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Näıve shaping of T

Assume that the “ideal” closed-loop system is Tdream. We may want to ask

− whether there is C for which T = Tdream ?

The answer is affirmative,

Tdream(s) =
L(s)

1 + L(s)
⇐⇒ L(s) =

Tdream(s)

1− Tdream(s)
:

Thus, controller

Cdream(s) =
1

P(s)

Tdream(s)

1− Tdream(s)

is exactly what we are looking for.
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What’s behind Cdream

If s0 is a pole of P(s) andTdream(s0) ̸= 1, then s0 is a zero of Cdream(s), i.e.

− Cdream(s) tends to cancel poles of P(s).

If s1 is a zero of P(s) and not that of Tdream(s), then s1 must be a pole of
Cdream(s), i.e.

− Cdream(s) tends to cancel zeros of P(s).

Thus, to achieve arbitrary Tdream

− controller should, in general, cancel all poles and zeros of the plant.
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Pole-zero cancellations: what’s legal & what makes sense

Obviously,

− only stable pole-zero cancellations are legal.

This implies that

− every RHP zero of P(s) must be a zero of T (s) (multiplicity counted)

− at every unstable pole sp of P(s) the equality

T (sp) = 1

must hold (multiple poles impose additional conditions on di

ds i
T (s)).

Although stable pole-zero cancellations are legal,

− not all stable pole-zero cancellations are welcome.

Canceled poles and zeros are not eliminated from the closed-loop system.
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Canceled plant poles

Let sp (Re sp < 0) be a pole of P(s) canceled by C (s). In other words, let

P(s) =
P1(s)

s − sp
and C (s) = (s − sp)C1(s)

for some P1(s) such that P1(sp) ̸= 0 and C1(s) such that |C1(sp)| <∞. In
this case

S(s) =
1

1 + P1(s)C1(s)
and T (s) = 1− S(s)

do not depend on sp, but

Td(s) = P(s)S(s) =
1

s − sp

P1(s)

1 + P1(s)C1(s)

still has sp as its pole.
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Canceled plant zeros

Let sz (Re sz < 0) be a zero of P(s) canceled by C (s). In other words, let

P(s) = (s − sz)P2(s) and C (s) =
C2(s)

s − sz

for some P2(s) such that |P2(sz)| <∞ and C2(s) such that C2(sz) ̸= 0. In
this case

S(s) =
1

1 + P2(s)C2(s)
and T (s) = 1− S(s)

do not depend on sz, but

Tc(s) = C (s)S(s) =
1

s − sz

C2(s)

1 + P2(s)C2(s)

has sz as its pole.
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What does it mean?

Thus, for each canceled plant pole sp and zero sz we have that

Td(s) =
1

s − sp

P1(s)

1 + P1(s)C1(s)
and Tc(s) =

1

s − sz

C2(s)

1 + P2(s)C2(s)

Typically,

− If s• is “fast,” its presence in Td(s) or Tc(s) can in general be ignored

− If s• is “slow,” it slows down disturbance response / control input decay

− If s• is “oscillatory,” oscillations show up in d 7→ y or r 7→ u

and we have the following rules of thumb:

− Fast well-damped poles/zeros can typially be safely canceled
(though this might produce spikes in the control signal)

− Slow well-damped poles/zeros can be canceled with certain care
(there are pros and cons in canceling slow plant poles vs. shifting them by feedback)

− Lightly-damped poles/zeros shall not be canceled
(unless you reeeally know what you’re doing)
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What we understand by “flexible” loops

− Loops with one or several resonant frequencies1:

−100

−80

−60

−40

−20

0

20

M
a
g
n
it
u
d
e
 (

d
B

)

10
−1

10
0

10
1

10
2

−180

−135

−90

−45

0

P
h
a
s
e
 (

d
e
g
)

Frequency  (rad/sec)

1Typical example is flexible mechanical structures.
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What is special about flexible systems

Resonances in frequency domain give rise to

− slowly decaying oscillations, dominating time response:
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Ability to cope with oscillations (dampen them) is main leitmotiv in control
of flexible systems, frequently more important than high / low gain tradeoff.

11/44

What is special about dampening flexible modes

remu

d

y

ymn

CP −

At frequencies around problematic resonance peaks (where |P(j!)| ≫ 1),

|Td(j!)| =
∣∣∣∣ P(j!)

1 + P(j!)C (j!)

∣∣∣∣ = 1

|1=P(j!) + C (j!)| ≈
1

|C (j!)| :

This means that it’s

− not sufficient to keep |L(j!)| ≫ 1

(this may be achieved with a small |C (j!)|), but we should endeavor to

− keep |C (j!)| high (or, at least, |C (j!)| ̸≪ 1)

at !’s around meaningful resonances. This support the knowledge that

− canceling lightly damped poles of P(s) by C (s) is a bad idea

(as it normally leads to |C (j!)| ≪ 1 at frequencies where |P(j!)| ≫ 1).
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What will we learn today

Some tricks about how to

− shape lightly damped loops with high-gain controllers

These tricks are rather non-obvious, sometimes contradicting conventional
loop-shaping guidelines.
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Experimental setup

u

y rcorr

rdamp� r
Cserv

C

− −

Here pendulum is mounted on a cart, which is controlled by a DC motor. A
local servo loop is already closed around the motor, yet it does not dampen
oscillations of the pendulum. So, our goal here is to

− close the second loop, dampening pendulum oscillations.

