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Pole-zero cancellations

Naive shaping of T

Assume that the “ideal” closed-loop system is Tyream. VWWe may want to ask
— whether there is C for which T = Tgream ?

The answer is affirmative,

L(S) -Eiream(s)
T. =T L T 1 Tyean(s)
dream(5) 1+ L(s) = L(s) 1 — Tdream(s)
Thus, controller
1 Tdream(s
Cdream(s) = = ( )

P(S) 1 - Tdream(s)
is exactly what we are looking for.

What's behind Cyeam

If sp is a pole of P(s) and Tyream(S0) # 1, then sp is a zero of Cyream(S), i.€.
Cdream(S) tends to cancel poles of P(s).

If s1 is a zero of P(s) and not that of Tyream(S), then s; must be a pole of
Cd,-eam(s), i.e.

Cdream(S) tends to cancel zeros of P(s).

Thus, to achieve arbitrary Tgream

— controller should, in general, cancel all poles and zeros of the plant.




Pole-zero cancellations: what's legal & what makes sense

Obviously,
— only stable pole-zero cancellations are legal.

This implies that
— every RHP zero of P(s) must be a zero of T(s) (multiplicity counted)
— at every unstable pole s, of P(s) the equality

T(sp) =1

must hold (multiple poles impose additional conditions on dd—si,-T(s)).

Although stable pole-zero cancellations are legal,
— not all stable pole-zero cancellations are welcome.

Canceled poles and zeros are not eliminated from the closed-loop system.

Canceled plant poles

Let s, (Res, < 0) be a pole of P(s) canceled by C(s). In other words, let

Pl(S
S—Sp

P(s) =

for some Pi(s) such that Pi(sp) # 0 and Ci(s) such that |Ci(sp)| < c0. In
this case

and  C(s) = (s —sp)Gi(s)

1
1+ Pi(s)Ci(s)

do not depend on s;, but

S(s) = and T(s)=1-5(s)

1 Pl(S)
s—s, 1+ Pi(s)Ci(s)

Ta(s) = P(s)S(s) =

still has s as its pole.

Canceled plant zeros

Let s, (Res, < 0) be a zero of P(s) canceled by C(s). In other words, let

P(s) = (s — 5,)P2(s) and C(s) = SCz_(ssi

for some P5(s) such that |Px(s;)| < oo and Cy(s) such that Cy(s;) # 0. In

this case
1

1+ P2(S) CQ(S)

do not depend on s,, but

S(s) = and T(s)=1-5(s)

1 Cz(S)

Te(s) = C()5() = =0 TR, (5) 5o

has s, as its pole.

What does it mean?

Thus, for each canceled plant pole s, and zero s, we have that

1 Pl(S) 1 CQ(S)

M= irRmae M T L TeReGe

Typically,
— If s, is “fast,” its presence in Ty4(s) or Tc(s) can in general be ignored
— If se is “slow,” it slows down disturbance response / control input decay
— If s is “oscillatory,” oscillations show upin d— y or r—u

and we have the following rules of thumb:

— Fast well-damped poles/zeros can typially be safely canceled
(though this might produce spikes in the control signal)
— Slow well-damped poles/zeros can be canceled with certain care

(there are pros and cons in canceling slow plant poles vs. shifting them by feedback)

— Lightly-damped poles/zeros shall not be canceled

(unless you reeeally know what you're doing)
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“Flexible” loops

What we understand by “flexible” loops

1.

— Loops with one or several resonant frequencies
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1 Typical example is flexible mechanical structures.

What is special about flexible systems

Resonances in frequency domain give rise to

— slowly decaying oscillations, dominating time response:

Impulse Response

Amplitude
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Time (sec)

Ability to cope with oscillations (dampen them) is main leitmotiv in control
of flexible systems, frequently more important than high / low gain tradeoff.

