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Three approaches to sampled-data control design
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analog design

discretization

discretization

digital design

sampled-data design

P
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C

C̄

1. Digital redesign of analog controllers
(do your favorite analog design first, then discretize the resulting controller)

2. Discrete-time design
(discretize the problem first, then do your favorite discrete design)

3. Direct digital (sampled-data) design
(design discrete-time controller C̄(z) directly for analog specs)



Analog redesign Discrete-time design Discretization Classical discrete methods

The redesign problem
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SC̄HP
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−

Starting point:

− “good” analog controller C (designed by whatever method)

Goal:

− find C̄ such that HC̄S ≈ C

(we consider S = Sidl, H = HZOH, and periodic sampling with given h > 0).
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Discrete transfer functions (from LS)

continuous-time systems discrete-time systems

differential equations difference equations

Laplace transform z transform

s is the derivative in the time domain z is the shift in the time domain

left-half plane in the s-plane : : unit disk in the z-plane

imaginary axis, s = j! unit circle, z = ej�

static gain is G (s)|s=0 = G (0) static gain is G (z)|z=1 = G (1)

integral action: pole at s = 0 integral action: pole at z = 1
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Choice of C̄ : ad hoc approaches

Logic: imitate C , often based on approximating derivatives, like

fwd Euler: ẋ(ih) ≈ x(ih + h)− x(ih)

h
=⇒ s → z − 1

h

bwd Euler: ẋ(ih) ≈ x(ih)− x(ih − h)

h
=⇒ s → z − 1

hz

Tustin1:
ẋ(ih + h) + ẋ(ih)

2
≈ x(ih + h)− x(ih)

h
=⇒ s → 2

h

z − 1

z + 1
making sense if h is “small enough.”

Example: If C (s) = 2=(s + 2), then

C̄ (z) = C (s)
∣∣
s= 2

h
z−1
z+1

=
2

2=h · (z − 1)=(z + 1) + 2
=

h(z + 1)

(h + 1)z + h − 1
:

and
|C̄ (ej!h)| =

!0 !b = 1.8 !N = 10.5

1√
2

1 |C̄ (ej!h)|, h = 0.6

|C (j!)|

or

!0 !b = 1.96 !N = 25.1

1√
2

1 |C̄ (ej!h)|, h = 0.25

|C (j!)|

1Matlab: c2d(C,h,’tustin’), where C is a continuous-time system.
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General bilinear transformation

Given 
 > 0, consider the mapping (Tustin corresponds to 
 = 2=h)

s → 

z − 1

z + 1
⇐⇒ z → 
 + s


 − s

between s and z complex planes. Every s = � + j! is mapped to

z =

 + (� + j!)


 − (� + j!)
=⇒ |z |2 = (
 + �)2 + !2

(
 − �)2 + !2
:

Hence,

|z |2 − 1 =
2
�

(
 − �)2 + !2

and we end up with the relations

− |z | < 1 ⇐⇒ � = Re s < 0

− |z | > 1 ⇐⇒ � = Re s > 0

− |z | = 1 ⇐⇒ � = Re s = 0
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General bilinear transformation (contd)

s → 
 z−1
z+1

z → 
+s

−s

Im s

Re s

Im z

Re z

Thus,

− any “stable” s is mapped to a “stable” z

− any “unstable” s is mapped to a “unstable” z

− any “borderline” s is mapped to a “borderline” z

Moreover,

− any CT frequency ! is mapped to the DT frequency � = 2arctan(!=
)
(i.e. bilinear transformations squeeze the whole jR to T , with no folding effects)

− the lowest ! = 0 is mapped to the lowest � = 0

− the highest ! = ±∞ is mapped to the highest � = ±�
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Choice of C̄ : more about Tustin

If
C̄ (z) = C (s)

∣∣
s= 2

h
z−1
z+1
;

then

− C̄ is stable iff C is stable,

− C̄ is unstable iff C is unstable,

− the number of integrators in C̄ (z) equals that in C (s),

− C̄ (z) is bi-proper, unless C (s) has either poles or zeros at s = 2=h

− zero multiplicity of C (s) at s = 2=h equals the pole excess of C̄ (z)
− pole multiplicity of C (s) at s = 2=h equals the zero excess of C̄ (z)

− C̄ (z) has a zero at z = −1 of multiplicity m iff C (s) is strictly proper
and its pole excess is m