In this case

− the system from rdamp to � plays the plant role

− the reference signal r plays the load disturbance role

− the correcting reference rcorr plays the control signal role

15/44

Plant

After closing the motor position loop, plant becomes of the form:

P(s) =
−42s2

(s + 18)(s2 + 0:02s + 23)
:
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These oscillations should be dampened by feedback.
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Loop shaping: before we start

Some observations are in order:

1. Static gain P(s)|s=0 and velocity gain P(s)=s|s=0 are both zero.

2. Gain at sub-resonance frequencies (! < 2) is pretty low.

Thus, plant filters out low-frequency disturbances well (no help required2).
Also,

3. gain at over-resonance frequencies (! > 50) is low.

Thus, plant filters out high-frequency noise also well (no help required).

Therefore,

− we only need to interfere around the resonance (i.e. in 2 < ! < 50).

2In fact, we cannot do much. For example, the static loop gain can only be increased
by canceling the zeros at the origin, which is obviously illegal.
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Loop shaping: proportional gain

Stabilizing P with negative feedback w/o lowering the resonance too much
might not be trivial, even if a dynamics controller is used:
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The task is way easier positive feedback is preferable here. Note that

− loop gain has two crossover frequencies in this case,

which means that we have two regions of interest for loop phase (arg L(j!)).
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Loop shaping: keeping far from the critical point

If we keep plant’s first crossover (≈ 2:64) and want phase margin of 50◦,
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we need to add phase lag around !c! This promts the choice

C (s) = − 1

Clead(s)
; for !m = !c and �m = 41:5◦:
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Loop shaping: keeping far from the critical point (contd)

The resulting controller,

C (s) = −0:451
s + 5:85

s + 1:188
;

does its job:
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Loop shaping: keeping far from the critical point (contd)

The resulting controller,

C (s) = −0:451
s + 5:85

s + 1:188
;

does its job:
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Loop shaping: let’s play with !c

We may want to

− increase damping/accelerate response—by decrease of the first !c, or

− decrease control efforts—by increase of the first !c.
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Loop shaping: let’s play with !c (contd)
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Loop shaping: let’s play with !c (contd)
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What can we learn from this example?

Shaping flexible loops is characterized by

− over-emphasizing resonance frequencies.

This means that design should not hinge upon increasing gain in the whole
region, but rather can

− target narrow frequency bands, around resonances.

Flexible loops typically involve

− multiple crossover regions

with

− alternating regions of high- and low-gains.

This property is of great importance as it enables us to

− exploit phase lag (even nonminimum-phase or delay) elements

in feedback loops, thus circumventing Bode’s gain-phase relation bounds.
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Experimental setup

DC motor Load

DC motor is connected with load via flexible transmission. We want:

− complete steady-state rejection of step disturbances,

− dampened output response.
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The plant

Plant transfer function (obtained experimentally) is

P(s) =
5(−s + 40)(s + 40)2

(s2 + s + 156:25)(s2 + 3:172s + 1936)
e−0:1s ;

with the following Bode plot and step response:
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Loop shaping logic

Delay and NMP zero add considerable phase lag:
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We have

− no hope to squeeze both resonances before the first critical point.

Adding an integral action makes this even clearer, leading to the need to

− add phase lag, again.
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What lag do we need?

-720 -540 -469 -360 -144 0

-15
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Endeavoring to locate resonances far from the critical points, we may try to

− move the resonance at ! = 12:5 to arg L(j12:5) ≈ −360◦

− move the resonance at ! = 43:9 to arg L(j43:9) ≈ −720◦

This requires

− a phase lag of 216◦ at ! = 12:5 and a phase lag of 251◦ at ! = 43:9.

And we also need to have high enough controller gains at those frequencies.
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Tool: nonminimum-phase PID

This can be achieved by a PID controller with RHP zeros. Consider

CPID(s) = k
(
− 1 +

1

�is
+ �ds

)
=⇒ CPID(j!) = −k + jk

(
�d! − 1

�i!

)
:

If we need phase to be in (−270◦;−90◦), then k > 0 and

argCPID(j!) = −180◦ − arctan
�d!

2 − 1=�i
!

[in degrees]:

Given !2 > !1 > 0, the equations

argCPID(j!i ) = �i ∈ (−270◦;−90◦); i = 1; 2

are solved by

�i =
!2
2 − !2

1

!1!2(!2 tan�1 − !1 tan�2)
and �d =

!1 tan�1 − !2 tan�2
!2
2 − !2

1

:
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The controller

For our data (�1 = −211◦, �2 = −253◦, tuned manually) we end up with

CPID(s) = 0:343

(
−1 +

1

0:229s
+ 0:0757s

)
=

0:026(s2 − 13:21s + 57:68)

s

(k was also tuned manually), for which
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Closed-loop disturbance response
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show substantially better dampening. But

− the PID controller transfer function is non-proper.

