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Abstract control problem to begin with

-

Setup:

where

— P is a plant
may comprise actual controlled process, actuators, sensors, et cetera

— wuis a control signal (control input)
— y is a controlled (regulated) signal (output)

Problem: Given P, find u resulting in a desired y.
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Modeling

What is it about?

: :
Model is a

— description of systems using an abstract (e.g. mathematical) language.

Modeling lets us handle problems of various nature, e.g.
— mechanical,
— electrical,
— biological,
— social,

in a unified manner.



Modeling

What is it about?
y :
Model is a

— description of systems using an abstract (e.g. mathematical) language.

Modeling lets us handle problems of various nature, e.g.
— mechanical,
— electrical,
— biological,
— social,
in a unified manner. It must be realized though that
— models of real-world phenomena are never perfect,

they are just (more or less accurate) approximations of real processes.



Modeling

Why to model?

y -
From control viewpoint, modeling is necessary just because

— if we do not know how the plant responds to our actions, then control
tasks are hopeless.

In other words,

— model-free control is essentially a coin tossing.



Modeling

Car example 1 (Myers, 1999)



Modeling

Car example 2 (Butler, 2008)



Modeling

How to model?

Essentially, three ways:
1. from first principles ab initio
2. phenomenological

3. from observing experimental 1/0 relations identification



Case-study systems
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Case-study systems and their first-principles modeling



Case-study systems

Case-studies

System X,: System X 3:

Bt

e control mass position y e control mass position y e control mass position y

e via pulley angle 6 e via pulley angle 0 e via torque T

o elevator as motivation o elevator with long hoistway as motivation



Case-study systems

Data
Consider where
p: pulley radius
my, my: masses
spring constant
damping coefficient

moment of inertia of pulley + shaft

S S0 x

friction coefficient of pulley 4 shaft
f: external force applied to m; (2nd input)

Denote also

fi1, fro: tension forces at m; and mo, respectively
Lo:=yxn—y2at6 =0
Liz=y10—xn
Lo:=mp—yx—y
L:= L; + Ly length of non-elastic part




Case-study systems

Motion equations
Masses dynamics:
—miya(t) = mg + f(t) — fua(t) and — moyr(t) = mg — fuo(t)
Spring-damper dynamics:
c(y20(t) — y10(t)) + k(y20(t) — y10(t)) = fua(t)

Pulley dynamics:

J6(t) + bO(t) = 7(t) — pha(t) + pha(t)

Algebraic constraints:
yio(t) — ya(t) = Ly,
—y20(t) = y2(t) = Lo — 7p,
y20(t) — y2(t) = Lo + 2p0(t)



Case-study systems
Elimination of variables
From algebraic constraints,

Lo— L+ mp
2 b

Lo+ L—mp

y2 = —pb 5

yio=y1+ L1, yxo=p0+

Then, spring-damper verifies

. Lo—Lr+m
c(pf —y1) + k(pf — y1) + k (022/) - Ll) = fu
and the tension forces are

fio=my1 +mg+f,
fo = mayo + mag = —pma0 + mog



Case-study systems

System equations

Thus, we have:

L4 Ly —Lo— .
m1y1+cy'1+ky1+k<m;g+ +tha 5 ”p>:p(c9+k9)—f

(J+ pzmg)é +b0 =1 — pmiy1 — p(my — ma)g — pf

This is a nonlinear set of equations (superposition principle doesn't hold).



Case-study systems

System equations

Thus, we have:

L4 Ly —Lo— .
m1y1+cy'1+ky1+k<m;g+ +tha 5 ”p>:p(c9+k9)—f

(J+ pzmg)é +b0 =1 — pmiy1 — p(my — ma)g — pf

This is a nonlinear set of equations (superposition principle doesn't hold?!).

! Just think of the simpler system y = u+1. Since (u1 + ) +1 # (i +1) + (12 + 1),
it's nonlinear. Such systems are called affine and can be linearized precisely via introducing
deviation variables. For example, define i = u+ 1, which yields linear system y = i.



