Control Theory (00350188) lecture no. 5

Leonid Mirkin

Faculty of Mechanical Engineering Technion — IIT

1/54

Nobody's perfect

In other words, any

mathematical model is merely a (more / less accurate) approximation of the real world.

Outline

Modeling uncertainty

Robust stability

Robust performance

Pole placement

Modeling uncertainty in control systems

Modeling uncertainty (errors, mismatches) are caused by

- linearization
- unmodeled (high-frequency) dynamics
- parametric drifts
- element failures
- _ ...

2/54

Modeling uncertainty: DC motor

Consider a DC motor, modeled (from input voltage to shaft velocity) as

$$P(s) = \frac{K_{\rm m} e^{-\tau s}}{(Ls + R)(Js + f) + K_{\rm m}^2},$$
 (1)

where $K_{\rm m}$ is motor constant (= back emf const), R is armature resistance, L is armature inductance, J is load inertia, f is load friction, and the delay τ reflects potential control channel lags (like in digital implementation).

If L and au are very small, they are neglected and working model becomes

$$P(s) = \frac{K_{\rm m}}{R(Js+f) + K_{\rm m}^2},\tag{2}$$

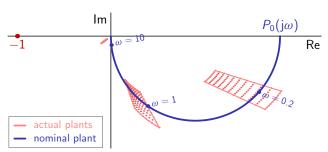
which is an approximation of (1) (which, in turn, is an approximation of the real DC motor).

Moreover, load inertia J might get changed and resistance R is sensitive to thermal conditions (motor heating) and thus also might get changed.

5/54

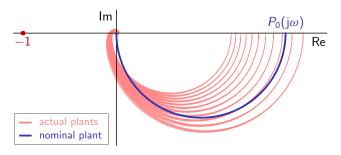
Modeling uncertainty: DC motor (contd)

Thus, at each frequency, frequency response is a region rather than a point:



Modeling uncertainty: DC motor (contd)

Possible frequency responses (for some grid over R and J) look then as



where

- $-K_{\rm m}=0.0302, f=0.05, R_0=0.316, \text{ and } J_0=0.1$
 - nominal values
- $-0.9R_0 \le R \le 1.5R_0$ and $0.8J_0 \le J \le 1.2J_0$
- uncertain values

- $L=8\cdot 10^{-5}$ and au=0.1

unmodeled dynamics

and the nominal plant $P_0(s) = rac{K_{
m m}}{R_0(J_0s+f)+K_{
m m}^2}.$

6/54

Frequency-domain modeling

It then does make sense to describe plant frequency response $P(j\omega)$ at each frequency not as a complex number, but rather as set of its possible values

$$P(\mathsf{j}\omega)\in\mathfrak{P}_{\omega}$$

where $\mathfrak{P}_{\omega}\subset\mathbb{C}$ is some set for each $\omega\in\mathbb{R}$.

The choice of \mathfrak{P}_{ω} is conceptually nontrivial as

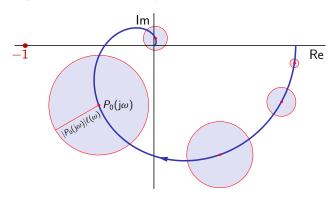
- accurate \mathfrak{P}_{ω} are complicated and hard to deal with in control design,
- easily handleable \mathfrak{P}_{ω} are typically conservative.

In this course (as frequently in engineering), we

sacrifice accuracy for simplicity.

Multiplicative unstructured uncertainty

Idea: describe \mathfrak{P}_{ω} as disks in the Nyquist plane around some nominal plant



These disks verify $|P(j\omega) - P_0(j\omega)| \le \ell(\omega)|P_0(j\omega)|$, where

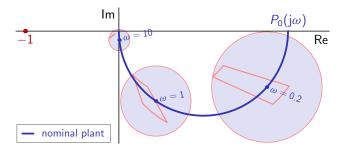
- P₀ is nominal plant (our design model) and
- $-\ell(\omega) \ge 0$ is multiplicative uncertainty radius.

In other words, in this case $\mathfrak{P}_{\omega} = \Big\{ P(j\omega) : \big| \frac{P(j\omega)}{P_0(j\omega)} - 1 \big| \le \ell(\omega) \Big\}.$

9/54

DC motor: finding $\ell(\omega)$ (contd)

Now, at each frequency, frequency response is a disk rather than a point:



Disks fully cover actual uncertainty regions, hence

- $-\,$ whatever we can guarantee for disks, holds for the actual motor as well
- but not the other way round (conservatism)

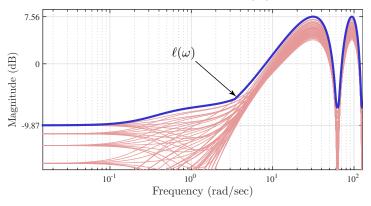
Conservatism may be reduced if a "better" nominal plant $P_0(s)$ is chosen.