What is special about dampening flexible modes

d
T n © ; em7
Ym

At frequencies around problematic resonance peaks (where |P(jw)| > 1),

P(jw) ’ _ 1 o1
1+ P(jo)C(io)|  [1/P(jo) + C(io)] — [C(io)l

Ttio)] =

This means that it's
— not sufficient to keep |L(jw)| > 1

(this may be achieved with a small |C(jw)]|), but we should endeavor to
— keep |C(jw)]| high (or, at least, |C(jw)| £« 1)

at w's around meaningful resonances. This support the knowledge that
— canceling lightly damped poles of P(s) by C(s) is a bad idea

(as it normally leads to |C(jw)| < 1 at frequencies where |P(jw)| > 1).




What will we learn today

Some tricks about how to
— shape lightly damped loops with high-gain controllers

These tricks are rather non-obvious, sometimes contradicting conventional
loop-shaping guidelines.

Outline

Pendulum on cart

Experimental setup
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Here pendulum is mounted on a cart, which is controlled by a DC motor. A
local servo loop is already closed around the motor, yet it does not dampen
oscillations of the pendulum. So, our goal here is to

— close the second loop, dampening pendulum oscillations.

In this case
— the system from ry,mp to 6 plays the plant role
— the reference signal r plays the load disturbance role

— the correcting reference reo plays the control signal role

Plant

After closing the motor position loop, plant becomes of the form:

—42s2

P(s) = 7 18)(s 1 0.025 £ 23)°
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These oscillations should be dampened by feedback.




Loop shaping: before we start

Some observations are in order:
1. Static gain P(s)|s=o and velocity gain P(s)/s|s=o are both zero.
2. Gain at sub-resonance frequencies (@ < 2) is pretty low.

Thus, plant filters out low-frequency disturbances well (no help required?).
Also,

3. gain at over-resonance frequencies (w > 50) is low.

Thus, plant filters out high-frequency noise also well (no help required).

Therefore,

— we only need to interfere around the resonance (i.e. in 2 < @ < 50).

2In fact, we cannot do much. For example, the static loop gain can only be increased
by canceling the zeros at the origin, which is obviously illegal.

Loop shaping: proportional gain
Stabilizing P with negative feedback w/o lowering the resonance too much
might not be trivial, even if a dynamics controller is used:

Nichols chart of L(s) = P(s) Nichols chart of L(s) = —P(s)
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The task is way easier positive feedback is preferable here. Note that
— loop gain has two crossover frequencies in this case,

which means that we have two regions of interest for loop phase (arg L(jw)).

Loop shaping: keeping far from the critical point

If we keep plant’s first crossover (&~ 2.64) and want phase margin of 50°,

Nichols chart of L(s) = —P(s)

Nichols chart of L(s) = —P(s)/Ciead(s)
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we need to add phase lag around w.! This promts the choice

1 o
C(s) = —m, for wm = wc and ¢, = 41.5°.

Loop shaping: keeping far from the critical point (contd)

The resulting controller,

s+ 5.85

C(s) = —0.451 > 292
(s) = 0451 — g8

does its job:

Bode magnitude plots of P(s) and Ty(s)

Step responses of P and Ty

Magnitude (dB)
o5

Pendulum angle, 6(t)

30+

. . .
2 3 4 E
Frequency (rad/sec) Time, t (sec)




Loop shaping: keeping far from the critical point (contd)
The resulting controller,

s+ 5.85

does its job:

Bode magnitude plot of S(s) Step response of S
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Loop shaping: let’s play with .

We may want to
— increase damping/accelerate response—by decrease of the first wc, or

— decrease control efforts—by increase of the first w..

T T T T ™

62.7F 1L
—P(jw)

514 F|—— L(jw) for w. = 2.64
L(jw) for w, = 1.33
39.4 || —— L(jw) for we =4

Loop shaping: let's play with w. (contd)

Bode magnitude plots of P(s) and Ty(s)

Step responses of P and Ty
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Loop shaping: let's play with w. (contd)

Bode magnitude plots of S(s) Step responses of S
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What can we learn from this example?