− C̄ (z) has a pole at z = −1 of multiplicity m iff C (s) is non-proper and
its zero excess is m
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Discretizing C : Tustin with pre-warping

� = 2 arctan(!=
)

! = 
 tan(�=2)

עיוות

Im s

Re s

Im z

Re z

The nonlinear warping of the frequency mapping is not ideal. We would be
happier with � = !h in low frequencies (if folding effects are insignificant).
This happens only at ! = 0 and the frequency !nowarp ∈ (0; !N), at which

2 arctan
!nowarp



= !nowarph ⇐⇒ 
 = !nowarp cot

!nowarph

2
∈
(
0;

2

h

)
:

The bilinear transformation with 
 as above for a given !nowarp ∈ (0; !N) is
known1 as Tustin with pre-warping. As !nowarp → 0, the ordinary Tustin for

 = 2=h is recovered, for which dC̄ (ej� )=d� |�=0 = dC (!)=d!|!=0 as well.

1Matlab: c2d(C,h,c2dOptions(’Method’,’tustin’,’PrewarpFrequency’,w0)).
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Example: DC motor

A DC motor from Lecture 1, controlled in closed loop

ru

d

y

ymn

CP −

Requirements:

− closed-loop stability (of course)

− zero steady-state error for a step in r always holds

− zero steady-state error for a step in d integrator in C (s)

− good stability margins

− !c ≈ 2 [rad/sec]

Design:

− LQG loop shaping, with a PI weight W (like in Lecture 11)
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Example: analog design

Weight:

W (s) = 5:06
(
1 +

1

s

)
Controller:

C (s) = W (s)Ca(s) =
23:081(s + 2:075)(s + 0:5346)

s(s2 + 6:155s + 17:44)

(a pole of Ca(s) cancels the zero of W (s) at s = 1). The actual crossover
is !c = 1:4248 and the closed-loop bandwidth is !b = 2:8155.
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Example: analog design (contd)
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Example: controller discretization

Using Tustin, the discretized controllers are

h = 0:01: C̄ (z) =
0:11337(z + 1)(z − 0:9795)(z − 0:9947)

(z − 1)(z2 − 1:939z + 0:9403)

h = 0:1: C̄ (z) =
0:96777(z + 1)(z − 0:812)(z − 0:9479)

(z − 1)(z2 − 1:415z + 0:5445)

h = 0:5: C̄ (z) =
2:7375(z + 1)(z − 0:317)(z − 0:7642)

(z − 1)(z2 + 0:04973z + 0:152)

All of them

− preserve integral actions (pole at s = 0 → pole at z = 1)

− have single zeros at z = −1 (pole excess of P(s) is 1)

− are bi-proper

which are general properties of the Tustin transformation.
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Example: d(t) = 1(t) and n(t) = 0

Responses with h = 0:01:

0 1 2 3 4 5 6 7

-0.1

0

0.3

0 1 2 3 4 5 6 7

-1.43

-1

0

sampled-data response ≈ analog response

⇓
adequate sampling rate
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Example: d(t) = 1(t) and n(t) = 0

The same with h = 0:1:

0 1 2 3 4 5 6 7

-0.1

0

0.3
0.32

0 1 2 3 4 5 6 7

-1.5

-1

0

sampled-data response starts getting worse than analog response

⇓
sampling rate starts to become problematic
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Example: d(t) = 1(t) and n(t) = 0

And now the same with h = 0:5:

0 1 2 3 4 5 6 7

-0.1

0

0.3

0.39

0 1 2 3 4 5 6 7

-1.88

-1

0

sampled-data response is substantially worse than analog response

⇓
sampling rate becomes inadequate

(further increase of h eventually results in an unstable closed-loop system).
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Example: d(t) = 1(t) and n(t) = sin(20�t + 0:1)

Responses with h = 0:01:

0 1 2 3 4 5 6 7

-0.1

0

0.3

6.9 7 7.1

-1.37

-1

-0.63

sampled-data response ≈ analog response

⇓
adequate sampling rate
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Example: d(t) = 1(t) and n(t) = sin(20�t + 0:1)

Now the same with h = 0:1:

0 1 2 3 4 5 6 7

-0.1

0

0.18

0.3

6.9 7 7.1

-1.37

-1

-0.63

Oops,

− sampled-data response is qualitatively different from analog response
(steady-state error is nonzero, the harmonic of measurement noise disappears)

Why?
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The sampled-data controller