DC motor: finding $\ell(\omega)$

To find $\ell(\omega)$, the following steps can be followed:

- 1. plot $\left| \frac{P(j\omega)}{P_0(j\omega)} 1 \right|$ for different $R \in [0.9R_0, 1.5R_0]$ and $J \in [0.8J_0, 1.2J_0]$;
- 2. find maximum for every frequency, this is $\ell(\omega)$.

We get:

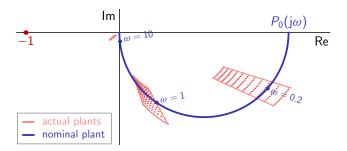


Typically (like in this case) uncertainty radii

 $-\ell(\omega)$ are smaller at low frequencies / larger at high frequencies.

10/54

Choice of nominal plant



Might be highly nontrivial, some possible directions:

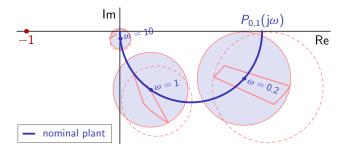
- place $P_0(j\omega)$ at the center of the minimal covering circle at each ω (might result in very high-order $P_0(s)$, whose handling is too complicated)
- fixed-order "physical" $P_0(s)$ with parameters in the middle of ranges (might not produce the tightest disks, see below)
- fixed-order $P_0(s)$ producing tightest disk (immensely complicated, depends on the choice of tightness measure, etc)

DC motor: choice of nominal plant

Let's pick

$$P_0(s) = P_{0,1}(s) := \frac{K_{\rm m}}{R_1(J_1s + f) + K_{\rm m}^2},$$

with $R_1 = 1.2R_0 = 0.3792$ and $J_1 = J_0 = 0.1$ chosen as the median of the corresponding intervals $[0.9R_0, 1.5R_0]$ and $[0.8J_0, 1.2J_0]$. This results in

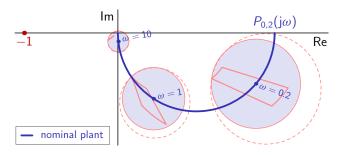


which is not necessarily better than the previous attempt...

13/54

DC motor: choice of nominal plant (contd)

For example, if $R_2 = R_2(1) = 0.3424$ and $J_2 = J_2(1) = 0.09694$, we have:



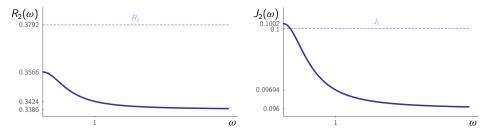
Note that even for $\omega=1$ we do not have the *minimal* covering circle. This is due to the addition of $L\neq 0$ and $h\neq 0$ to the "real" model.

DC motor: choice of nominal plant (contd)

Consider the following class of nominal plants:

$$P_0(s) = P_{0,2}(s) := \frac{K_{\mathsf{m}}}{R_2(J_2s + f) + K_{\mathsf{m}}^2}.$$

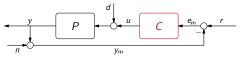
Let's aim at placing $P_{0,2}(j\omega)$ to the center of the *minimal covering circle* of the uncertainty region of $P(j\omega)$ defined by (2) with interval parameters¹ at each ω . Even in this stripped down setting, solution is frequency dependent:



and not always close to the median values $R_1 = 0.3792$ and $J_1 = 0.1$.

14/54

Multiplicative uncertainty and controller



Let $P(j\omega) \in \mathfrak{P}_{\omega}$, where

$$\mathfrak{P}_{\boldsymbol{\omega}} = \left\{ P(\mathsf{j}\boldsymbol{\omega}) : \left| \frac{P(\mathsf{j}\boldsymbol{\omega})}{P_0(\mathsf{j}\boldsymbol{\omega})} - 1 \right| \leq \boldsymbol{\ell}(\boldsymbol{\omega}) \right\}.$$

Then $L(j\omega) = P(j\omega)C(j\omega) \in \mathfrak{L}_{\omega}$, where

$$\mathfrak{L}_{\boldsymbol{\omega}} = \left\{ L(\mathrm{j}\boldsymbol{\omega}) : \left| \frac{L(\mathrm{j}\boldsymbol{\omega})}{L_0(\mathrm{j}\boldsymbol{\omega})} - 1 \right| \leq \ell(\boldsymbol{\omega}) \right\}, \qquad L_0(\mathrm{j}\boldsymbol{\omega}) := P_0(\mathrm{j}\boldsymbol{\omega})C(\mathrm{j}\boldsymbol{\omega}).$$

Thus.

loop multiplicative uncertainty radius does not depend on controller.

¹Note that this P(s) is not the "real" motor in (1)!

Outline

Modeling uncertainty

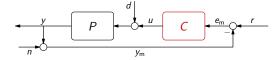
Robust stability

Robust performance

Pole placement

17/54

Robust stability



Let P be such that $P(j\omega) \in \mathfrak{P}_{\omega}$. We say that the

- closed-loop system is robustly stable if it is stable for all $P(j\omega) \in \mathfrak{P}_{\omega}$. If the system is robustly stable, we say that C robustly stabilizes it.