Shaping flexible loops is characterized by

— over-emphasizing resonance frequencies.

This means that design should not hinge upon increasing gain in the whole

region, but rather can

— target narrow frequency bands, around resonances.

Flexible loops typically involve
— multiple crossover regions
with
— alternating regions of high- and low-gains.
This property is of great importance as it enables us to

— exploit phase lag (even nonminimum-phase or delay) elements

in feedback loops, thus circumventing Bode's gain-phase relation bounds.

Outline

DC motor with flexible transmission

Experimental setup

DC motor is connected with load via flexible transmission. We want:
— complete steady-state rejection of step disturbances,

— dampened output response.

The plant

Plant transfer function (obtained experimentally) is

5(—s + 40)(s + 40)? o015
(s2 + s + 156.25)(s2 + 3.172s + 1936) ’

P(s) =

with the following Bode plot and step response:
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Loop shaping logic
Delay and NMP zero add considerable phase lag:

Nichols chart of P(s) Nichols chart of P(s)/s
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We have
— no hope to squeeze both resonances before the first critical point.
Adding an integral action makes this even clearer, leading to the need to
— add phase lag, again.

What lag do we need?

Nichols chart of P(s)

W= r‘
s w=12.5
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Endeavoring to locate resonances far from the critical points, we may try to
— move the resonance at w = 12.5 to arg L(j12.5) ~ —360°
— move the resonance at w = 43.9 to arg L(j43.9) ~ —720°
This requires
— a phase lag of 216° at w = 12.5 and a phase lag of 251° at w = 43.9.
And we also need to have high enough controller gains at those frequencies.

Tool: nonminimum-phase PID

This can be achieved by a PID controller with RHP zeros. Consider

1 _ . 1
Crip(s) = k(— 1+ —+ tds) — Cpip(jo) = —k +Jk(fda) - m))-

If we need phase to be in (—270°, —90°), then k > 0 and

2
— 1/
arg Cpip(jw) = —180° — arctan wo” — 1/t

[in degrees].
Given wy > w1 > 0, the equations

arg Cpip(jwi) = ¢i € (—270°,-90°), =12

are solved by

- w3 — wf _ witan¢; —wrtan ¢y
T = and 14 = 5 5 .
wiwz(wy tan ¢ — w1 tan ¢p) w5 — ;i

The controller

For our data (¢1 = —211°, ¢po = —253°, tuned manually) we end up with

0.026(s? — 13.21s + 57.68)
S

Cp|D(5) =0.343 (—1 + + 0.07575) =

0.229s

(k was also tuned manually), for which

Bode diagram of Cpp(s)

Nichols chart of L(s) = P(s)Cpp(s)
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Closed-loop disturbance response

Bode magnitude plot of Ty(s)
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show substantially better dampening. But
— the PID controller transfer function is non-proper.
Still, there are simple methods to have a proper controller.

Proper D-part

The non-proper D-part, 14s, is normally implemented as

T4S

———— for 0.05 <« <0.3.
atgs + 1

Let's choose « to render |C(c0)| = 10[dB]. To this end,

1 1-—
Cle)=k(—14—+ ) — (o) =k~ >0,
Tis  orgs+1
so that
a—#
~ k+ C(c0)
Thus, we need B
= ———— =0.0979 ~ 0.1
= 3163 099~ 0L

which is well within conventional bounds.

The proper controller

Thus, we have

C(s) = 03431+ 1 N 0.0757s 3.1(s? — 14s + 64)
S) = U. — ~
0.229s ' 0.0074s + 1 s(s+132.1)
for which
Bode diagram of C(s) (proper PID) Nichols chart of L(s) = P(s)C(s) (proper PID)
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with a slight deterioration of the last phase margin and controller gain.