Case-study systems
Equilibrium
In equilibrium, the system satisfies algebraic equations

_L+L1—L0—]Tp_f+m1g
2 k
t = p(m — my)g + pf

y1=pb

If we assume that y; = y» at 8 = 0 and f = 0, an additional constraint

_L—I—Ll—Lo—]Tp_mlg__L0+L2—7Tp

2 k 2
yields Lo = L1 + m1g/k, so that

:pe_L—np+m1g/k_£
7 5 K

T = p(m1 — m2)g + pf

We then choose the equilibrium corresponding to & = 0 and f = 0.



Case-study systems
Linearization
Defining deviation variables

(1) 1= y(t) + - LTI g 5 () = x(t) — plm — m)e

we end up with the following linear model:
{mlj"?l(t) + () + k() = p(c(t) + kO(t)) — £(t)
(J+ p?m2)8(t) + b6(t) = £(t) — pmuj(t) — pf(2)

or

~ 1
Yi(s) = m((“ +k)pO(s) — F(s))
1 - -
O(s) = J+ i)+ bs(T(S) — pmis®Ya(s) — pF(s))

in the Laplace domain.



Case-study systems

Block-diagram

can be modeled as

(cs+k)p

ms? +cs+ k
1 f
(cs+k)p
in terms of deviations
. L—rnp+mg/k
71() = (1) + = L,

T(t) = (t) — p(m — m2)g

from the equilibrium corresponding to y; = y» at
6 =0and f=0.



Case-study systems

System X; (Atwood machine)

Let Assuming inelastic string, no slippage, and y =0 at
=0,

y(t) = pb(t) (with 6 in rad),

so the system can be presented by the following block

diagram:
y u
f‘ @ ﬁ and the plant transfer function

P(s)=p




Case-study systems

System X,

Let Now, the system motion satisfies

my(t) + c(y(t) — pb(1)) + k(y(t) — pb(t)) =0

(assuming no slippage and y = 0 at 6 = 0), which
leads to

y (cs+K)p u
ms? + cs + k

and the plant transfer function

P(s) = (cs+ k)p

ms? + cs + k
(note that lim 4o P(s) = p).




Case-study systems

System X, with disturbance

Let Now, the system motion satisfies

my(t) + c(y(t) — p8(t)) + k(y(t) — pb(t)) = —£(2)

(assuming no slippage and y =0 at 6 = 0 and f = 0),
which leads to

(es+k)p
ms? + cs + k

where signal d called input disturbance.




Case-study systems

System X3

In this case, assuming no slippage and y =0at 6 =0
we have the following block diagram:

opms?
vl e [TLe [T 4
‘m52+cs+k‘ ‘ s ‘ ‘(J+p2m)s+b

and the plant transfer function

_ (cs+k)p
P(S) T s((J+p2m)s+b)(ms?2+cs+k)+p2ms2(cs+k)

(it is unstable because of the pole at the origin).



DC motors

Outline

Actuation: DC motors and their first-principles modeling



DC motors
DC motors

Armature

Stator
winding \

Rotor w;r:i:w\ N %

Shaft

S BT
’%X/\\O R
Brush +

Commutator
Bearings
Inertia
load 0
Angle Field
0

Inertia = J
Friction = f

Load

sketch wiring diagram

Electric motors are devices converting
— electrical energy into mechanical energy.

DC motors run on DC electric power. There are many types of DC motors,
we study armature-controlled brushed DC motors.



DC motors

DC motors (contd)

Advantages:
— high torque
— position / speed / torque controllability over a wide range
— portability

— well-behaved speed-torque characteristics



DC motors

DC motors (contd)

Advantages:
— high torque
— position / speed / torque controllability over a wide range
— portability
— well-behaved speed-torque characteristics

Applications (actuators):
— robotic manipulators
— tape transport mechanisms

— disk drivers



DC motors

Modeling voltage-controlled DC motors

Important things:

1. Torque 1, generated by the motor proportional to armature current iy:
Tm(t) = Kmia(t) or Tm(s) = Kmla(s),

where Ky, [N™] is the motor constant (torque constant).