Robustness

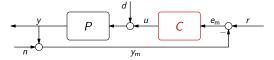
The ability of a control system to cope with modeling uncertainty (that is, to preserve required characteristics despite uncertainty) is called robustness.

We may talk about

- robust stability
 (relatively simple problem, we'll discuss it in some technical details)
- robust performance
 (normally, much harder problem, we'll only see a flavor of this kind of problems)

18/54

Robust stability for multiplicative plant uncertainty



Theorem

Let uncertainty be described as

$$\mathfrak{P}_{\omega} = \left\{ P(\mathsf{j}\omega) : \left| rac{P(\mathsf{j}\omega)}{P_0(\mathsf{j}\omega)} - 1
ight| \leq \ell(\omega)
ight.
ight\}$$

and all P in this class share the same unstable poles. A controller C then robustly stabilizes the system iff

- 1. C stabilizes nominal plant P_0 and
- 2. $|T_0(j\omega)| < \frac{1}{\ell(\omega)}$, for all ω .²

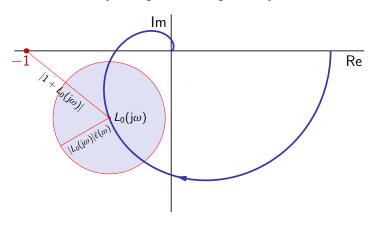
 $^{^{2}}T_{0}(s) = L_{0}(s)/(1 + \overline{L_{0}(s)})$ is the nominal complementary sensitivity transfer function.

Robust stability for multiplicative plant uncertainty: proof

When nominal system is stable, we only need to

- ensure that the critical point does not belong to \mathfrak{L}_{ω} for all ω .

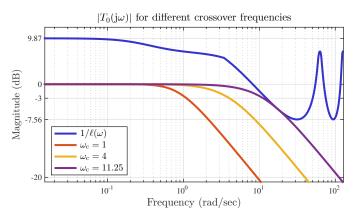
The result then follows by straightforward geometry:



21/5

Robust stability of PI controlled DC motor

Comparing $|T_0(j\omega)|$ with $1/\ell(\omega)$ for different ω_c , we get:



Thus, the system is robustly stable only if $\omega_{\rm c} < 11.25$.

PI controller design for DC motor

Let's now design a PI controller $C(s) = \frac{k_{\rm p}(s+k_{\rm i})}{s}$ for $P_0(s)$. The closed-loop characteristic polynomial $\chi_{\rm cl}(s) = J_0 R_0 s^2 + (K_{\rm m}^2 + K_{\rm m} k_{\rm p} + f R_0) s + K_{\rm m} k_{\rm p} k_{\rm i}$, so the system is stable iff

$$k_{\rm p}k_{\rm i}>0$$
 and $k_{\rm p}>-(K_{\rm m}+fR_0/K_{\rm m})$.

We then choose

- k_i as the maximal gain for which $|T_0(j\omega)|$ monotonically decreases and
- $-k_{\rm p}$ to achieve a given crossover frequency $\omega_{\rm c}$.

This criterion produces unique coefficients as functions of $\omega_{\rm c}$:

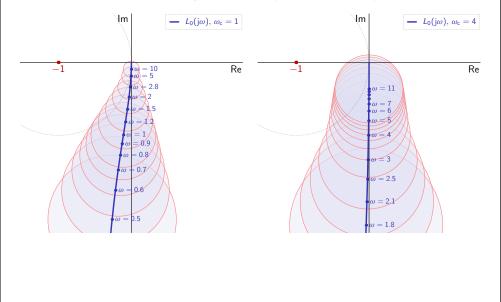
$$\begin{split} k_{p} &= \frac{1.0467 \sqrt{(\omega_{c}^{2} + 0.1398)(\omega_{c}^{2} + 0.4195)} - 0.074}{\omega_{c}^{2} + 0.2797}, \\ k_{i} &= \frac{\omega_{c}(0.5289 \sqrt{(\omega_{c}^{2} + 0.1398)(\omega_{c}^{2} + 0.4195)} + 0.1398\omega_{c})}{\omega_{c} \sqrt{(\omega_{c}^{2} + 0.1398)(\omega_{c}^{2} + 0.4195)} - 0.074} \end{split}$$

(positive iff $\omega_c > 0.24068$, smaller ω_c 's yield undershoot with this strategy).

22/54

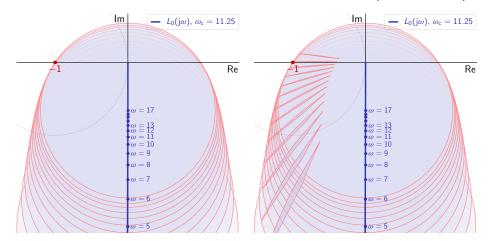
Robust stability of PI controlled DC motor (contd)

The same can be seen through uncertainty disks in the Nyquist plane:



Robust stability of PI controlled DC motor (contd)

With the borderline $\omega_{\rm c}$ the disk touches the critical point (at $\omega=17.05$)

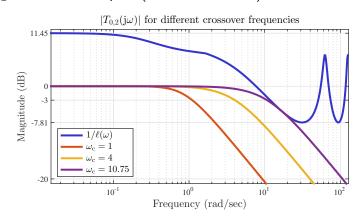


We see that the actual uncertainty areas (on the right) are also very close to the critical point. This means that the obtained bound on ω_c is virtually non-conservative.

