
Analog redesign Discrete-time design Discretization Classical discrete methods

Control Theory (00350188)
lecture no. 12

Leonid Mirkin

Faculty of Mechanical Engineering
Technion— IIT

Analog redesign Discrete-time design Discretization Classical discrete methods

Outline

Analog redesign

Discrete-time design

Discretized plant and its properties

Classical methods for discrete systems (mostly stability)

Analog redesign Discrete-time design Discretization Classical discrete methods

Outline

Analog redesign

Discrete-time design

Discretized plant and its properties

Classical methods for discrete systems (mostly stability)

Analog redesign Discrete-time design Discretization Classical discrete methods

Three approaches to sampled-data control design

P

C̄

S H

y

ȳ ū

u
analog design

discretization

discretization

digital design

sampled-data design

P

P̄

C

C̄

1. Digital redesign of analog controllers
(do your favorite analog design first, then discretize the resulting controller)

2. Discrete-time design
(discretize the problem first, then do your favorite discrete design)

3. Direct digital (sampled-data) design
(design discrete-time controller C̄(z) directly for analog specs)

Analog redesign Discrete-time design Discretization Classical discrete methods

The redesign problem

reu

d

y

ymn

CP −

⇓

SC̄HP
reēūu

d

y

ymn

−

Starting point:

− “good” analog controller C (designed by whatever method)

Goal:

− find C̄ such that HC̄S ≈ C

(we consider S = Sidl, H = HZOH, and periodic sampling with given h > 0).

Analog redesign Discrete-time design Discretization Classical discrete methods

Discrete transfer functions (from LS)

continuous-time systems discrete-time systems

differential equations difference equations

Laplace transform z transform

s is the derivative in the time domain z is the shift in the time domain

left-half plane in the s-plane : : unit disk in the z-plane

imaginary axis, s = j! unit circle, z = ej�

static gain is G (s)|s=0 = G (0) static gain is G (z)|z=1 = G (1)

integral action: pole at s = 0 integral action: pole at z = 1

Analog redesign Discrete-time design Discretization Classical discrete methods

Choice of C̄ : ad hoc approaches

Logic: imitate C , often based on approximating derivatives, like

fwd Euler: ẋ(ih) ≈ x(ih + h)− x(ih)

h
=⇒ s → z − 1

h

bwd Euler: ẋ(ih) ≈ x(ih)− x(ih − h)

h
=⇒ s → z − 1

hz

Tustin1:
ẋ(ih + h) + ẋ(ih)

2
≈ x(ih + h)− x(ih)

h
=⇒ s → 2

h

z − 1

z + 1
making sense if h is “small enough.”

Example: If C (s) = 2=(s + 2), then

C̄ (z) = C (s)
∣∣
s= 2

h
z−1
z+1

=
2

2=h · (z − 1)=(z + 1) + 2
=

h(z + 1)

(h + 1)z + h − 1
:

and
|C̄ (ej!h)| =

!0 !b = 1.8 !N = 10.5

1√
2

1 |C̄ (ej!h)|, h = 0.6

|C (j!)|

or

!0 !b = 1.96 !N = 25.1

1√
2

1 |C̄ (ej!h)|, h = 0.25

|C (j!)|

1Matlab: c2d(C,h,’tustin’), where C is a continuous-time system.

Analog redesign Discrete-time design Discretization Classical discrete methods

Choice of C̄ : ad hoc approaches

Logic: imitate C , often based on approximating derivatives, like

fwd Euler: ẋ(ih) ≈ x(ih + h)− x(ih)

h
=⇒ s → z − 1

h

bwd Euler: ẋ(ih) ≈ x(ih)− x(ih − h)

h
=⇒ s → z − 1

hz

Tustin:
ẋ(ih + h) + ẋ(ih)

2
≈ x(ih + h)− x(ih)

h
=⇒ s → 2

h

z − 1

z + 1
making sense if h is “small enough.”

Example: If C (s) = 2=(s + 2), then

C̄ (z) = C (s)
∣∣
s= 2

h
z−1
z+1

=
2

2=h · (z − 1)=(z + 1) + 2
=

h(z + 1)

(h + 1)z + h − 1
:

and
|C̄ (ej!h)| =

!0 !b = 1.8 !N = 10.5

1√
2

1 |C̄ (ej!h)|, h = 0.6

|C (j!)|
or

!0 !b = 1.96 !N = 25.1

1√
2

1 |C̄ (ej!h)|, h = 0.25

|C (j!)|

Analog redesign Discrete-time design Discretization Classical discrete methods

General bilinear transformation

Given
 > 0, consider the mapping (Tustin corresponds to
 = 2=h)

s →

z − 1

z + 1
⇐⇒ z →
 + s

 − s

between s and z complex planes. Every s = � + j! is mapped to

z =

 + (� + j!)

 − (� + j!)
=⇒ |z |2 = (
 + �)2 + !2

(
 − �)2 + !2
:

Hence,

|z |2 − 1 =
2
�

(
 − �)2 + !2

and we end up with the relations

− |z | < 1 ⇐⇒ � = Re s < 0

− |z | > 1 ⇐⇒ � = Re s > 0

− |z | = 1 ⇐⇒ � = Re s = 0

Analog redesign Discrete-time design Discretization Classical discrete methods

General bilinear transformation (contd)

s →
 z−1
z+1

z →
+s

−s

Im s

Re s

Im z

Re z

Thus,

− any “stable” s is mapped to a “stable” z

− any “unstable” s is mapped to a “unstable” z

− any “borderline” s is mapped to a “borderline” z

Moreover,

− any CT frequency ! is mapped to the DT frequency � = 2arctan(!=
)
(i.e. bilinear transformations squeeze the whole jR to T , with no folding effects)

− the lowest ! = 0 is mapped to the lowest � = 0

− the highest ! = ±∞ is mapped to the highest � = ±�

Analog redesign Discrete-time design Discretization Classical discrete methods

Choice of C̄ : more about Tustin

If
C̄ (z) = C (s)

∣∣
s= 2

h
z−1
z+1
;

then

− C̄ is stable iff C is stable,

− C̄ is unstable iff C is unstable,

− the number of integrators in C̄ (z) equals that in C (s),

− C̄ (z) is bi-proper, unless C (s) has either poles or zeros at s = 2=h

− zero multiplicity of C (s) at s = 2=h equals the pole excess of C̄ (z)
− pole multiplicity of C (s) at s = 2=h equals the zero excess of C̄ (z)

− C̄ (z) has a zero at z = −1 of multiplicity m iff C (s) is strictly proper
and its pole excess is m

− C̄ (z) has a pole at z = −1 of multiplicity m iff C (s) is non-proper and
its zero excess is m

Analog redesign Discrete-time design Discretization Classical discrete methods

Discretizing C : Tustin with pre-warping

� = 2 arctan(!=
)

! =
 tan(�=2)

עיוות

Im s

Re s

Im z

Re z

The nonlinear warping of the frequency mapping is not ideal. We would be
happier with � = !h in low frequencies (if folding effects are insignificant).
This happens only at ! = 0 and the frequency !nowarp ∈ (0; !N), at which

2 arctan
!nowarp

= !nowarph ⇐⇒
 = !nowarp cot

!nowarph

2
∈
(
0;

2

h

)
:

The bilinear transformation with
 as above for a given !nowarp ∈ (0; !N) is
known1 as Tustin with pre-warping. As !nowarp → 0, the ordinary Tustin for

 = 2=h is recovered, for which dC̄ (ej�)=d� |�=0 = dC (!)=d!|!=0 as well.