DC motors

Modeling voltage-controlled DC motors

Important things:

1. Torque 1, generated by the motor proportional to armature current iy:

Tm(t) = Kmia(t) or Tm(s) = Kmla(s),

where Ky, [N™] is the motor constant (torque constant).

2. Armature current satisfies
Va(s) — W(s)
Lis + R,

’

Laia(t) 4+ Raia(t) = va(t) — w(t) or I(s) =

where v, is the applied input voltage and v, is the back electromotive
force (back emf) voltage proportional to motor angular velocity wp:

w(t) = Koom(t)  or  W(s) = Kpm(s),

where Kj, [¥55¢] is the motor back emf constant? (9.55Y55¢ lrplm).

2Normally, Ky = Kp, if measured in compatible units.



DC motors

Modeling voltage-controlled DC motors (contd)

Resulting system can be presented as the following block diagram:

Yioad Tm A 1 Va
3 timnS
W

S v

Ky

Here yjoad is a (controlled) load output, not necessarily coinciding with the
motor shaft angular velocity wn,.



DC motors

Modeling voltage-controlled DC motors (contd)

Resulting system can be presented as the following block diagram:

Yioad Tm A 1 Va
oo o b [ [}
W

S v

Ky

Here yjoad is a (controlled) load output, not necessarily coinciding with the
motor shaft angular velocity wn,.

The dependence of wn, on the load and internal feedback loop® (back emf)
renders voltage-controlled motors

— strongly dependent on load dynamics.

We shall explicitly have wy, as an output of the load model to incorporate
the load into the motor model.

*Models substantially simplified in the current-controlled case (no back emf loop).



DC motors

Example 1: rigid mechanical load

Consider a rigid load (e.g. the rotor itself) with yjoaqg = wm and satisfying

1
Js+ b

JOm(t) + bom(t) = tm(t) or Qun(s) = Tm(s),

where J is its moment of inertia and b is the friction coefficient.



DC motors

Example 1: rigid mechanical load (contd)

In this case we have:

, 1 ‘ |7 i ‘ 1 v,

B Js+b | " K : |Ls+R | — )
S Vb
Ky

which results in the following transfer function from v, to wn:

Km
(Las + Ry)(Js + b) + KpKm

Py (s) =

which is always stable (2nd order denominator with positive coefficients).



DC motors

Example 1: rigid mechanical load (contd)

If Yioad = Om (motor shaft angle), then system becomes

. L HW

with the transfer function

Km 1

Fols) = s((Las + Ra)(Us + b) + KoKm) s

which is unstable (pole at the origin).



DC motors

Example 1: rigid mechanical load (contd)

If Yioad = Om (motor shaft angle), then system becomes

ﬂﬁ i HW

with the transfer function

Po(s) =

o = 2Pu(s)
s((Las + Ra)(Us + b) + KoKm) 5

which is unstable (pole at the origin). If armature (electrical) time constant
is significantly smaller than mechanical time constant, i.e. if ,'LTZ < %, then

Km Km

P ~ d P ~
o)~ i ks M PN e b T Kok

(where L, neglected) are sufficiently accurate.



DC motors
Example 1: electrical time constant
Consider a motor (in fact, MINIMOTOR 2342) with

Ko [M™]  Ko[¥€]  Jlkgm?]  b[¥™] R[] L. [H]

rad sec

0.0261 0.0261 5.8-1077 9.67-10° 7.1 2.65-10~7

with mechanical and electrical time constants of 6 - 10~3 and 3.73 - 102,
respectively. This results in

Po(s) = 19.082
“*7 7 (0.003s + 1)(3.756 - 1055 + 1)

or, if we neglect L;,
19.082

P, N .
w(%) ™ 50035 7 1



DC motors

Example 1: electrical time constant (contd)

182.2

om(t) (rpm)

0 0.01 0.02
Time, t (sec)

Step responses of the second- and first-order systems

— almost indistinguishable,
which justifies neglecting the dynamics of the armature circuit in this case.