25/54

Robust stability of PI controlled DC motor (contd)

With $P_{0,2}$ as the nominal plan (best fit for $\omega=1$), the result is



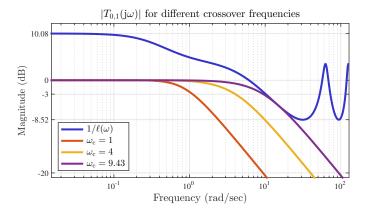
The largest attainable ω_c is less than 96% of what we obtained with T_0 .

These two examples illustrate the fact that the

- choice of "the best" nominal model (design model) is highly nontrivial

Robust stability of PI controlled DC motor (contd)

With $P_{0,1}$ as the nominal plan (median nominal R and J), the result is



The largest attainable ω_c is less than 84% of what we obtained with T_0 .

26/5

Bandwidth limitations due to robust stability

Since $\ell(\omega)$ is typically larger at high frequencies, the condition

$$|T_0(\mathrm{j}\omega)|<rac{1}{\ell(\omega)}$$

imposes limitations on the achievable closed-loop bandwidth³ $\omega_{\rm h}$.

³And, consequently, on the loop crossover frequency ω_c .

Outline

Modeling uncertainty

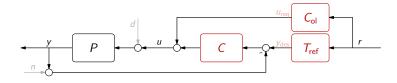
Robust stability

Robust performance

Pole placement

29/5

2DOF control: reference response



With $C_{ol} = T_{ref}/P_0$,

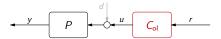
$$y_0 = T_{\text{ref}}r$$
 and $y = \frac{P}{1 + PC}\frac{T_{\text{ref}}}{P_0}r + \frac{PC}{1 + PC}T_{\text{ref}}r = \frac{T}{T_0}T_{\text{ref}}r$

and the normalized control mismatch

$$\frac{|Y(j\omega) - Y_0(j\omega)|}{|R(j\omega)|} = \left|\frac{T(j\omega)}{T_0(j\omega)} - 1\right| |T_{\mathsf{ref}}(j\omega)|$$

depends now upon the uncertainty radius of the complementary sensitivity transfer function (rather than of the plant itself).

Open-loop control



Let y_0 be the response of the nominal plant P_0 . Then

$$y_0 = P_0 C_{ol} r = T_{ref} r$$
 and hence $y = PC_{ol} r = \frac{P}{P_0} T_{ref} r$

Thus, the normalized control mismatch

$$\frac{|Y(j\omega) - Y_0(j\omega)|}{|R(j\omega)|} = \left|\frac{P(j\omega)}{P_0(j\omega)} - 1\right| |T_{\mathsf{ref}}(j\omega)| \le \ell(\omega) |T_{\mathsf{ref}}(j\omega)|$$

and in the frequency range where $T_{\rm ref}({
m j}\omega) \approx 1$ (good tracking performance)

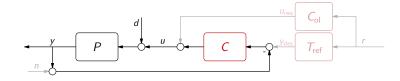
control mismatch equals the uncertainty radius of the plant.

In other words,

open-loop control has no effect on uncertainty.

30/54

2DOF control: disturbance response



In this case,

$$y_0 = T_{d,0}d$$
 and $y = T_{d}d = \frac{T}{T_0}T_{d,0}d$,

where $T_{\rm d,0}=P_0/(1+P_0C)$ is the nominal disturbance sensitivity. Then the normalized control mismatch

$$\frac{|Y(j\omega) - Y_0(j\omega)|}{|D(j\omega)|} = \left|\frac{T(j\omega)}{T_0(j\omega)} - 1\right| |T_{d,0}(j\omega)|$$

also depends upon the uncertainty radius of the complementary sensitivity transfer function. What can we say about it?

Disks mapping under feedback

It can be shown that if the robust stability condition $|T_0(j\omega)| < \frac{1}{\ell(\omega)}$ holds,

$$\left|\frac{T(\mathsf{j}\omega)}{T_0(\mathsf{j}\omega)} - 1\right| \leq \ell_{T_0}(\omega) := \frac{\ell(\omega)}{|1 + L_0(\mathsf{j}\omega)| - \ell(\omega)|L_0(\mathsf{j}\omega)|} = \frac{\ell(\omega)|S_0(\mathsf{j}\omega)|}{1 - \ell(\omega)|T_0(\mathsf{j}\omega)|}$$

where $S_0(s) = 1 - T_0(s)$ is the nominal sensitivity function.