1Matlab: c2d(C,h,c2dOptions(’Method’,’tustin’,’PrewarpFrequency’,w0)).

Analog redesign Discrete-time design Discretization Classical discrete methods

Example: DC motor

A DC motor from Lecture 1, controlled in closed loop

ru

d

y

ymn

CP −

Requirements:

− closed-loop stability (of course)

− zero steady-state error for a step in r always holds

− zero steady-state error for a step in d integrator in C (s)

− good stability margins

− !c ≈ 2 [rad/sec]

Design:

− LQG loop shaping, with a PI weight W (like in Lecture 11)

Analog redesign Discrete-time design Discretization Classical discrete methods

Example: analog design

Weight:

W (s) = 5:06
(
1 +

1

s

)
Controller:

C (s) = W (s)Ca(s) =
23:081(s + 2:075)(s + 0:5346)

s(s2 + 6:155s + 17:44)

(a pole of Ca(s) cancels the zero of W (s) at s = 1). The actual crossover
is !c = 1:4248 and the closed-loop bandwidth is !b = 2:8155.

Analog redesign Discrete-time design Discretization Classical discrete methods

Example: analog design (contd)

Analog redesign Discrete-time design Discretization Classical discrete methods

Example: controller discretization

Using Tustin, the discretized controllers are

h = 0:01: C̄ (z) =
0:11337(z + 1)(z − 0:9795)(z − 0:9947)

(z − 1)(z2 − 1:939z + 0:9403)

h = 0:1: C̄ (z) =
0:96777(z + 1)(z − 0:812)(z − 0:9479)

(z − 1)(z2 − 1:415z + 0:5445)

h = 0:5: C̄ (z) =
2:7375(z + 1)(z − 0:317)(z − 0:7642)

(z − 1)(z2 + 0:04973z + 0:152)

All of them

− preserve integral actions (pole at s = 0 → pole at z = 1)

− have single zeros at z = −1 (pole excess of P(s) is 1)

− are bi-proper

which are general properties of the Tustin transformation.

Analog redesign Discrete-time design Discretization Classical discrete methods

Example: d(t) = 1(t) and n(t) = 0

Responses with h = 0:01:

0 1 2 3 4 5 6 7

-0.1

0

0.3

0 1 2 3 4 5 6 7

-1.43

-1

0

sampled-data response ≈ analog response

⇓
adequate sampling rate

Analog redesign Discrete-time design Discretization Classical discrete methods

Example: d(t) = 1(t) and n(t) = 0

The same with h = 0:1:

0 1 2 3 4 5 6 7

-0.1

0

0.3
0.32

0 1 2 3 4 5 6 7

-1.5

-1

0

sampled-data response starts getting worse than analog response

⇓
sampling rate starts to become problematic

Analog redesign Discrete-time design Discretization Classical discrete methods

Example: d(t) = 1(t) and n(t) = 0

And now the same with h = 0:5:

0 1 2 3 4 5 6 7

-0.1

0

0.3

0.39

0 1 2 3 4 5 6 7

-1.88

-1

0

sampled-data response is substantially worse than analog response

⇓
sampling rate becomes inadequate

(further increase of h eventually results in an unstable closed-loop system).

Analog redesign Discrete-time design Discretization Classical discrete methods

Example: d(t) = 1(t) and n(t) = sin(20�t + 0:1)

Responses with h = 0:01:

0 1 2 3 4 5 6 7

-0.1

0

0.3

6.9 7 7.1

-1.37

-1

-0.63

sampled-data response ≈ analog response

⇓
adequate sampling rate

Analog redesign Discrete-time design Discretization Classical discrete methods

Example: d(t) = 1(t) and n(t) = sin(20�t + 0:1)

Now the same with h = 0:1:

0 1 2 3 4 5 6 7

-0.1

0

0.18

0.3

6.9 7 7.1

-1.37

-1

-0.63

Oops,

− sampled-data response is qualitatively different from analog response
(steady-state error is nonzero, the harmonic of measurement noise disappears)

Why?

Analog redesign Discrete-time design Discretization Classical discrete methods

Example: d(t) = 1(t) and n(t) = sin(20�t + 0:1)

Now the same with h = 0:1:

0 1 2 3 4 5 6 7

-0.1

0

0.18

0.3

6.9 7 7.1

-1.37

-1

-0.63

Oops,

− sampled-data response is qualitatively different from analog response
(steady-state error is nonzero, the harmonic of measurement noise disappears)

Why?

Analog redesign Discrete-time design Discretization Classical discrete methods

The sampled-data controller

SC̄H yȳūu

We now know that in the frequency domain

S causes aliasing by folding ultra-!N frequencies of Y (j!) to [−!N; !N]
of Ȳ (ej!h)

C̄ acts as a standard LTI filter, Ū(ej!h) = C̄ (ej!h)Ȳ (ej!h)

H clones [−!N; !N] frequency interval of Ū(ej!h) to all R and filters the
result by the low-pass hF� , where F�(j!) = (1− e−j!h)=(j!h)

In other words,

U(j!) =
1− e−j!h

j!h
C̄ (ej!h)

∑
i∈Z

Y (j(! + 2!Ni))

Analog redesign Discrete-time design Discretization Classical discrete methods

Effects of aliasing

If aliased parts remain qualitatively unchanged, then aliasing is harmless

SC̄H
YȲŪU

−!N 0 !N!N
0−!N!N

0−!N−!N 0 !N

But if they migrate to different frequency bands, then the picture changes

SC̄H
YȲŪU

−!N 0 !N!N
0−!N!N

0−!N−!N 0 !N

(red dotted lines correspond to the spectrum of Cy).

Analog redesign Discrete-time design Discretization Classical discrete methods

Effects of aliasing

If aliased parts remain qualitatively unchanged, then aliasing is harmless

SC̄H
YȲŪU

−!N 0 !N!N
0−!N!N

0−!N−!N 0 !N

But if they migrate to different frequency bands, then the picture changes

SC̄H
YȲŪU

−!N 0 !N!N
0−!N!N

0−!N−!N 0 !N

(red dotted lines correspond to the spectrum of Cy).

Analog redesign Discrete-time design Discretization Classical discrete methods

Moral

SC̄H
YȲŪU

−!N 0 !N!N
0−!N!N

0−!N−!N 0 !N

Once high-frequency components of y alias as low-frequency ones and blend
with low-frequency components of y ,

− nothing can be done via a “better” processing by C̄ (z).