SC̄H yȳūu

We now know that in the frequency domain

S causes aliasing by folding ultra-!N frequencies of Y (j!) to [−!N; !N]
of Ȳ (ej!h)

C̄ acts as a standard LTI filter, Ū(ej!h) = C̄ (ej!h)Ȳ (ej!h)

H clones [−!N; !N] frequency interval of Ū(ej!h) to all R and filters the
result by the low-pass hF� , where F�(j!) = (1− e−j!h)=(j!h)

In other words,

U(j!) =
1− e−j!h

j!h
C̄ (ej!h)

∑
i∈Z

Y (j(! + 2!Ni))
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Effects of aliasing

If aliased parts remain qualitatively unchanged, then aliasing is harmless

SC̄H
YȲŪU

−!N 0 !N!N
0−!N!N

0−!N−!N 0 !N

But if they migrate to different frequency bands, then the picture changes

SC̄H
YȲŪU

−!N 0 !N!N
0−!N!N

0−!N−!N 0 !N

(red dotted lines correspond to the spectrum of Cy).
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Moral

SC̄H
YȲŪU

−!N 0 !N!N
0−!N!N

0−!N−!N 0 !N

Once high-frequency components of y alias as low-frequency ones and blend
with low-frequency components of y ,

− nothing can be done via a “better” processing by C̄ (z).

The only way to cope with this phenomenon is to

− filter out those frequencies in continuous time, before sampling

(nip them in the bud). Low-pass filters doing that are known as

− anti-aliasing filters.
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YȲŪU

−!N 0 !N!N
0−!N!N

0−!N−!N 0 !N

Once high-frequency components of y alias as low-frequency ones and blend
with low-frequency components of y ,

− nothing can be done via a “better” processing by C̄ (z).

The only way to cope with this phenomenon is to

− filter out those frequencies in continuous time, before sampling

(nip them in the bud). Low-pass filters doing that are known as

− anti-aliasing filters.



Analog redesign Discrete-time design Discretization Classical discrete methods

Anti-aliasing filtering: non-control examples

w/o anti-aliasing filter with anti-aliasing filter

where anti-aliasing filters used are

− noncausal low-pass filters with the bandwidth !N.

Best choice, performance-wise, is

− the ideal low-pass filter Filp with the bandwidth !b = !N,

whose impulse response filp(t) = sinc(!Nt), but it is hard to implement.
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Anti-aliasing filters in feedback loops

yȳūu
FaSC̄H

Additional considerations:

− must be causal,

− |Fa(j!)| ≪ 1 for all ! ≥ !N,

− avoid adding a substantial phase lag around the crossover.

We already know (Lecture 1) that finite-dimensional low-pass filters

− introduce phase lags before the magnitude starts to decay.

Hence,

− the bandwidth !b of Fa should be well below !N

and, as a result

− the choice of the Nyquist frequency should be conservative
(conventional wisdom has it that !N ≥ 10÷ 30!c, where !c is the analog crossover)
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Aliasing: example (contd)

Let

Fa(s) =
!2
b

s2 +
√
2!bs + !

2
b

; !b =
!N

5
= 0:4�

(second-order Butterworth with |Fa(j!)| = 1=
√
1 + (!=!b)4). In this case

FaSC̄H
YYfȲŪU

−!N 0 !N−!N 0 !N!N
0−!N!N

0−!N−!N 0 !N

and

FaSC̄H
YYfȲŪU

−!N 0 !N−!N 0 !N!N
0−!N!N

0−!N−!N 0 !N

Compare with

SC̄H
YȲŪU

−!N 0 !N!N
0−!N!N

0−!N−!N 0 !N
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Effects of H

SC̄H yȳūu

With
U(j!) = h

1− e−j!h

j!h
Ū(ej!h)

we effectively (factor h is offset by 1=h of the sampler) have the FIR

F�(s) =
1− e−sh

sh

in the loop. This is a low-pass filter, whose frequency response

F�(j!) = sinc
!h

2
e−!h=2 =

!0 !N 2!N 3!N

2=�

1

−�=2

−�

This is a low-pass F� , having a phase lag !h=2 for 0 ≤ ! ≤ !N.
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Effects of H
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Effects on the design of C

Things to remember:

− sample sufficiently fast

− account for an anti-aliasing filter Fa unless sensor is digital

− account for low-pass in the ZOH, F�

Advised to

− design C for the augmented FaPF� .