Remark: As a matter of fact, a disk in the L-plane with the center at L_0 is transformed into a T-plane disk, whose center is not T_0 , but rather

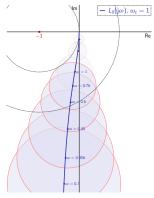
$$T_1(j\omega) = \frac{|1 - \ell^2(\omega)T_0(j\omega)|^2}{1 - \ell^2(\omega)|T_0(j\omega)|^2} \frac{T_0(j\omega)}{1 - \ell^2(\omega)T_0(j\omega)}, \quad \text{with } \ell_{T_1}(\omega) = \frac{\ell(\omega)|S_0(j\omega)|}{|1 - \ell^2(\omega)T_0(j\omega)|}$$

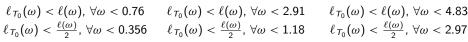
(normalized radius). This disk is always contained in the disk around T_0 defined above and its non-normalized radius is

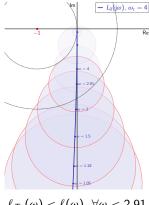
$$\ell_{T_1}(\omega)|T_1(\mathrm{j}\omega)| = \frac{\ell(\omega)|S_0(\mathrm{j}\omega)|}{1 - \ell(\omega)|T_0(\mathrm{j}\omega)|} \frac{|T_0(\mathrm{j}\omega)|}{1 + \ell(\omega)|T_0(\mathrm{j}\omega)|} \leq \ell_{T_0}(\omega)|T_0(\mathrm{j}\omega)|.$$

But the use of T_1 as the nominal T for controller design might not be easy (complexity).

Robust performance of PI controlled DC motor

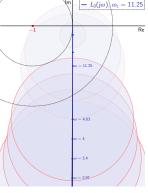






$$\ell_{T_0}(\omega) < \ell(\omega), \ \forall \omega < 2.91$$

 $\ell_{T_0}(\omega) < \frac{\ell(\omega)}{2}, \ \forall \omega < 1.18$

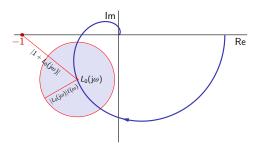


$$\begin{array}{ll} \ell_{\mathcal{T}_0}(\omega) < \ell(\omega), \ \forall \omega < 2.91 & \ell_{\mathcal{T}_0}(\omega) < \ell(\omega), \ \forall \omega < 4.83 \\ \ell_{\mathcal{T}_0}(\omega) < \frac{\ell(\omega)}{2}, \ \forall \omega < 1.18 & \ell_{\mathcal{T}_0}(\omega) < \frac{\ell(\omega)}{2}, \ \forall \omega < 2.97 \\ \ell_{\mathcal{T}_0}(\omega) \to \infty \ \ \ \text{at} \ \omega \approx 17.046 \end{array}$$

In all 3 cases $\ell_{T_0}(0) = 0$, which is the result of the use of an integral action in the controller (as then $S_0(0) = 0$, while $\ell(0)|T_0(0)| = 0.2676 < 1$).

Disks mapping by feedback: what does it mean?

Remember this:



The relation $\ell_{T_0}(\omega) = \frac{\ell(\omega)}{|1+L_0(i\omega)|-\ell(\omega)|L_0(i\omega)|}$ effectively says then that

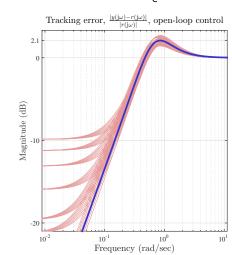
- feedback reduces uncertainty level at frequencies ω , where the disk \mathfrak{L}_{ω} is at a distance of at least 1 from the critical point and that
- the further \mathfrak{L}_{ω} from the critical point -1+i0, the lower the uncertainty level in $T(j\omega)$ is (provided we pick T_0 as the nominal T, of course)

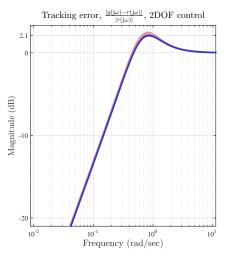
Also, the relation $\ell_{T_0}(\omega) = \frac{\ell(\omega)|S_0(j\omega)|}{1-\ell(\omega)|T_0(j\omega)|}$ implies that

- uncertainty is always aggravated by feedback at ω 's where $|S_0(i\omega)| > 1$

Robust performance: DC motor comparison

Let us choose $T_{\rm ref}(s)=\frac{\omega_{\rm N}^2}{s^2+\sqrt{2}\omega_{\rm N}s+\omega_{\rm N}^2}$ with $\omega_{\rm N}=\frac{2}{3}$ and compare 2 strategies discussed in the beginning of this section. The feedback controller is the PI discussed above with $\omega_c = 4$. Advantages of feedback are clear:





Outline

Modeling uncertainty

Robust stability

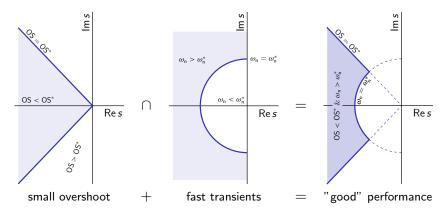
Robust performance

Pole placement

37/54

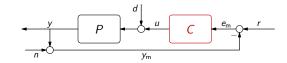
Modal analysis: idea (contd)

Example:



- precise for 2-order systems w/o zeros
- justified for systems with 2-order dominant dynamics

Modal analysis: idea



Express closed-loop performance requirements

in terms of the location of closed-loop poles
 which are roots of the characteristic polynomial

$$\chi_{\mathsf{cl}}(s) := N_P(s)N_C(s) + D_P(s)D_C(s),$$

where

$$P(s) = rac{N_P(s)}{D_P(s)}$$
 and $C(s) = rac{N_C(s)}{D_C(s)}$

and deg $\chi_{cl}(s) = \deg D_P(s) + \deg D_C(s)$ (assuming that P(s) and C(s) are proper and there are no pole / zero cancellations between P(s) and C(s)).

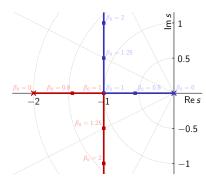
38/54

Example: static controller

Let $P(s) = 1/(s^2 + 2s)$ and controller is of the form $C(s) = \beta_0$. Then

$$\chi_{\rm cl}(s)=s^2+2s+\beta_0.$$

Closed-loop poles can only be placed to points on root-locus branches:



Example: 1-order strictly proper controller

Let $P(s)=1/(s^2+2s)$ and controller is of the form $C(s)=rac{eta_0}{lpha_1s+lpha_0}.$ Then

$$\chi_{cl}(s) = \alpha_1 s^3 + (\alpha_0 + 2\alpha_1) s^2 + 2\alpha_0 s + \beta_0$$

= $\chi_3 s^3 + \chi_2 s^2 + \chi_1 s + \chi_0$.

Still constrained: $\chi_1-2\chi_2+4\chi_3=0.$ Alternative form:

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_0 \\ \beta_0 \end{bmatrix} = \begin{bmatrix} \chi_3 \\ \chi_2 \\ \chi_1 \\ \chi_0 \end{bmatrix},$$

which cannot be solved for arbitrarily χ_i .

41/54

Example: 2-order strictly proper controller

Let $P(s)=1/(s^2+2s)$ and controller is of the form $C(s)=\frac{\beta_1 s+\beta_0}{\alpha_2 s^2+\alpha_1 s+\alpha_0}$. Then

$$\chi_{cl}(s) = \alpha_2 s^4 + (\alpha_1 + 2\alpha_2) s^3 + (\alpha_0 + 2\alpha_1) s^2 + (\beta_1 + 2\alpha_0) s + \beta_0$$

= $\chi_4 s^4 + \chi_3 s^3 + \chi_2 s^2 + \chi_1 s + \chi_0$.

Unconstrained, χ_i can be arbitrary, which is seen from

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}}_{M_{S}} \begin{bmatrix} \alpha_{2} \\ \alpha_{1} \\ \alpha_{0} \\ \beta_{1} \\ \beta_{0} \end{bmatrix} = \begin{bmatrix} \chi_{4} \\ \chi_{3} \\ \chi_{2} \\ \chi_{1} \\ \chi_{0} \end{bmatrix}$$

(always solvable in χ_i as det $M_S = 1 \neq 0$).

Example: 1-order bi-proper controller

Let $P(s)=1/(s^2+2s)$ and controller is of the form $C(s)=rac{eta_1s+eta_0}{lpha_1s+lpha_0}$. Then

$$\chi_{cl}(s) = \alpha_1 s^3 + (\alpha_0 + 2\alpha_1) s^2 + (\beta_1 + 2\alpha_0) s + \beta_0$$

$$= \chi_3 s^3 + \chi_2 s^2 + \chi_1 s + \chi_0.$$

Unconstrained, χ_i can be arbitrary. Alternative form:

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}}_{M_{G}} \begin{bmatrix} \alpha_{1} \\ \alpha_{0} \\ \beta_{1} \\ \beta_{0} \end{bmatrix} = \begin{bmatrix} \chi_{3} \\ \chi_{2} \\ \chi_{1} \\ \chi_{0} \end{bmatrix},$$

which can be solved for arbitrarily χ_i as det $M_S = 1 \neq 0$.