The only way to cope with this phenomenon is to

− filter out those frequencies in continuous time, before sampling

(nip them in the bud). Low-pass filters doing that are known as

− anti-aliasing filters.

Analog redesign Discrete-time design Discretization Classical discrete methods

Moral

SC̄H
YȲŪU

−!N 0 !N!N
0−!N!N

0−!N−!N 0 !N

Once high-frequency components of y alias as low-frequency ones and blend
with low-frequency components of y ,

− nothing can be done via a “better” processing by C̄ (z).

The only way to cope with this phenomenon is to

− filter out those frequencies in continuous time, before sampling

(nip them in the bud). Low-pass filters doing that are known as

− anti-aliasing filters.

Analog redesign Discrete-time design Discretization Classical discrete methods

Anti-aliasing filtering: non-control examples

w/o anti-aliasing filter with anti-aliasing filter

where anti-aliasing filters used are

− noncausal low-pass filters with the bandwidth !N.

Best choice, performance-wise, is

− the ideal low-pass filter Filp with the bandwidth !b = !N,

whose impulse response filp(t) = sinc(!Nt), but it is hard to implement.

Analog redesign Discrete-time design Discretization Classical discrete methods

Anti-aliasing filters in feedback loops

yȳūu
FaSC̄H

Additional considerations:

− must be causal,

− |Fa(j!)| ≪ 1 for all ! ≥ !N,

− avoid adding a substantial phase lag around the crossover.

We already know (Lecture 1) that finite-dimensional low-pass filters

− introduce phase lags before the magnitude starts to decay.

Hence,

− the bandwidth !b of Fa should be well below !N

and, as a result

− the choice of the Nyquist frequency should be conservative
(conventional wisdom has it that !N ≥ 10÷ 30!c, where !c is the analog crossover)

Analog redesign Discrete-time design Discretization Classical discrete methods

Anti-aliasing filters in feedback loops

yȳūu
FaSC̄H

Additional considerations:

− must be causal,

− |Fa(j!)| ≪ 1 for all ! ≥ !N,

− avoid adding a substantial phase lag around the crossover.

We already know (Lecture 1) that finite-dimensional low-pass filters

− introduce phase lags before the magnitude starts to decay.

Hence,

− the bandwidth !b of Fa should be well below !N

and, as a result

− the choice of the Nyquist frequency should be conservative
(conventional wisdom has it that !N ≥ 10÷ 30!c, where !c is the analog crossover)

Analog redesign Discrete-time design Discretization Classical discrete methods

Anti-aliasing filters in feedback loops

yȳūu
FaSC̄H

Additional considerations:

− must be causal,

− |Fa(j!)| ≪ 1 for all ! ≥ !N,

− avoid adding a substantial phase lag around the crossover.

We already know (Lecture 1) that finite-dimensional low-pass filters

− introduce phase lags before the magnitude starts to decay.

Hence,

− the bandwidth !b of Fa should be well below !N

and, as a result

− the choice of the Nyquist frequency should be conservative
(conventional wisdom has it that !N ≥ 10÷ 30!c, where !c is the analog crossover)

Analog redesign Discrete-time design Discretization Classical discrete methods

Aliasing: example (contd)

Let

Fa(s) =
!2
b

s2 +
√
2!bs + !

2
b

; !b =
!N

5
= 0:4�

(second-order Butterworth with |Fa(j!)| = 1=
√
1 + (!=!b)4). In this case

FaSC̄H
YYfȲŪU

−!N 0 !N−!N 0 !N!N
0−!N!N

0−!N−!N 0 !N

and

FaSC̄H
YYfȲŪU

−!N 0 !N−!N 0 !N!N
0−!N!N

0−!N−!N 0 !N

Compare with

SC̄H
YȲŪU

−!N 0 !N!N
0−!N!N

0−!N−!N 0 !N

Analog redesign Discrete-time design Discretization Classical discrete methods

Effects of H

SC̄H yȳūu

With
U(j!) = h

1− e−j!h

j!h
Ū(ej!h)

we effectively (factor h is offset by 1=h of the sampler) have the FIR

F�(s) =
1− e−sh

sh

in the loop. This is a low-pass filter, whose frequency response

F�(j!) = sinc
!h

2
e−!h=2 =

!0 !N 2!N 3!N

2=�

1

−�=2

−�

This is a low-pass F� , having a phase lag !h=2 for 0 ≤ ! ≤ !N.

Analog redesign Discrete-time design Discretization Classical discrete methods

Effects of H

SC̄H yȳūu

With
U(j!) = h

1− e−j!h

j!h
Ū(ej!h)

we effectively (factor h is offset by 1=h of the sampler) have the FIR

F�(s) =
1− e−sh

sh

in the loop. This is a low-pass filter, whose frequency response

F�(j!) = sinc
!h

2
e−!h=2 = !0 !N 2!N 3!N

2=�

1

−�=2

−�

This is a low-pass F� , having a phase lag !h=2 for 0 ≤ ! ≤ !N.

Analog redesign Discrete-time design Discretization Classical discrete methods

Effects on the design of C

Things to remember:

− sample sufficiently fast

− account for an anti-aliasing filter Fa unless sensor is digital

− account for low-pass in the ZOH, F�

Advised to

− design C for the augmented FaPF� .

Remark Because F�(s) = (1− e−sh)=(sh) is infinite dimensional, its approximations

F�(s) ≈ F�;del ··= e−sh=2 or F�(s) ≈ F�;2 ··=
12

h2s2 + 6hs + 12

can be used in analytic design methods, such as state space. Note that F�;2(s) is the
[1; 2]-Padé approximant of F�(s), whose bandwidth !b ≈ 2:7233=h < !N and frequency
response in ! ∈ [0; !N] is not far from that of F� , e.g.

F�;2(j!N) ≈ 0:6326e−j1:4583 vs. F�(j!N) =
2

�
e−j�=2 ≈ 0:6366e−j1:5708

:

Analog redesign Discrete-time design Discretization Classical discrete methods

Effects on the design of C

Things to remember:

− sample sufficiently fast

− account for an anti-aliasing filter Fa unless sensor is digital

− account for low-pass in the ZOH, F�

Advised to

− design C for the augmented FaPF� .

Remark Because F�(s) = (1− e−sh)=(sh) is infinite dimensional, its approximations

F�(s) ≈ F�;del ··= e−sh=2 or F�(s) ≈ F�;2 ··=
12

h2s2 + 6hs + 12

can be used in analytic design methods, such as state space. Note that F�;2(s) is the
[1; 2]-Padé approximant of F�(s), whose bandwidth !b ≈ 2:7233=h < !N and frequency
response in ! ∈ [0; !N] is not far from that of F� , e.g.

