp+mg/k .
i 5 18/ and  T(t) := t(t) — p(m1 — mo)g

yl(t) = yl(t) +

(cs+k)p

we end up with the following linear model: ms etk
mifa(t) + cha(t) + ks (t) = p(ch(r) + kb(1)) — F(t) I :
(4 + p?m2)8(t) + bO(t) = E(t) — pmija(t) — pf(t) _ o
in terms of deviations
or
- 1 - L—rmp+ mg/k
V() = ooy (s KnB(s) = F(5) i(t) = yi(t) + o
_ 1 20y 2% (o) T(t) = =(t) — p(m — m2)g
O5) = (G5 ey s (1)~ pmis?Vi(s) = pF(s)

from the equilibrium corresponding to y; = y» at

in the Laplace domain. ‘ O—0and f =0

System ¥; (Atwood machine) System X

Let Assuming inelastic string, no slippage, and y = 0 at Let Now, the system motion satisfies
=0, .
my(t) + c(y(t) — pb(t)) + k(y(t) — pb(t)) = 0

(assuming no slippage and y = 0 at 6 = 0), which

y(t) = pb(t) (with € in rad),

so the system can be presented by the following block leads to
diagram: y (cs+ K)p u
ms? 4+ cs + k

: “
%\ ﬁ) and the plant transfer function
W)U

P(s)=p

and the plant transfer function
(cs+ k)p
P(s) = —=> " 5F
(s) ms? + cs + k
(note that lim o, P(s) = p).




System 2, with disturbance

Let

Now, the system motion satisfies

my(t) + c(y(t) — pB(2)) + k(y(t) — pb(t)) = —f(t)

(assuming no slippage and y =0 at € =0 and f = 0),
which leads to

(es+k)p
ms? + cs + k

where signal d called input disturbance.

In this case, assuming no slippage and y =0at 6 =0
we have the following block diagram:

pms?
y | [(esthp | 6 [ 1] o 1 X v
| ms?+cs+ k| | s | | (J+p2m)s+b

and the plant transfer function

_ (cstk)p
P(S) T s((J+p?m)s+b)(ms?+cs+k)+p>ms?(cs+k)

(it is unstable because of the pole at the origin).

Outline

Actuation: DC motors and their first-principles modeling

DC motors

Armature
Stator
winding N

Rotor windings /N/%;///

. 0 .
PN Inertia = J
Friction = f

Load

sketch wiring diagram

Electric motors are devices converting
— electrical energy into mechanical energy.

DC motors run on DC electric power. There are many types of DC motors,
we study armature-controlled brushed DC motors.




DC motors (contd)

Advantages:
— high torque
— position / speed / torque controllability over a wide range
— portability
— well-behaved speed-torque characteristics

Applications (actuators):
— robotic manipulators
— tape transport mechanisms

— disk drivers

Modeling voltage-controlled DC motors

Important things:

1. Torque t, generated by the motor proportional to armature current iy:
Tm(t) = Kmia(t) or Tm(s) = Kmh(s),

where K, [NT’“} is the motor constant (torque constant).

2. Armature current satisfies
: . VLa(s) — V(s
Laia(t) + Raia(t) = va(t) — wo(t) or L(s) = a(La)erRt;()

where v, is the applied input voltage and v, is the back electromotive
force (back emf) voltage proportional to motor angular velocity wp,:

w(t) = Kpom(t) or Wb(s) = KbQm(s),

where Kj, [Vr:gc} is the motor back emf constant? (9.55% R~ lrplm).

2Normally, K, = K, if measured in compatible units.

Modeling voltage-controlled DC motors (contd)

Resulting system can be presented as the following block diagram:

. 1
Vb

Wm

Ky

Here yioad is @ (controlled) load output, not necessarily coinciding with the
motor shaft angular velocity wp,.

The dependence of wy, on the load and internal feedback loop® (back emf)
renders voltage-controlled motors

— strongly dependent on load dynamics.

We shall explicitly have wy, as an output of the load model to incorporate
the load into the motor model.

*Models substantially simplified in the current-controlled case (no back emf loop).

Example 1: rigid mechanical load

Tm

Jb O

Consider a rigid load (e.g. the rotor itself) with yjoaqg = ®m and satisfying

1

Jom(t) + bom(t) = tm(t) or Qu(s) = P bTm(s),

where J is its moment of inertia and b is the friction coefficient.




Example 1: rigid mechanical load (contd)

In this case we have:

which results in the following transfer function from v, to wn:

Km

P, =
w(s) (Las + Ra)(Js + b) + KpKm’

which is always stable (2nd order denominator with positive coefficients).