Closed-loop disturbance response (contd)

Bode magnitude plot of Ty(s) Response to d(t) = 1(t)
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have comparable dampening.

Remark 1 There are other approaches to render C(s) proper. For example, we may add a
low-pass filter Fip(s) to the plant, design a PID Cpip(s) for P(s)Fip(s), and then implement
the proper C(s) = Fip(s)Crin(s). Try it with Fip(s) = 1/(s/175+ 1) and ¢1 = 197° and
¢ = 242° at the resonances.

Remark 2 Small fast oscillations are the result of getting closer to the last critical point.
To get rid of them, we may use a (complex) lead around the last crossover. Try it.




Command response

The complementary sensitivity transfer function in this case is

T(s) = 15.5 (—s + 40)(s + 40)?(s? — 14s + 64) o015
Xcl(s)
for some Hurwitz x(s) and its step response is not quite satisfactory:

Bode magnitude plot of T'(s) (proper PID)

Response to r(t) = 1(t) (proper PID)
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Let's improve that without altering C. ..

2DOF architecture

Signals of interest (as long as yref = Plreq):

Y = Yeef + - and v = Ureq — -

Let's use
N Tref 1
P

Vref = Trefl and  treq = CoiT =
for some reference model such that
— all nonminimum-phase zeros, and the delay, of P(s) are those of Tif(s)
— pole excess of Tef(s) > poles excess of P(s)
— Teef(0) = 1 (zero steady-state error)

— Tef has smooth and sufficiently fast transients

Example 2: 2DOF design
With
5(—s + 40)(s + 40)2 0s
(2+s+1252)(s2 + 3.1725 + 442) =
the reference model T, has three stability-related constraints:
1. it must have a zero at s = 40,

P(s) =

2. it must have a delay of 0.1 sec,
3. its pole excess must be at least 1.
With the requirement Tie¢(0) = 1 we may pick

—s+40 41,

Tel®) = ao(es + 12 ©

and tune 7 > 0 to have a desired settling time of its step response. Then

Tref(s)  (s2 4 s +12.52)(s* + 3.172s + 442)
P(s) 200(ts + 1)2(s + 40)2

is proper and has all its poles in the OLHP, hence stable as well.

C°|(S) =

Example 2: 2DOF design (contd)

For © = 1/8 (picked to remain with about the same settling time) we have:

Bode magnitude plots of T'(s) and T,(s)

Responses to r(t) = 1(t) for 1- and 2DOF designs
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which is a much better? transient response.

3Virtually no effect of the zero at s = 40, the poles of T,(s) at s = —8 are dominant.
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Strong stabilization

Stabilization with stable controllers

Stable controllers, especially for stable plants, are preferable since we want
to maintain stability during

— sensor / actuator failures

— sensor / actuator saturation

We say that

— P is strongly stabilizable if it can be stabilized by a stable controller.

Parity interlacing property

P is strongly stabilizable iff its transfer function has
— even number of real poles between every pair of real zeros in RHP

(including +00). This property called the parity interlacing property.

Example 1: Let P(s) = S(SS;_IZ,) It has 2 RHP zeros at {1, 00} and between
them one pole at 2. Hence it is not strongly stabilizable.

Example 2: Let P(s) = % It has 5 RHP zeros, 3 of them real
at {1,1,00}. Between 1 and 1 lies 0 poles, while between 1 and oo lie 2
poles (at 2). Hence this plant is strongly stabilizable.

Inverted pendulum without angle measurement

: cart mass

: pendulum mass

: pendulum length

. cart position

: pendulum angle

. force applied to the cart
: standard gravity

Ml o<|~3I

Linearized transfer function of the inverted pendulum from u to y is

(s> — g

Pls) = I\/I(Es2 —g(1+ %))52'

It has 3 real RHP zeros in {\/g/f, 00, oo}. Between the first two of them
P(s) has one pole at s = /(1 + m/M)g/L. Thus,

— pendulum is not strongly stabilizable.
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