F�;2(j!N) ≈ 0:6326e−j1:4583 vs. F�(j!N) =
2

�
e−j�=2 ≈ 0:6366e−j1:5708

:

Analog redesign Discrete-time design Discretization Classical discrete methods

Outline

Analog redesign

Discrete-time design

Discretized plant and its properties

Classical methods for discrete systems (mostly stability)

Analog redesign Discrete-time design Discretization Classical discrete methods

Three approaches to sampled-data control design

P

C̄

S H

y

ȳ ū

u
analog design

discretization

discretization

digital design

sampled-data design

P

P̄

C

C̄

1. Digital redesign of analog controllers
(do your favorite analog design first, then discretize the resulting controller)

2. Discrete-time design
(discretize the problem first, then do your favorite discrete design)

3. Direct digital (sampled-data) design
(design discrete-time controller C̄(z) directly for analog specs)

Analog redesign Discrete-time design Discretization Classical discrete methods

What does C̄ see ?

SC̄HP
reēūu

d

y

ymn

−

Input:
ē = Sr − Sn − SPd − SPHū;

where ū is its output (cf. the analog e = r − n− Pd − Pu). Observations:

− the discrete P̄h ··= SPH : ū 7→ ȳ is the plant from the viewpoint of C̄ ,

− sampled reference signal r̄ ··= Sr replaces r ,

− sampled noise signal n̄ ··= Sn replaces n,

− SPd doesn’t fit, unless we assume that d ≈ Hd̄ for some d̄

In other words,

ē ≈ r̄ − n̄ − SPHd̄ − SPHū = r̄ − n̄ − P̄hd̄ − P̄hū

(if d can be viewed as piecewise constant, like u, in the case of H = HZOH).

Analog redesign Discrete-time design Discretization Classical discrete methods

What does C̄ see ?

SC̄HP
reēūu

d

y

ymn

−

Input:
ē = Sr − Sn − SPd − SPHū;

where ū is its output (cf. the analog e = r − n− Pd − Pu). Observations:

− the discrete P̄h ··= SPH : ū 7→ ȳ is the plant from the viewpoint of C̄ ,

− sampled reference signal r̄ ··= Sr replaces r ,

− sampled noise signal n̄ ··= Sn replaces n,

− SPd doesn’t fit, unless we assume that d ≈ Hd̄ for some d̄

In other words,

ē ≈ r̄ − n̄ − SPHd̄ − SPHū = r̄ − n̄ − P̄hd̄ − P̄hū

(if d can be viewed as piecewise constant, like u, in the case of H = HZOH).

Analog redesign Discrete-time design Discretization Classical discrete methods

What does C̄ see ?

SC̄HP
reēūu

d

y

ymn

−

Input:
ē = Sr − Sn − SPd − SPHū;

where ū is its output (cf. the analog e = r − n− Pd − Pu). Observations:

− the discrete P̄h ··= SPH : ū 7→ ȳ is the plant from the viewpoint of C̄ ,

− sampled reference signal r̄ ··= Sr replaces r ,

− sampled noise signal n̄ ··= Sn replaces n,

− SPd doesn’t fit, unless we assume that d ≈ Hd̄ for some d̄

In other words,

ē ≈ r̄ − n̄ − SPHd̄ − SPHū = r̄ − n̄ − P̄hd̄ − P̄hū

(if d can be viewed as piecewise constant, like u, in the case of H = HZOH).

Analog redesign Discrete-time design Discretization Classical discrete methods

What does C̄ see ? (contd)

SC̄HP
reēūu

d

y

ymn

−

≈

C̄P̄h
r̄ēū

d̄

ȳ

ȳmn̄

−

meaning that C̄ lives in a pure discrete (stroboscopic) world and this world
approximates the reality well if

− disturbance d may be approximated by a piecewise-constant Hd̄
it is still assumed that H = HZOH

− sampler S = SidlFa and Fa filters out ultra-Nyquist frequencies of n
or the sensor is digital, like an encoder, in which case noise is digital by nature

Analog redesign Discrete-time design Discretization Classical discrete methods

Outline

Analog redesign

Discrete-time design

Discretized plant and its properties

Classical methods for discrete systems (mostly stability)

Analog redesign Discrete-time design Discretization Classical discrete methods

Discretization

Our task is to find
P̄h = SPH = Sidl

Pa︷︸︸︷
FaPHZOH

for given LTI P and Fa. Let

Pa :

{
ẋ(t) = Ax(t) + Bu(t); x(0) = 0

y(t) = Cx(t)

(Pa(s) is always strictly proper, for so is Fa(s)). Because

− having H at the input implies that u = HZOHū for some discrete ū,

− having Sidl at the output implies that only ȳ [i] = y(ih) is of interest,

finding P̄h is

− equivalent to finding the mapping ū 7→ ȳ .

Analog redesign Discrete-time design Discretization Classical discrete methods

Discretization (contd)

Define x̄ [i] ··= x(ih). For a given x̄ [i],

x̄ [i + 1] = eAhx̄ [i] +

∫ (i+1)h

ih
eA(ih+h−s)Bu(s)ds

Because u(t) = ū[i] for all t ∈ (ih; (i + 1)h], we have that

x̄ [i + 1] = eAhx̄ [i] +

∫ (i+1)h

ih
eA(ih+h−s)dsBū[i] = eAhx̄ [i] +

∫ h

0
eAs dsBū[i]

Because ȳ [i] = y(ih) = Cx̄ [i], the mapping ū 7→ ȳ satisfies the relation

P̄h :

{
x̄ [t + 1] = Āx̄ [t] + B̄ū[t]; x̄ [0] = 0

ȳ [t] = Cx̄ [t]

where Ā ··= eAh and B̄ ··=
∫ h

0
eAs dsB.

Analog redesign Discrete-time design Discretization Classical discrete methods

Discretization (contd)

The dynamics

P̄h :

{
x̄ [t + 1] = Āx̄ [t] + B̄ū[t]; x̄ [0] = 0

ȳ [t] = Cx̄ [t]

is a standard LTI discrete system in state space. Its transfer function2,

P̄h(z) = C (zI − Ā)−1B̄

is always strictly proper, for P̄h(∞) = 0.

Note that

− � ∈ spec(A) ⊂ C =⇒ e�h ∈ spec(Ā) ⊂ C

− �̄ ∈ spec(Ā) ⊂ C =⇒ ∃� ∈ spec(A) ⊂ C such that e�h = �̄

2Matlab: Ph=c2d(P,h) or [Ad,Bd]=c2d(A,B,h).

Analog redesign Discrete-time design Discretization Classical discrete methods

Discretization (contd)

The dynamics

P̄h :

{
x̄ [t + 1] = Āx̄ [t] + B̄ū[t]; x̄ [0] = 0

ȳ [t] = Cx̄ [t]

is a standard LTI discrete system in state space. Its transfer function2,

P̄h(z) = C (zI − Ā)−1B̄

is always strictly proper, for P̄h(∞) = 0.