Example: what can we learn from it

- controlers of sufficient high order needed for arbitrary pole placement
- polynomial equations reduce to linear equations

Preliminary: multiplication of polynomials

Let $A(s) = a_n s^n + \cdots + a_1 s + a_0$ and $B(s) = b_m s^m + \cdots + b_1 s + b_0$ with $n \ge m$, so that

$$C(s) := A(s)B(s) = c_{n+m}s^{n+m} + c_{n+m-1}s^{n+m-1} + \cdots + c_1s + c_0.$$

The coefficients of C(s) can be calculated from the table

	a _n s ⁿ	$a_{n-1}s^{n-1}$	• • •	a_1s	a_0
$b_m s^m$	$a_n b_m s^{n+m}$	$a_{n-1}b_ms^{n+m-1}$		$a_1b_ms^{m+1}$	$a_0b_ms^m$
$b_{m-1}s^{m-1}$	$a_n b_{m-1} s^{n+m-1}$	$a_{n-1}b_{m-1}s^{n+m-2}$	• • •	$a_1b_{m-1}s^m$	$a_0b_{m-1}s^{m-1}$
$b_{m-2}s^{m-2}$	$a_n b_{m-2} s^{n+m-2}$	$a_{n-1}b_{m-2}s^{n+m-3}$	• • •	$a_1b_{m-2}s^{m-1}$	$a_0b_{m-2}s^{m-2}$
÷	<u>:</u>	:		:	÷
b_2s^2	$a_nb_2s^{n+2}$	$a_{n-1}b_2s^{n+1}$		$a_1b_2s^3$	$a_0b_2s^2$
b_1s	$a_nb_1s^{n+1}$	$a_{n-1}b_1s^n$	• • •	$a_1b_1s^2$	a_0b_1s
b_0	$a_nb_0s^n$	$a_{n-1}b_0s^{n-1}$	• • •	a_1b_0s	a_0b_0

by summing up elements on each anti-diagonal.

45/54

Sylvester matrix

Let (here $a_n \neq 0$)

$$D_P(s) = a_n s^n + \dots + a_1 s + a_0$$
 and $N_P(s) = b_n s^n + \dots + b_1 s + b_0$.

The $(2n+1) \times (2n+2)$ matrix

$$M_{S} := \begin{bmatrix} M_{a,n} & M_{b,n} \end{bmatrix} = \begin{bmatrix} a_{n} & 0 & \cdots & 0 & b_{n} & 0 & \cdots & 0 \\ a_{n-1} & a_{n} & \cdots & 0 & b_{n-1} & b_{n} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{0} & a_{1} & \cdots & a_{n} & b_{0} & b_{1} & \cdots & b_{n} \\ 0 & a_{0} & \cdots & a_{n-1} & 0 & b_{0} & \cdots & b_{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{0} & 0 & 0 & \cdots & b_{0} \end{bmatrix}$$

called Sylvester matrix, associated with $D_P(s)$ and $N_P(s)$.

Preliminary: multiplication of polynomials (contd)

This results in the following formula for coefficients of C(s):

$$\begin{bmatrix} c_{n+m} \\ c_{n+m-1} \\ \vdots \\ c_n \\ c_{n-1} \\ \vdots \\ c_m \\ c_{m-1} \\ \vdots \\ c_0 \end{bmatrix} = \begin{bmatrix} a_n & 0 & \cdots & 0 \\ a_{n-1} & a_n & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-m} & a_{n-m+1} & \cdots & a_n \\ a_{n-m-1} & a_{n-m} & \cdots & a_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_0 & a_1 & \cdots & a_m \\ 0 & a_0 & \cdots & a_{m-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_0 \end{bmatrix} \begin{bmatrix} b_m \\ b_{m-1} \\ \vdots \\ b_0 \end{bmatrix}$$

46/54

Sylvester matrix (contd)

We need also some sub-matrices of M_S :

 M_{S1} is the $(2n+1) \times (2n+1)$ matrix obtained from M_{S} by eliminating its (n+2)th column

 M_{S2} is the $2n \times 2n$ matrix obtained from M_{S} by eliminating its 1st row and 1st and (n + 2)th columns

That is:

$$M_{S1} := \begin{bmatrix} a_n & 0 & \cdots & 0 & 0 & \cdots & 0 \\ a_{n-1} & a_n & \cdots & 0 & b_n & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_0 & a_1 & \cdots & a_n & b_1 & \cdots & b_n \\ 0 & a_0 & \cdots & a_{n-1} & b_0 & \cdots & b_{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_0 & 0 & \cdots & b_0 \end{bmatrix}$$

and M_{S2} is in green.

Sylvester's theorem

Theorem

Polynomials $D_P(s)$ and $N_P(s)$ relatively prime iff the associated Sylvester matrix M_S has full (row) rank.

Corollary

 $D_P(s)$ and $N_P(s)$ relatively prime iff $\det M_{S1} \neq 0$ (or $\det M_{S2} \neq 0$).

Example: Let $D_P(s) = s(s+2)$ and $N_P(s) = s+2$. Then

$$M_{S1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 1 & 0 \\ 0 & 0 & 2 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

is indeed singular (and so is M_{S2}) as its 3rd and 4th columns coincide.