DC motors

Example 1: electrical time constant (contd)

86.8
182.2

©m(t) (rpm)
om(t) (rpm)

0 0.01 0.02 0 1 2
Time, t (sec) Time, t (sec) x10

Step responses of the second- and first-order systems
— almost indistinguishab|e4,

which justifies neglecting the dynamics of the armature circuit in this case.

*Except for a small difference at the start, see the close-up on the right.



DC motors

Example 2: load with flexible transmission

Consider now a load (J; and by) connected to the motor shaft (Jn and by)
by a flexible inertialess transmission with the dynamics

7(t) = kebs(t) + cews(t) or Ti(s) = Qs(s),

where 05 := 6, — 0, ws := 93 = wm — w and k; and ¢ are the stiffness and
damping coefficient, respectively, of the transmission. The other equations:

Tm(s) — Ti(s)
JmsS + bm

T:(s).

In@m(t) + bnowm(t) = tm(t) — w(t) or Qum(s) =

J|a')|(t) + b|w|(t) = ‘L't(t) or Q|(S) =

Js+ b



DC motors

Example 2: load with flexible transmission (contd)

This system corresponds to the following block-diagram:




DC motors

Example 2: load with flexible transmission (contd)

This system corresponds to the following block-diagram:

The transfer function of the system can be derived by routine block-diagram
manipulations, as shown in Lecture 1.



DC motors

System %3 as load

Remember, this system described as

—‘—‘ pms?
y (cs+k)p 0 1 w 1
‘mszfcsfk‘ ‘ s (J+ p?m)s+b




DC motors

System X3 as load

Remember, this system described as

y (cs+ k)p

‘mszfcsfk‘

y (cs+ k)p 9
L ms? +cs + k

(J+p?m)s+b

having the following t.f. (assuming L, = 0 and denoting » := Kn Kb/ Ra):

P(S) _ (cs+k)pKm/Ra
— m(J+mp?)st+(em+c+bm+2cmp?)s3+(scc+cb+Jk+2kmp?)s2+k(sc+b)s




Parameter identification of DC motor

Outline

Parameter identification of DC motor



Parameter identification of DC motor
The problem

We know that
Km

Ra(Js + b) + KpKm

but we might not know the parameters,

Py(s) =~

— some of them (K, Kb, Ra) can be taken from the catalog

— the others (load’s J and b) are harder to calculate



Parameter identification of DC motor
The problem

We know that
Km

Ra(Js + b) + KpKm

but we might not know the parameters,

Py(s) =~

— some of them (K, Kb, Ra) can be taken from the catalog

— the others (load’s J and b) are harder to calculate

Alternative to the first-principles approach:
— determining parameters from experiments (system identification)

To that end, rewrite

Km o kst
Ry(Js+ b) + KpKm 5+ 1’
where
ket := ¢ and T := L
KoKm + Rab KoK + Rsb



Parameter identification of DC motor

Experimental setup
We try to identify parameters k¢ and t from the step response

VT mmmm —
@ ts+1 u

taking into account that it is relatively simple, viz. y(t) = kg(1 — e~ t/7):

T
Ko o e

90%

2% 5%
2 % 2%

2.2t

0 3t 3.9t t



Parameter identification of DC motor

Experimental data

Reality (response to the step voltage of a magnitude of 1.2V):

9t
is not exactly according to the theory. Reasons:

— measurement noise (sensor is an encoder, hence quantization)
— nonlinearities (e.g. mechanical friction)

— additional dynamics (inductance, eccentricity, et cetera)

Still, it closely resembles the step response of a 1-order system.



Parameter identification of DC motor

Fitting 1-order response to experimental data
Brute-force parametric search over possible values of kg and t to fit

om(t) = 1.2k (1 — e7/7)

into experimental data yields

ks =15533 and =17
with a reasonably good fit:

1.864

wm(t), rad/sec

t
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