Note that

− � ∈ spec(A) ⊂ C =⇒ e�h ∈ spec(Ā) ⊂ C

− �̄ ∈ spec(Ā) ⊂ C =⇒ ∃� ∈ spec(A) ⊂ C such that e�h = �̄

2Matlab: Ph=c2d(P,h) or [Ad,Bd]=c2d(A,B,h).

Analog redesign Discrete-time design Discretization Classical discrete methods

Discretization: example 1

If

Pa(s) =
b

s + a

then A = −a, B = b, and C = 1, so that

Ā = e−ah and B̄ =

∫ h

0
e−as dsb =

1− e−ah

a
b

(with well defined lima→0 B̄ = hb). As a result,

P̄h(z) = C (zI − Ā)−1B̄ =
(1− e−ah)b=a

z − e−ah

It has

− one pole, at e−ah, and

− no zeros,

similarly to the continuous-time Pa(s).

Analog redesign Discrete-time design Discretization Classical discrete methods

Discretization: example 2

If

Pa(s) =
1

s(s + 1)
=

1

s
− 1

s + 1

then by the linearity of the discretization procedure

P̄h(z) =
h

z − 1
− 1− e−h

z − e−h
=

(h + e−h − 1)z + 1− (1 + h)e−h

(z − 1)(z − e−h)

This transfer function

− has two poles, at e0h = 1 and e−h and

− one zero, at −(1− (1 + h)e−h)=(h + e−h − 1) ∈ (−1; 0)

While poles are still exponents of those of Pa(s), the zero is an artefact.

Analog redesign Discrete-time design Discretization Classical discrete methods

Discretization: example 3

If

Pa(s) =
2

s(s + 1)(s + 2)
=

1

s
− 2

s + 1
+

1

s + 2

then by the linearity of the discretization procedure

P̄h(z) =
h

z − 1
− 2(1− e−h)

z − e−h
+

1− e−2h

z − e−2h

=
2h − 3 + 4e−h − e−2h

2

(z − zh;1)(z − zh;2)

(z − 1)(z − e−h)(z − e−2h)

where [
zh;1
zh;2

]
=

h2.2755

−1
−2 +

√
3

−2 −
√
3

Poles follow the already familiar pattern, but now we have

− two zeros, one of which is nonminimum-phase for h < 2:2755

Analog redesign Discrete-time design Discretization Classical discrete methods

Poles and zeros of P̄h(z)

Poles of P̄h(z) are simple. If Pa(s) has a pole at s = pi , then

− P̄h(z) has a pole at z = epih |epih| < 1 (= 1) ⇐⇒ Re pi < 0 (= 0)

Zeros of P̄h(z) are a mess. We only know that

− the number of finite zeros of P̄h(z) is n − 1 for almost all h > 0

− if Pa(s) has m finite zeros (m < n) at s = zi , then as h ↓ 0

− m zeros of P̄h(z) approach ezih,
− the remaining n−m− 1 zeros, aka sampling zeros, approach the roots of

Euler–Frobenius polynomials Qn−m−1(z), independent of Pa(s):

n −m Qn−m−1(z)
2 z + 1
3 z2 + 4z + 1
4 z3 + 11z2 + 11z + 1
5 z4 + 26z3 + 66z2 + 26z + 1

As Qk(z) = zkQk(1=z) and Qk(0) ̸= 0, Qk(z0) = 0 ⇐⇒ Qk(1=z0) = 0.
Therefore, Qk(z) has root(s) outside the closed unit disk for all k ≥ 2.

Analog redesign Discrete-time design Discretization Classical discrete methods

Poles and zeros of P̄h(z)

Poles of P̄h(z) are simple. If Pa(s) has a pole at s = pi , then

− P̄h(z) has a pole at z = epih |epih| < 1 (= 1) ⇐⇒ Re pi < 0 (= 0)

Zeros of P̄h(z) are a mess. We only know that

− the number of finite zeros of P̄h(z) is n − 1 for almost all h > 0

− if Pa(s) has m finite zeros (m < n) at s = zi , then as h ↓ 0

− m zeros of P̄h(z) approach ezih,
− the remaining n−m− 1 zeros, aka sampling zeros, approach the roots of

Euler–Frobenius polynomials Qn−m−1(z), independent of Pa(s):

n −m Qn−m−1(z)
2 z + 1
3 z2 + 4z + 1
4 z3 + 11z2 + 11z + 1
5 z4 + 26z3 + 66z2 + 26z + 1

As Qk(z) = zkQk(1=z) and Qk(0) ̸= 0, Qk(z0) = 0 ⇐⇒ Qk(1=z0) = 0.
Therefore, Qk(z) has root(s) outside the closed unit disk for all k ≥ 2.

Analog redesign Discrete-time design Discretization Classical discrete methods

Poles and zeros of P̄h(z)

Poles of P̄h(z) are simple. If Pa(s) has a pole at s = pi , then

− P̄h(z) has a pole at z = epih |epih| < 1 (= 1) ⇐⇒ Re pi < 0 (= 0)

Zeros of P̄h(z) are a mess. We only know that

− the number of finite zeros of P̄h(z) is n − 1 for almost all h > 0

− if Pa(s) has m finite zeros (m < n) at s = zi , then as h ↓ 0

− m zeros of P̄h(z) approach ezih,
− the remaining n−m− 1 zeros, aka sampling zeros, approach the roots of

Euler–Frobenius polynomials Qn−m−1(z), independent of Pa(s):

n −m Qn−m−1(z)
2 z + 1
3 z2 + 4z + 1
4 z3 + 11z2 + 11z + 1
5 z4 + 26z3 + 66z2 + 26z + 1

As Qk(z) = zkQk(1=z) and Qk(0) ̸= 0, Qk(z0) = 0 ⇐⇒ Qk(1=z0) = 0.
Therefore, Qk(z) has root(s) outside the closed unit disk for all k ≥ 2.

Analog redesign Discrete-time design Discretization Classical discrete methods

Discretization: example 4

If

Pa(s) =
!2
n

s2 + !2
n

=
j!n=2

s + j!n
− j!n=2

s − j!n

then

P̄h(z) =
1

2

(
1− e−j!nh

z − e−j!nh
+

1− ej!nh

z − ej!nh

)
=

(1− cos(!nh))(z + 1)

z2 − 2 cos(!nh)z + 1
:

If

− cos(!nh) ̸= ±1, then P̄h(z) has two poles at e±j!nh and a zero at −1,

− cos(!nh) = 1, then P̄h(z) = 0,

− cos(!nh) = −1, then P̄h(z) = 2=(z + 1).

Thus, even the order of Pc(s) is not always preserved under discretization.

Analog redesign Discrete-time design Discretization Classical discrete methods

When order drops?

Consider

P̄h(z) =
n∑

i=1

b̄i
z − āi

where āi ··= eaih and b̄i ··=
eaih − 1

ai
bi :

Two pathological cases, where the order of P̄h(z) is smaller than n:

1. āi = āj , although ai ̸= aj , which is equivalent to

eaih = eajh ⇐⇒ aih = ajh + j2�k for some k ∈ Z \ {0}

or ai − aj = j2!Nk.