49/54

Pole placement: (n-1)-order controller

Let's try to reduce the order of the controller to n-1. This implies:

$$\alpha_n = \beta_n = \chi_{2n} = 0$$

and then:

$$\begin{bmatrix}
a_{n} & \cdots & 0 & b_{n} & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{1} & \cdots & a_{n} & b_{1} & \cdots & b_{n} \\
a_{0} & \cdots & a_{n-1} & b_{0} & \cdots & b_{n-1} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & a_{0} & 0 & \cdots & b_{0}
\end{bmatrix}
\begin{bmatrix}
\alpha_{n-1} \\
\vdots \\
\alpha_{0} \\
\beta_{n-1} \\
\vdots \\
\beta_{0}
\end{bmatrix} =
\begin{bmatrix}
\chi_{2n-1} \\
\vdots \\
\chi_{n+1} \\
\chi_{n} \\
\vdots \\
\chi_{0}
\end{bmatrix}$$

- -2n equations, 2n variables, $\det M_S \neq 0 \implies$ unique solution
- any further reduction impossible (more equations than variables)

Pole placement: *n*-order controller

Let P(s) have (irreducible) order n and consider n-order controller:

$$C(s) = \frac{\beta_n s^n + \dots + \beta_1 s + \beta_0}{\alpha_n s^n + \dots + \alpha_1 s + \alpha_0}$$

This yields 2n-order $\chi_{\rm cl}(s) = \chi_{2n} s^{2n} + \cdots + \chi_1 s + \chi_0$ satisfying

$$\begin{bmatrix} a_{n} & 0 & \cdots & 0 & b_{n} & 0 & \cdots & 0 \\ a_{n-1} & a_{n} & \cdots & 0 & b_{n-1} & b_{n} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{0} & a_{1} & \cdots & a_{n} & b_{0} & b_{1} & \cdots & b_{n} \\ 0 & a_{0} & \cdots & a_{n-1} & 0 & b_{0} & \cdots & b_{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{0} & 0 & 0 & \cdots & b_{0} \end{bmatrix} \begin{bmatrix} \alpha_{n} \\ \alpha_{n-1} \\ \vdots \\ \alpha_{0} \\ \beta_{n} \\ \beta_{n-1} \\ \vdots \\ \beta_{0} \end{bmatrix} = \begin{bmatrix} \chi_{2n} \\ \chi_{2n-1} \\ \vdots \\ \chi_{n+1} \\ \chi_{n} \\ \vdots \\ \chi_{0} \end{bmatrix}$$

-2n+1 equations, 2n+2 variables, full-rank $M_S \Longrightarrow \infty$ many solutions

50/54

n-order controller: exploiting freedom we have

We have one "spare" variable in this case, which can be exploited to

bring about additional properties to the controller.

For example, we may enforce $\beta_n = 0$ (strictly proper controller). Then:

$$\begin{bmatrix}
a_{n} & 0 & \cdots & 0 & 0 & \cdots & 0 \\
a_{n-1} & a_{n} & \cdots & 0 & b_{n} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{0} & a_{1} & \cdots & a_{n} & b_{1} & \cdots & b_{n} \\
0 & a_{0} & \cdots & a_{n-1} & b_{0} & \cdots & b_{n-1} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{0} & 0 & \cdots & b_{0}
\end{bmatrix}
\begin{bmatrix}
\alpha_{n} \\
\alpha_{n-1} \\
\vdots \\
\alpha_{0} \\
\beta_{n-1} \\
\vdots \\
\beta_{0}
\end{bmatrix} = \begin{bmatrix}
\chi_{2n} \\
\chi_{2n-1} \\
\vdots \\
\chi_{n+1} \\
\chi_{n} \\
\vdots \\
\chi_{0}
\end{bmatrix}$$

-2n+1 equations, 2n+1 variables, det $M_{S1} \neq 0 \implies$ unique solution

n-order controller: exploiting freedom we have (contd)

Another possibility is to enforce $\alpha_0 = 0$ (integral action). Then:

$$\begin{bmatrix}
a_{n} & 0 & \cdots & 0 & b_{n} & 0 & \cdots & 0 \\
a_{n-1} & a_{n} & \cdots & 0 & b_{n-1} & b_{n} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
a_{0} & a_{1} & \cdots & a_{n-1} & b_{0} & b_{1} & \cdots & b_{n} \\
0 & a_{0} & \cdots & a_{n-2} & 0 & b_{0} & \cdots & b_{n-1} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & b_{0}
\end{bmatrix}
\begin{bmatrix}
\alpha_{n} \\
\alpha_{n-1} \\
\vdots \\
\alpha_{1} \\
\beta_{n} \\
\beta_{n-1} \\
\vdots \\
\beta_{0}
\end{bmatrix} = \begin{bmatrix}
\chi_{2n} \\
\chi_{2n-1} \\
\vdots \\
\chi_{n+1} \\
\chi_{n} \\
\vdots \\
\chi_{0}
\end{bmatrix}$$

-2n+1 equations, 2n+1 variables, $\det M_{S3} \neq 0 \implies$ unique solution (the non-singularity of M_{S3} can be proved under condition that $b_0 \neq 0$).

Pole-placement as a design tool

Pros:

- = arbitrary pole placement
- = easily computable

Cons:

- " no control over controller zeros
- in no dominance guarantees

53/5