Remark Because F�(s) = (1− e−sh)=(sh) is infinite dimensional, its approximations

F�(s) ≈ F�;del ··= e−sh=2 or F�(s) ≈ F�;2 ··=
12

h2s2 + 6hs + 12

can be used in analytic design methods, such as state space. Note that F�;2(s) is the
[1; 2]-Padé approximant of F�(s), whose bandwidth !b ≈ 2:7233=h < !N and frequency
response in ! ∈ [0; !N] is not far from that of F� , e.g.

F�;2(j!N) ≈ 0:6326e−j1:4583 vs. F�(j!N) =
2

�
e−j�=2 ≈ 0:6366e−j1:5708

:
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Three approaches to sampled-data control design

P
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S H

y

ȳ ū

u
analog design

discretization
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digital design

sampled-data design

P

P̄

C

C̄

1. Digital redesign of analog controllers
(do your favorite analog design first, then discretize the resulting controller)

2. Discrete-time design
(discretize the problem first, then do your favorite discrete design)

3. Direct digital (sampled-data) design
(design discrete-time controller C̄(z) directly for analog specs)
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What does C̄ see ?

SC̄HP
reēūu

d

y

ymn

−

Input:
ē = Sr − Sn − SPd − SPHū;

where ū is its output (cf. the analog e = r − n− Pd − Pu). Observations:

− the discrete P̄h ··= SPH : ū 7→ ȳ is the plant from the viewpoint of C̄ ,

− sampled reference signal r̄ ··= Sr replaces r ,

− sampled noise signal n̄ ··= Sn replaces n,

− SPd doesn’t fit, unless we assume that d ≈ Hd̄ for some d̄

In other words,

ē ≈ r̄ − n̄ − SPHd̄ − SPHū = r̄ − n̄ − P̄hd̄ − P̄hū

(if d can be viewed as piecewise constant, like u, in the case of H = HZOH).
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reēūu

d

y

ymn

−

Input:
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What does C̄ see ? (contd)

SC̄HP
reēūu

d

y

ymn

−

≈

C̄P̄h
r̄ēū

d̄

ȳ

ȳmn̄

−

meaning that C̄ lives in a pure discrete (stroboscopic) world and this world
approximates the reality well if

− disturbance d may be approximated by a piecewise-constant Hd̄
it is still assumed that H = HZOH

− sampler S = SidlFa and Fa filters out ultra-Nyquist frequencies of n
or the sensor is digital, like an encoder, in which case noise is digital by nature
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Outline

Analog redesign

Discrete-time design

Discretized plant and its properties

Classical methods for discrete systems (mostly stability)
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Discretization

Our task is to find
P̄h = SPH = Sidl

Pa︷︸︸︷
FaPHZOH

for given LTI P and Fa. Let

Pa :

{
ẋ(t) = Ax(t) + Bu(t); x(0) = 0

y(t) = Cx(t)

(Pa(s) is always strictly proper, for so is Fa(s)). Because

− having H at the input implies that u = HZOHū for some discrete ū,

− having Sidl at the output implies that only ȳ [i ] = y(ih) is of interest,

finding P̄h is

− equivalent to finding the mapping ū 7→ ȳ .
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Discretization (contd)

Define x̄ [i ] ··= x(ih). For a given x̄ [i ],

x̄ [i + 1] = eAhx̄ [i ] +

∫ (i+1)h

ih
eA(ih+h−s)Bu(s)ds

Because u(t) = ū[i ] for all t ∈ (ih; (i + 1)h], we have that

x̄ [i + 1] = eAhx̄ [i ] +

∫ (i+1)h

ih
eA(ih+h−s)dsBū[i ] = eAhx̄ [i ] +

∫ h

0
eAs dsBū[i ]

Because ȳ [i ] = y(ih) = Cx̄ [i ], the mapping ū 7→ ȳ satisfies the relation

P̄h :

{
x̄ [t + 1] = Āx̄ [t] + B̄ū[t]; x̄ [0] = 0

ȳ [t] = Cx̄ [t]

where Ā ··= eAh and B̄ ··=
∫ h

0
eAs dsB.
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Discretization (contd)

The dynamics

P̄h :

{
x̄ [t + 1] = Āx̄ [t] + B̄ū[t]; x̄ [0] = 0

ȳ [t] = Cx̄ [t]

is a standard LTI discrete system in state space. Its transfer function2,

P̄h(z) = C (zI − Ā)−1B̄

is always strictly proper, for P̄h(∞) = 0.