2. b̄i = 0, although bi ̸= 0, which is equivalent to

(eaih = 1) ∧ (ai ̸= 0) ⇐⇒ aih = j2�k for some k ∈ Z \ {0}

or ai = j2!Nk. But if the latter condition holds, then ∃j ̸= i such that
aj = −j2!Nk. Hence, ai − aj = j2!N(2k) and this case is covered by 1.

Analog redesign Discrete-time design Discretization Classical discrete methods

When order drops?

Consider

P̄h(z) =
n∑

i=1

b̄i
z − āi

where āi ··= eaih and b̄i ··=
eaih − 1

ai
bi :

Two pathological cases, where the order of P̄h(z) is smaller than n:

1. āi = āj , although ai ̸= aj , which is equivalent to

eaih = eajh ⇐⇒ aih = ajh + j2�k for some k ∈ Z \ {0}

or ai − aj = j2!Nk.

2. b̄i = 0, although bi ̸= 0, which is equivalent to

(eaih = 1) ∧ (ai ̸= 0) ⇐⇒ aih = j2�k for some k ∈ Z \ {0}

or ai = j2!Nk. But if the latter condition holds, then ∃j ̸= i such that
aj = −j2!Nk. Hence, ai − aj = j2!N(2k) and this case is covered by 1.

Analog redesign Discrete-time design Discretization Classical discrete methods

Pathological sampling

We say that sampling is pathological with respect to Pa if there are at least
2 poles of Pa(s), say p1 and p2, such that

p1 − p2 = j
2�

h
k = j2!Nk ⇐=

Re s

Im s

2!
N
k

p1

p2

for some k ∈ Z \ {0}. If sampling is pathological, then

− some parts of dynamics of P are not visible by the discrete controller.

But these parts don’t disappear, they are just in the blind spot of C̄ , which
cannot counteract anything caused by them (e.g. instability or oscillations).

As the minimum distance between poles for h being pathological is 2!N,

− “sufficiently fast” sampling is never pathological.

Analog redesign Discrete-time design Discretization Classical discrete methods

Pathological sampling

We say that sampling is pathological with respect to Pa if there are at least
2 poles of Pa(s), say p1 and p2, such that

p1 − p2 = j
2�

h
k = j2!Nk ⇐=

Re s

Im s

2!
N
k

p1

p2

for some k ∈ Z \ {0}. If sampling is pathological, then

− some parts of dynamics of P are not visible by the discrete controller.

But these parts don’t disappear, they are just in the blind spot of C̄ , which
cannot counteract anything caused by them (e.g. instability or oscillations).

As the minimum distance between poles for h being pathological is 2!N,

− “sufficiently fast” sampling is never pathological.

Analog redesign Discrete-time design Discretization Classical discrete methods

Pathological sampling

We say that sampling is pathological with respect to Pa if there are at least
2 poles of Pa(s), say p1 and p2, such that

p1 − p2 = j
2�

h
k = j2!Nk ⇐=

Re s

Im s

2!
N
k

p1

p2

for some k ∈ Z \ {0}. If sampling is pathological, then

− some parts of dynamics of P are not visible by the discrete controller.

But these parts don’t disappear, they are just in the blind spot of C̄ , which
cannot counteract anything caused by them (e.g. instability or oscillations).

As the minimum distance between poles for h being pathological is 2!N,

− “sufficiently fast” sampling is never pathological.

Analog redesign Discrete-time design Discretization Classical discrete methods

Fundamental stability result

If sampling is pathological with respect to no unstable poles of Pa(s), then
C̄ stabilizes

C̄P̄h
r̄ēū

d̄

ȳ

ȳmn̄

−

iff C̄ stabilizes

SC̄HP
reēūu

d

y

ymn

−

Analog redesign Discrete-time design Discretization Classical discrete methods

Outline

Analog redesign

Discrete-time design

Discretized plant and its properties

Classical methods for discrete systems (mostly stability)

Analog redesign Discrete-time design Discretization Classical discrete methods

Discrete unity feedback

We may now drop all signs of discretization and consider a discrete system,

CP
reu

d

y

ymn

−

for a given

P(z) =
bmz

m + bm−1z
m−1 + · · ·+ b1z + b0

zn + an−1zn−1 + · · ·+ a1z + a0
=

NP(z)

DP(z)

with bm ̸= 0 and m ≤ n (typically, m = n − 1).

Analog redesign Discrete-time design Discretization Classical discrete methods

Internal stability

CP
reu

d

y

ymn

−

The closed-loop system is said to be

− internally stable if all Gang of Four transfer functions[
S(z) Td(z)
Tc(z) T (z)

]
··=

1

1 + P(z)C (z)

[
1

C (z)

] [
1 P(z)

]
are stable,

i.e. the corresponding transfer function is proper and has no poles outside
the open unit disk D.

Internal stability is the formalism helping to avoid unstable cancellations.

Analog redesign Discrete-time design Discretization Classical discrete methods

Internal stability

CP
reu

d

y

ymn

−

The closed-loop system is said to be

− internally stable if all Gang of Four transfer functions[
S(z) Td(z)
Tc(z) T (z)

]
··=

1

1 + P(z)C (z)

[
1

C (z)

] [
1 P(z)

]
are stable,

i.e. the corresponding transfer function is proper and has no poles outside
the open unit disk D.

Internal stability is the formalism helping to avoid unstable cancellations.

Analog redesign Discrete-time design Discretization Classical discrete methods

Characteristic polynomial

CP
reu

d

y

ymn

−

If C (z) = NC (z)=DC (z) is proper, then the closed-loop system is internally
stable iff its characteristic polynomial

�cl(z) = NP(z)NC (z) + DP(z)DC (z)

has all roots in D (such polynomials are known as Schur).

Analog redesign Discrete-time design Discretization Classical discrete methods

Root locus

The technique is exactly as in the continuous-time case. Start with writing

�cl(z) = 0 ⇐⇒ −1

k
= Gk(z);

where k is a parameter to change, in (0;∞), and Gk(z) is a proper transfer
function. This representation is termed the root-locus form. All rules, which
we know from the continuous-time analysis, apply then literally.

What changes is the meaning of the results, because

− stability / performance areas become different.

For example, no asymptote remains in the stability area (D), which implies
that we can afford

− no high-gain feedback in discrete setting if P(z) is strictly proper,

which is normally the case.

Analog redesign Discrete-time design Discretization Classical discrete methods

Root locus

The technique is exactly as in the continuous-time case. Start with writing

�cl(z) = 0 ⇐⇒ −1

k
= Gk(z);

where k is a parameter to change, in (0;∞), and Gk(z) is a proper transfer
function. This representation is termed the root-locus form. All rules, which
we know from the continuous-time analysis, apply then literally.

What changes is the meaning of the results, because

− stability / performance areas become different.