Still, there are simple methods to have a proper controller.
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Proper D-part

The non-proper D-part, �ds, is normally implemented as

�ds

˛�ds + 1
for 0:05 ≤ ˛ ≤ 0:3:

Let’s choose ˛ to render |C (∞)| = 10 [dB]. To this end,

C (s) = k
(
− 1 +

1

�is
+

�ds

˛�ds + 1

)
=⇒ C (∞) = k

1− ˛
˛

> 0;

so that

˛ =
k

k + C (∞)
:

Thus, we need

˛ =
k

k + 3:1623
= 0:0979 ≈ 0:1;

which is well within conventional bounds.
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The proper controller

Thus, we have

C (s) = 0:343

(
−1 +

1

0:229s
+

0:0757s

0:0074s + 1

)
≈ 3:1(s2 − 14s + 64)

s(s + 132:1)
;

for which
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with a slight deterioration of the last phase margin and controller gain.
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Closed-loop disturbance response (contd)
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have comparable dampening.
Remark 1 There are other approaches to render C(s) proper. For example, we may add a
low-pass filter Flp(s) to the plant, design a PID CPID(s) for P(s)Flp(s), and then implement
the proper C(s) = Flp(s)CPID(s). Try it with Flp(s) = 1=(s=175 + 1) and �1 = 197◦ and
�2 = 242◦ at the resonances.

Remark 2 Small fast oscillations are the result of getting closer to the last critical point.
To get rid of them, we may use a (complex) lead around the last crossover. Try it.
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Command response

The complementary sensitivity transfer function in this case is

T (s) =
15:5 (−s + 40)(s + 40)2(s2 − 14s + 64)

�cl(s)
e−0:1s

for some Hurwitz �cl(s) and its step response is not quite satisfactory:
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Let’s improve that without altering C . . .
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2DOF architecture

yref

ureq

u

d

y

n

CP -

Signals of interest (as long as yref = Pureq):

y = yref + Tdd − Tn and u = ureq − Td − Tcn:

Let’s use
yref = Tref1 and ureq = Col1 =

Tref

P
1

for some reference model such that

− all nonminimum-phase zeros, and the delay, of P(s) are those of Tref(s)

− pole excess of Tref(s) ≥ poles excess of P(s)

− Tref(0) = 1 (zero steady-state error)

− Tref has smooth and sufficiently fast transients
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Example 2: 2DOF design

With

P(s) =
5(−s + 40)(s + 40)2

(s2 + s + 12:52)(s2 + 3:172s + 442)
e−0:1s ;

the reference model Tref has three stability-related constraints:

1. it must have a zero at s = 40,

2. it must have a delay of 0:1 sec,

3. its pole excess must be at least 1.

With the requirement Tref(0) = 1 we may pick

Tref(s) =
−s + 40

40(�s + 1)2
e−0:1s

and tune � > 0 to have a desired settling time of its step response. Then

Col(s) =
Tref(s)

P(s)
=

(s2 + s + 12:52)(s2 + 3:172s + 442)

200(�s + 1)2(s + 40)2

is proper and has all its poles in the OLHP, hence stable as well.
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Example 2: 2DOF design (contd)

For � = 1=8 (picked to remain with about the same settling time) we have:

10
0

10
1

10
2

10
3

-40

-20

0

9.2

24.4

0.1 1 2

-0.37

-0.13

0

1

which is a much better3 transient response.

3Virtually no effect of the zero at s = 40, the poles of Tref(s) at s = −8 are dominant.
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Stabilization with stable controllers

remu

d

y

ymn

CP −

Stable controllers, especially for stable plants, are preferable since we want
to maintain stability during

− sensor / actuator failures

− sensor / actuator saturation

We say that

− P is strongly stabilizable if it can be stabilized by a stable controller.
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Parity interlacing property
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CP −

P is strongly stabilizable iff its transfer function has

− even number of real poles between every pair of real zeros in RHP

(including +∞). This property called the parity interlacing property.

Example 1: Let P(s) = s−1
s(s−2) . It has 2 RHP zeros at {1;∞} and between

them one pole at 2. Hence it is not strongly stabilizable.

Example 2: Let P(s) = (s−1)2(s2−s+1)
(s−2)2(s+1)3

. It has 5 RHP zeros, 3 of them real

at {1; 1;∞}. Between 1 and 1 lies 0 poles, while between 1 and ∞ lie 2
poles (at 2). Hence this plant is strongly stabilizable.
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Inverted pendulum without angle measurement

M

`

m

�

y

u

M : cart mass
m : pendulum mass
` : pendulum length
y : cart position
� : pendulum angle
u : force applied to the cart
g : standard gravity

Linearized transfer function of the inverted pendulum from u to y is

P(s) =
`s2 − g

M
(
`s2 − g(1 + m

M )
)
s2
:

It has 3 real RHP zeros in
{√

g=`;∞;∞
}
. Between the first two of them

P(s) has one pole at s =
√
(1 +m=M)g=`. Thus,

− pendulum is not strongly stabilizable.
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