Note that

− � ∈ spec(A) ⊂ C =⇒ e�h ∈ spec(Ā) ⊂ C

− �̄ ∈ spec(Ā) ⊂ C =⇒ ∃� ∈ spec(A) ⊂ C such that e�h = �̄

2Matlab: Ph=c2d(P,h) or [Ad,Bd]=c2d(A,B,h).
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Discretization: example 1

If

Pa(s) =
b

s + a

then A = −a, B = b, and C = 1, so that

Ā = e−ah and B̄ =

∫ h

0
e−as dsb =

1− e−ah

a
b

(with well defined lima→0 B̄ = hb). As a result,

P̄h(z) = C (zI − Ā)−1B̄ =
(1− e−ah)b=a

z − e−ah

It has

− one pole, at e−ah, and

− no zeros,

similarly to the continuous-time Pa(s).
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Discretization: example 2

If

Pa(s) =
1

s(s + 1)
=

1

s
− 1

s + 1

then by the linearity of the discretization procedure

P̄h(z) =
h

z − 1
− 1− e−h

z − e−h
=

(h + e−h − 1)z + 1− (1 + h)e−h

(z − 1)(z − e−h)

This transfer function

− has two poles, at e0h = 1 and e−h and

− one zero, at −(1− (1 + h)e−h)=(h + e−h − 1) ∈ (−1; 0)

While poles are still exponents of those of Pa(s), the zero is an artefact.
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Discretization: example 3

If

Pa(s) =
2

s(s + 1)(s + 2)
=

1

s
− 2

s + 1
+

1

s + 2

then by the linearity of the discretization procedure

P̄h(z) =
h

z − 1
− 2(1− e−h)

z − e−h
+

1− e−2h

z − e−2h

=
2h − 3 + 4e−h − e−2h

2

(z − zh;1)(z − zh;2)

(z − 1)(z − e−h)(z − e−2h)

where [
zh;1
zh;2

]
=

h2.2755

−1
−2 +

√
3

−2 −
√
3

Poles follow the already familiar pattern, but now we have

− two zeros, one of which is nonminimum-phase for h < 2:2755
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Poles and zeros of P̄h(z)

Poles of P̄h(z) are simple. If Pa(s) has a pole at s = pi , then

− P̄h(z) has a pole at z = epih |epih| < 1 ( = 1) ⇐⇒ Re pi < 0 ( = 0)

Zeros of P̄h(z) are a mess. We only know that

− the number of finite zeros of P̄h(z) is n − 1 for almost all h > 0

− if Pa(s) has m finite zeros (m < n) at s = zi , then as h ↓ 0

− m zeros of P̄h(z) approach ezih,
− the remaining n−m− 1 zeros, aka sampling zeros, approach the roots of

Euler–Frobenius polynomials Qn−m−1(z), independent of Pa(s):

n −m Qn−m−1(z)
2 z + 1
3 z2 + 4z + 1
4 z3 + 11z2 + 11z + 1
5 z4 + 26z3 + 66z2 + 26z + 1

As Qk(z) = zkQk(1=z) and Qk(0) ̸= 0, Qk(z0) = 0 ⇐⇒ Qk(1=z0) = 0.
Therefore, Qk(z) has root(s) outside the closed unit disk for all k ≥ 2.
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Discretization: example 4

If

Pa(s) =
!2
n

s2 + !2
n

=
j!n=2

s + j!n
− j!n=2

s − j!n

then

P̄h(z) =
1

2

(
1− e−j!nh

z − e−j!nh
+

1− ej!nh

z − ej!nh

)
=

(1− cos(!nh))(z + 1)

z2 − 2 cos(!nh)z + 1
:

If

− cos(!nh) ̸= ±1, then P̄h(z) has two poles at e±j!nh and a zero at −1,

− cos(!nh) = 1, then P̄h(z) = 0,

− cos(!nh) = −1, then P̄h(z) = 2=(z + 1).

Thus, even the order of Pc(s) is not always preserved under discretization.
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When order drops?

Consider

P̄h(z) =
n∑

i=1

b̄i
z − āi

where āi ··= eaih and b̄i ··=
eaih − 1

ai
bi :

Two pathological cases, where the order of P̄h(z) is smaller than n:

1. āi = āj , although ai ̸= aj , which is equivalent to

eaih = eajh ⇐⇒ aih = ajh + j2�k for some k ∈ Z \ {0}

or ai − aj = j2!Nk.