For example, no asymptote remains in the stability area (D), which implies
that we can afford

− no high-gain feedback in discrete setting if P(z) is strictly proper,

which is normally the case.

Analog redesign Discrete-time design Discretization Classical discrete methods

Root locus: example

Consider again

P(z) =
(

>0︷ ︸︸ ︷
h + e−h − 1)z +

>0︷ ︸︸ ︷
1− (1 + h)e−h

(z − 1)(z − e−h)
;

which is the discretization of P(s) = 1=[s(s + 1)], and the “P” C (z) = k.

− start: z = 1 and z = e−h (poles of Gk(z) = P(z));

− end: z = −1−(1+h)e−h

h+e−h−1
∈ (−1; 0) and z → −∞+ j0, as the pole excess

is 1 (one asymptote, with the angle 180◦);

− real axis: between the poles and to the left of the zero

− breakaway / break-in: by dP(z)=dz = 0 for real z ,

z1;2 = e−h +
(1− e−h)

√
1− e−h

√
1− e−h ±

√
h

= 1∓ (1− e−h)
√
h√

1− e−h ±
√
h

with e−h < z1 < 1 (breakaway) and z2 to the left of the zero (break-in)
and z2 ≤ −1 if 0 < h < 3:720754 and −1 < z1 < 0 if h ≥ 3:720754.

Analog redesign Discrete-time design Discretization Classical discrete methods

Root locus: example

Consider again

P(z) =
(

>0︷ ︸︸ ︷
h + e−h − 1)z +

>0︷ ︸︸ ︷
1− (1 + h)e−h

(z − 1)(z − e−h)
;

which is the discretization of P(s) = 1=[s(s + 1)], and the “P” C (z) = k.

− start: z = 1 and z = e−h (poles of Gk(z) = P(z));

− end: z = −1−(1+h)e−h

h+e−h−1
∈ (−1; 0) and z → −∞+ j0, as the pole excess

is 1 (one asymptote, with the angle 180◦);

− real axis: between the poles and to the left of the zero

− breakaway / break-in: by dP(z)=dz = 0 for real z ,

z1;2 = e−h +
(1− e−h)

√
1− e−h

√
1− e−h ±

√
h

= 1∓ (1− e−h)
√
h√

1− e−h ±
√
h

with e−h < z1 < 1 (breakaway) and z2 to the left of the zero (break-in)
and z2 ≤ −1 if 0 < h < 3:720754 and −1 < z1 < 0 if h ≥ 3:720754.

Analog redesign Discrete-time design Discretization Classical discrete methods

Root locus: example

Consider again

P(z) =
(

>0︷ ︸︸ ︷
h + e−h − 1)z +

>0︷ ︸︸ ︷
1− (1 + h)e−h

(z − 1)(z − e−h)
;

which is the discretization of P(s) = 1=[s(s + 1)], and the “P” C (z) = k.

− start: z = 1 and z = e−h (poles of Gk(z) = P(z));

− end: z = −1−(1+h)e−h

h+e−h−1
∈ (−1; 0) and z → −∞+ j0, as the pole excess

is 1 (one asymptote, with the angle 180◦);

− real axis: between the poles and to the left of the zero

− breakaway / break-in: by dP(z)=dz = 0 for real z ,

z1;2 = e−h +
(1− e−h)

√
1− e−h

√
1− e−h ±

√
h

= 1∓ (1− e−h)
√
h√

1− e−h ±
√
h

with e−h < z1 < 1 (breakaway) and z2 to the left of the zero (break-in)
and z2 ≤ −1 if 0 < h < 3:720754 and −1 < z1 < 0 if h ≥ 3:720754.

Analog redesign Discrete-time design Discretization Classical discrete methods

Root locus: example

Consider again

P(z) =
(

>0︷ ︸︸ ︷
h + e−h − 1)z +

>0︷ ︸︸ ︷
1− (1 + h)e−h

(z − 1)(z − e−h)
;

which is the discretization of P(s) = 1=[s(s + 1)], and the “P” C (z) = k.

− start: z = 1 and z = e−h (poles of Gk(z) = P(z));

− end: z = −1−(1+h)e−h

h+e−h−1
∈ (−1; 0) and z → −∞+ j0, as the pole excess

is 1 (one asymptote, with the angle 180◦);

− real axis: between the poles and to the left of the zero

− breakaway / break-in: by dP(z)=dz = 0 for real z ,

z1;2 = e−h +
(1− e−h)

√
1− e−h

√
1− e−h ±

√
h

= 1∓ (1− e−h)
√
h√

1− e−h ±
√
h

with e−h < z1 < 1 (breakaway) and z2 to the left of the zero (break-in)
and z2 ≤ −1 if 0 < h < 3:720754 and −1 < z1 < 0 if h ≥ 3:720754.

Analog redesign Discrete-time design Discretization Classical discrete methods

Root locus: example

Consider again

P(z) =
(

>0︷ ︸︸ ︷
h + e−h − 1)z +

>0︷ ︸︸ ︷
1− (1 + h)e−h

(z − 1)(z − e−h)
;

which is the discretization of P(s) = 1=[s(s + 1)], and the “P” C (z) = k.

− start: z = 1 and z = e−h (poles of Gk(z) = P(z));

− end: z = −1−(1+h)e−h

h+e−h−1
∈ (−1; 0) and z → −∞+ j0, as the pole excess

is 1 (one asymptote, with the angle 180◦);

− real axis: between the poles and to the left of the zero

− breakaway / break-in: by dP(z)=dz = 0 for real z ,

z1;2 = e−h +
(1− e−h)

√
1− e−h

√
1− e−h ±

√
h

= 1∓ (1− e−h)
√
h√

1− e−h ±
√
h

with e−h < z1 < 1 (breakaway) and z2 to the left of the zero (break-in)
and z2 ≤ −1 if 0 < h < 3:720754 and −1 < z1 < 0 if h ≥ 3:720754.

Analog redesign Discrete-time design Discretization Classical discrete methods

Root locus: example (contd)

For various sampling periods,

Im z

Re zz1z2

h = 1: Im z

Re zz1z2

h = 3.720754: Im z

Re zz1z2

h = 5:

In all cases the system is stable only if k is sufficiently small. In fact, for

0 < k <
1− e−h

1− (h + 1)e−h

which can be derived by the Jury stability criterion (discrete counterpart of
the Routh criterion).

Analog redesign Discrete-time design Discretization Classical discrete methods

Nyquist criterion

CP
reu

d

y

ymn

−

The same logic, as in the continuous-time case. The return difference

1 + L(z) = 1 + P(z)C (z) =
�cl(z)

�ol(z)

still has open-loop poles as its poles and closed-loop poles as its zeros. The
line of reasonings is then

1. define simple closed contour Γz containing all C \ D̄1;

2. determine the mapping ΓL of Γz by the loop gain L(z);

3. count the number � of clockwise encirclings of (−1; 0) by ΓL.

By the argument principle, � = #clsd-loop unstable poles −#opn-loop unstable poles.