Example 1: rigid mechanical load (contd)

If Yioad = Om (motor shaft angle), then system becomes

On | 1 [om | 1 | tm B[ 1 v,
s ]| Fp | Ko s R
Vb
Ky

with the transfer function

Ko 1
Pg(s) = (Lo T R)(s 7 5) T KoKe) — EPa)(S),

which is unstable (pole at the origin). If armature (electrical) time constant

is significantly smaller than mechanical time constant, i.e. if ,L?—Z < %, then
Km

Ra(Js + b) + Kb Km

Km
(Ra(Js + b) + KpKm)

Py (s) ~ and  Py(s) =~ <

(where L, neglected) are sufficiently accurate.

Example 1: electrical time constant

Consider a motor (in fact, MINIMOTOR 2342) with

KnM] Ke[%=] Jlkgm?]  b[9™]  RQ]  L[H]

rad sec

0.0261 0.0261 5.8-107 9.67-107° 7.1 2651077

with mechanical and electrical time constants of 6 - 103 and 3.73- 1072,
respectively. This results in

19.082

p _
«(5) = (00035 + 1)(3.756 . 1055 + 1)

or, if we neglect L,,

10.082
P, N
(%)~ 50035 + 1

Example 1: electrical time constant (contd)

86.8
182.21

n(t) (rpm)
n(2) (pm)

0 001 0.02 o 1 2
; 3
Time, t (sec) Time, t (sec) x10

Step responses of the second- and first-order systems
— almost indistinguishable®,

which justifies neglecting the dynamics of the armature circuit in this case.

*Except for a small difference at the start, see the close-up on the right.




Example 2: load with flexible transmission

Consider now a load (J and b;) connected to the motor shaft (Jn and by,)

by a flexible inertialess transmission with the dynamics
Gt S + ki

(t) = kebOs(t) + cwg(t) or T(s) = S Qs(s),

where 05 := 6, — 6, wg = 95 = wm — w and k; and ¢ are the stiffness and

damping coefficient, respectively, of the transmission. The other equations:

Tm(s) — Ti(s)
Jns + bm

= Ti(s).
Jis+ b t(s)

In@m(t) + bn@m(t) = Tm(t) — e(t) or Qun(s) =

J|d)|(t) + b|a)|(t) = ‘Et(t) or Q|(S)

Example 2: load with flexible transmission (contd)

This system corresponds to the following block-diagram:

W 1 T s+ k (o 1 S
Jis+b s - IS + b

Combining load and motor block diagrams, we end up with

(<] ‘ L ‘ Tt ‘ s+ ke Wm 1 - Tm K a 1 Va
| Js+b | | s - JmS + brm m Ls+ R | —
—_— Wb
Ko

The transfer function of the system can be derived by routine block-diagram
manipulations, as shown in Lecture 1.

System 23 as load

Remember, this system described as

2

pms
| [evm e [Tle [ 1T ] 4 -
‘msz\cs\k‘ ‘ s ‘ ‘(J p>m)s + b

If T is generated by a DC motor, we end up with the plant

pms
y ‘ (cs+k)p ‘ 0 ‘ 1 ‘ ) ‘ 1 SR iy 1 Va
‘ ms2 + cs + k ‘ ‘ s ‘ ‘ (J+p2m)s+b m Lis+R, | —
—_— v
Kb

having the following t.f. (assuming L, = 0 and denoting » := KK/ Ra):

P(S) _ (es+k)pKm/Ra
— m(J+mp?)s*+(em+cJ+bm+2cmp?)s3+(xc+cb+Ik+2kmp?)s?+ k(+b)s

Outline

Parameter identification of DC motor




The problem

We know that
Km

~ Ro(Js + b) + KoK’

but we might not know the parameters,
— some of them (K, Kb, Ra) can be taken from the catalog
— the others (load’s J and b) are harder to calculate

Py (s)

Alternative to the first-principles approach:

— determining parameters from experiments (system identification)
To that end, rewrite

Ko ket
Ry(Js+ b) + KpKm 75+ 1°
where
- $ and 1 := L
T KyKm + Rab Ky Km + Rab

Experimental setup

We try to identify parameters kg and t from the step response

VT o —
@Om ts+1 u

taking into account that it is relatively simple, viz. y(t) = kg (1 — e~ t/7):

kst

90%

0 3t 3.9t t

Experimental data

Reality (response to the step voltage of a magnitude of 1.2V):

3 6 9t

is not exactly according to the theory. Reasons:
— measurement noise (sensor is an encoder, hence quantization)
— nonlinearities (e.g. mechanical friction)
— additional dynamics (inductance, eccentricity, et cetera)

Still, it closely resembles the step response of a 1-order system.

Fitting 1-order response to experimental data
Brute-force parametric search over possible values of kit and t to fit
wm(t) = 1.2kgt(1 — /%)
into experimental data yields
ks = 15533 and =17
with a reasonably good fit:

1.864

wm(t), rad/sec
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