2. b̄i = 0, although bi ̸= 0, which is equivalent to

(eaih = 1) ∧ (ai ̸= 0) ⇐⇒ aih = j2�k for some k ∈ Z \ {0}

or ai = j2!Nk. But if the latter condition holds, then ∃j ̸= i such that
aj = −j2!Nk. Hence, ai − aj = j2!N(2k) and this case is covered by 1.
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Pathological sampling

We say that sampling is pathological with respect to Pa if there are at least
2 poles of Pa(s), say p1 and p2, such that

p1 − p2 = j
2�

h
k = j2!Nk ⇐=

Re s

Im s

2!
N
k

p1

p2

for some k ∈ Z \ {0}. If sampling is pathological, then

− some parts of dynamics of P are not visible by the discrete controller.

But these parts don’t disappear, they are just in the blind spot of C̄ , which
cannot counteract anything caused by them (e.g. instability or oscillations).

As the minimum distance between poles for h being pathological is 2!N,

− “sufficiently fast” sampling is never pathological.
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Fundamental stability result

If sampling is pathological with respect to no unstable poles of Pa(s), then
C̄ stabilizes

C̄P̄h
r̄ēū

d̄

ȳ

ȳmn̄

−

iff C̄ stabilizes

SC̄HP
reēūu

d

y

ymn

−
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Outline

Analog redesign

Discrete-time design

Discretized plant and its properties

Classical methods for discrete systems (mostly stability)
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Discrete unity feedback

We may now drop all signs of discretization and consider a discrete system,

CP
reu

d

y

ymn

−

for a given

P(z) =
bmz

m + bm−1z
m−1 + · · ·+ b1z + b0

zn + an−1zn−1 + · · ·+ a1z + a0
=

NP(z)

DP(z)

with bm ̸= 0 and m ≤ n (typically, m = n − 1).
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Internal stability

CP
reu

d

y

ymn

−

The closed-loop system is said to be

− internally stable if all Gang of Four transfer functions[
S(z) Td(z)
Tc(z) T (z)

]
··=

1

1 + P(z)C (z)

[
1

C (z)

] [
1 P(z)

]
are stable,

i.e. the corresponding transfer function is proper and has no poles outside
the open unit disk D.

Internal stability is the formalism helping to avoid unstable cancellations.
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Characteristic polynomial

CP
reu

d

y

ymn

−

If C (z) = NC (z)=DC (z) is proper, then the closed-loop system is internally
stable iff its characteristic polynomial

�cl(z) = NP(z)NC (z) + DP(z)DC (z)

has all roots in D (such polynomials are known as Schur).
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Root locus

The technique is exactly as in the continuous-time case. Start with writing

�cl(z) = 0 ⇐⇒ −1

k
= Gk(z);

where k is a parameter to change, in (0;∞), and Gk(z) is a proper transfer
function. This representation is termed the root-locus form. All rules, which
we know from the continuous-time analysis, apply then literally.

What changes is the meaning of the results, because

− stability / performance areas become different.

For example, no asymptote remains in the stability area (D), which implies
that we can afford

− no high-gain feedback in discrete setting if P(z) is strictly proper,

which is normally the case.
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Root locus: example

Consider again

P(z) =
(

>0︷ ︸︸ ︷
h + e−h − 1)z +

>0︷ ︸︸ ︷
1− (1 + h)e−h

(z − 1)(z − e−h)
;

which is the discretization of P(s) = 1=[s(s + 1)], and the “P” C (z) = k.

− start: z = 1 and z = e−h (poles of Gk(z) = P(z));

− end: z = −1−(1+h)e−h

h+e−h−1
∈ (−1; 0) and z → −∞+ j0, as the pole excess

is 1 (one asymptote, with the angle 180◦);

− real axis: between the poles and to the left of the zero

− breakaway / break-in: by dP(z)=dz = 0 for real z ,

z1;2 = e−h +
(1− e−h)

√
1− e−h

√
1− e−h ±

√
h

= 1∓ (1− e−h)
√
h√

1− e−h ±
√
h

with e−h < z1 < 1 (breakaway) and z2 to the left of the zero (break-in)
and z2 ≤ −1 if 0 < h < 3:720754 and −1 < z1 < 0 if h ≥ 3:720754.
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Root locus: example (contd)

For various sampling periods,

Im z

Re zz1z2

h = 1: Im z

Re zz1z2

h = 3.720754: Im z

Re zz1z2

h = 5:

In all cases the system is stable only if k is sufficiently small. In fact, for

0 < k <
1− e−h

1− (h + 1)e−h

which can be derived by the Jury stability criterion (discrete counterpart of
the Routh criterion).
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Nyquist criterion

CP
reu

d

y

ymn

−

The same logic, as in the continuous-time case. The return difference

1 + L(z) = 1 + P(z)C (z) =
�cl(z)

�ol(z)

still has open-loop poles as its poles and closed-loop poles as its zeros. The
line of reasonings is then

1. define simple closed contour Γz containing all C \ D̄1;

2. determine the mapping ΓL of Γz by the loop gain L(z);

3. count the number � of clockwise encirclings of (−1; 0) by ΓL.

By the argument principle, � = #clsd-loop unstable poles −#opn-loop unstable poles.
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Nyquist contour

The contour encircling the unstable region C \ D̄1 is cumbersome. A simple
workaround is to redefine z → 1=�. The unstable region in terms of � is D1

and the contour around it is the unit circle, Γ� = T . Some observations:

− the (clockwise) Γ� is mapped by L(�) as the frequency response L(ej� )
under increasing � (the frequency for � is −�);

− if L(�), equivalently L(z), has poles at T , the contour is altered as

Γ�

Im�

Re�1−1

1

−1

−→

Γ�

Im�

Re�1−1

1

−1

with the same completion rules as in the continuous-time case.
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Steady-state performance

CP
reu

d

y

ymn

−

Nothing changes vis-à-vis the continuous-time case, except replacing s = 0
with z = 1. For example, if d [t] = 1[t], then by the Final Value Theorem

yss ··= lim
t→∞

y [t] = lim
z→1

(z − 1)Td(z)D(z) = lim
z→1

(z − 1)Td(z)
z

z − 1
= Td(1);

which is the static gain of (stable) Td. Moreover,

yss = 0 ⇐⇒ (P(1) = 0) ∨ (|C (1)| = ∞);

where the latter condition requires an integral action in C .



Analog redesign Discrete-time design Discretization Classical discrete methods

Transient performance and poles

Messier, e.g. discrete 1-order systems can exhibit oscillations and the role of
zeros is not clear. So normally understood via discretized models.

Because 1 = HZOH1̄, we have SidlG1 = Ḡh1̄, i.e. the

− step response of the discrete Ḡh is the sampled version of that of G .

If G (s) = !2
n=(s

2 + 2�!ns + !
2
n) for � ∈ [0; 1], then Ḡh(z) has its poles at

z = e−�!nhe±j
√

1−�2!nh. Constant � and !nh contours are

Im z

Re z

and

Im z

Re z
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Deadbeat control

Given n-order P(z) and nc-order C (z). If the attained

�cl(z) = zn+nc

(it is Schur), we say that the response is deadbeat. In this case we have

− finite duration of transients, of at most n + nc steps,

We know it as the FIR (finite impulse response) property, impossible in the
finite-dimensional continuous-time LTI case. For example, consider

S(z) =
1

1 + P(z)C (z)
=

bn+ncz
n+nc + bn+nc−1z

n+nc−1 + · · ·+ b1z + b0
�cl(z)

= bn+nc + bn+nc−1z
−1 + · · ·+ b1z

1−n−nc + b0z
−n−nc

Its impulse response

s[t] = bn+ncı[t] + · · ·+ b1ı[t − n − nc + 1] + b0ı[t − n − nc]

indeed ends after at most n + nc steps.
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Deadbeat control: example

Consider

P(z) =
h2

2

z + 1

(z − 1)2

which is the discretized 1=s2. With �cl(z) = z3 we have (see Lecture 5)
1 0 0 0
−2 1 h2=2 0
1 −2 h2=2 h2=2
0 1 0 h2=2



˛1
˛0
ˇ1
ˇ0

 =


1
0
0
0

 =⇒


˛1
˛0
ˇ1
ˇ0

 =


1

3=4
5=(2h2)
−3=(2h2)


so that

C (z) =
2

h2
5z − 3

4z + 3

In this case

S(z) =
(z − 1)2(4z + 3)

4z3
=⇒ e[t] = ı[t]− 1

4
ı[t − 1]− 3

4
ı[t − 2]

with r = 1 (for which R(z) = z
z−1 and S(z)R(z) = 1− 1

4z
−1 − 3

4z
−2).
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