Analog redesign Discrete-time design Discretization Classical discrete methods

Nyquist contour

The contour encircling the unstable region C \ D̄1 is cumbersome. A simple
workaround is to redefine z → 1=�. The unstable region in terms of � is D1

and the contour around it is the unit circle, Γ� = T . Some observations:

− the (clockwise) Γ� is mapped by L(�) as the frequency response L(ej�)
under increasing � (the frequency for � is −�);

− if L(�), equivalently L(z), has poles at T , the contour is altered as

Γ�

Im�

Re�1−1

1

−1

−→

Γ�

Im�

Re�1−1

1

−1

with the same completion rules as in the continuous-time case.

Analog redesign Discrete-time design Discretization Classical discrete methods

Nyquist contour

The contour encircling the unstable region C \ D̄1 is cumbersome. A simple
workaround is to redefine z → 1=�. The unstable region in terms of � is D1

and the contour around it is the unit circle, Γ� = T . Some observations:

− the (clockwise) Γ� is mapped by L(�) as the frequency response L(ej�)
under increasing � (the frequency for � is −�);

− if L(�), equivalently L(z), has poles at T , the contour is altered as

Γ�

Im�

Re�1−1

1

−1

−→

Γ�

Im�

Re�1−1

1

−1

with the same completion rules as in the continuous-time case.

Analog redesign Discrete-time design Discretization Classical discrete methods

Steady-state performance

CP
reu

d

y

ymn

−

Nothing changes vis-à-vis the continuous-time case, except replacing s = 0
with z = 1. For example, if d [t] = 1[t], then by the Final Value Theorem

yss ··= lim
t→∞

y [t] = lim
z→1

(z − 1)Td(z)D(z) = lim
z→1

(z − 1)Td(z)
z

z − 1
= Td(1);

which is the static gain of (stable) Td. Moreover,

yss = 0 ⇐⇒ (P(1) = 0) ∨ (|C (1)| = ∞);

where the latter condition requires an integral action in C .

Analog redesign Discrete-time design Discretization Classical discrete methods

Transient performance and poles

Messier, e.g. discrete 1-order systems can exhibit oscillations and the role of
zeros is not clear. So normally understood via discretized models.

Because 1 = HZOH1̄, we have SidlG1 = Ḡh1̄, i.e. the

− step response of the discrete Ḡh is the sampled version of that of G .

If G (s) = !2
n=(s

2 + 2�!ns + !
2
n) for � ∈ [0; 1], then Ḡh(z) has its poles at

z = e−�!nhe±j
√

1−�2!nh. Constant � and !nh contours are

Im z

Re z

and

Im z

Re z

Analog redesign Discrete-time design Discretization Classical discrete methods

Transient performance and poles

Messier, e.g. discrete 1-order systems can exhibit oscillations and the role of
zeros is not clear. So normally understood via discretized models.

Because 1 = HZOH1̄, we have SidlG1 = Ḡh1̄, i.e. the

− step response of the discrete Ḡh is the sampled version of that of G .

If G (s) = !2
n=(s

2 + 2�!ns + !
2
n) for � ∈ [0; 1], then Ḡh(z) has its poles at

z = e−�!nhe±j
√

1−�2!nh. Constant � and !nh contours are

Im z

Re z
and

Im z

Re z

Analog redesign Discrete-time design Discretization Classical discrete methods

Deadbeat control

Given n-order P(z) and nc-order C (z). If the attained

�cl(z) = zn+nc

(it is Schur), we say that the response is deadbeat. In this case we have

− finite duration of transients, of at most n + nc steps,

We know it as the FIR (finite impulse response) property, impossible in the
finite-dimensional continuous-time LTI case. For example, consider

S(z) =
1

1 + P(z)C (z)
=

bn+ncz
n+nc + bn+nc−1z

n+nc−1 + · · ·+ b1z + b0
�cl(z)

= bn+nc + bn+nc−1z
−1 + · · ·+ b1z

1−n−nc + b0z
−n−nc

Its impulse response

s[t] = bn+ncı[t] + · · ·+ b1ı[t − n − nc + 1] + b0ı[t − n − nc]

indeed ends after at most n + nc steps.

Analog redesign Discrete-time design Discretization Classical discrete methods

Deadbeat control

Given n-order P(z) and nc-order C (z). If the attained

�cl(z) = zn+nc

(it is Schur), we say that the response is deadbeat. In this case we have

− finite duration of transients, of at most n + nc steps,

We know it as the FIR (finite impulse response) property, impossible in the
finite-dimensional continuous-time LTI case. For example, consider

S(z) =
1

1 + P(z)C (z)
=

bn+ncz
n+nc + bn+nc−1z

n+nc−1 + · · ·+ b1z + b0
�cl(z)

= bn+nc + bn+nc−1z
−1 + · · ·+ b1z

1−n−nc + b0z
−n−nc

Its impulse response

s[t] = bn+ncı[t] + · · ·+ b1ı[t − n − nc + 1] + b0ı[t − n − nc]

indeed ends after at most n + nc steps.

Analog redesign Discrete-time design Discretization Classical discrete methods

Deadbeat control

Given n-order P(z) and nc-order C (z). If the attained

�cl(z) = zn+nc

(it is Schur), we say that the response is deadbeat. In this case we have

− finite duration of transients, of at most n + nc steps,

We know it as the FIR (finite impulse response) property, impossible in the
finite-dimensional continuous-time LTI case. For example, consider

S(z) =
1

1 + P(z)C (z)
=

bn+ncz
n+nc + bn+nc−1z

n+nc−1 + · · ·+ b1z + b0
�cl(z)

= bn+nc + bn+nc−1z
−1 + · · ·+ b1z

1−n−nc + b0z
−n−nc

Its impulse response

s[t] = bn+ncı[t] + · · ·+ b1ı[t − n − nc + 1] + b0ı[t − n − nc]

indeed ends after at most n + nc steps.

Analog redesign Discrete-time design Discretization Classical discrete methods

Deadbeat control: example

Consider

P(z) =
h2

2

z + 1

(z − 1)2

which is the discretized 1=s2. With �cl(z) = z3 we have (see Lecture 5)
1 0 0 0
−2 1 h2=2 0
1 −2 h2=2 h2=2
0 1 0 h2=2



˛1
˛0
ˇ1
ˇ0

 =


1
0
0
0

 =⇒


˛1
˛0
ˇ1
ˇ0

 =


1

3=4
5=(2h2)
−3=(2h2)


so that

C (z) =
2

h2
5z − 3

4z + 3

In this case

S(z) =
(z − 1)2(4z + 3)

4z3
=⇒ e[t] = ı[t]− 1

4
ı[t − 1]− 3

4
ı[t − 2]

with r = 1 (for which R(z) = z
z−1 and S(z)R(z) = 1− 1

4z
−1 − 3

4z
−2).

	Analog redesign
	Discrete-time design
	Discretized plant and its properties
	Classical methods for discrete systems (mostly stability)

