Control Theory (00350188) lecture no. 1

Leonid Mirkin

Faculty of Mechanical Engineering Technion — IIT

V

General info

- Course site: http://leo.technion.ac.il/Courses/CT/
- Credit points: 3.5
- Prerequisite: Introduction to Control (00340040), a must
- Grading policy:

2 midterm projects (tokef): 20% each (provided exam is passed) Final exam ("closed"): 60% (or 100% is the grade is < 55)

- Passing policy:

minimum passing grade is 55

only those who pass both projects are eligible to take the final exam

Syllabus

- 1. Advanced single loop design
 - 1.1 More on loop-shaping
 - 1.2 More on on dead-time systems
 - 1.3 More on pole placement (Sylvester matrix etc.)
 - 1.4 Industrial control (saturation & anti-windup, reference signal generation)
 - $1.5 \ \ {\rm Robustness} \ {\rm of} \ {\rm control} \ {\rm systems}$
- 2. Introduction to state-space methods
 - 2.1 Structural properties (controllability, observability, etc)
 - 2.2 State feedback control
 - 2.3 State observers
 - 2.4 Observer-based output feedback
 - $2.5\,$ Introduction to optimization-based methods (LQR, Kalman filter, LQG)
- 3. Introduction to sampled-data systems
 - 3.1 Digital redesign of analog controllers
 - 3.2 Digital design

Outline

Loop-shaping tools

M- and N-circles

Nichols chart

Design example: the use of Nichols charts

Bode's gain-phase relation

Philosophical remark: Bode's sensitivity integral

But

- one should not be religious about that,

the steps may be skipped, reordered, or altered, depending on the situation.

Low-pass filter: usage

Main problem is that

- the phase lags before the magnitude starts to decay:

Low-pass filters: Butterworth

The *n*-order Butterworth filter¹ with bandwidth $\omega_{\rm b}$ is the stable t.f. such that

$$|F_{\mathbf{b},n}(\mathbf{j}\omega)|^2 = \frac{1}{1 + (\omega/\omega_{\mathbf{b}})^{2n}}$$

like

with

1-order lead

General form:

$$\mathcal{C}_{\mathsf{lead}}(s) = rac{\sqrt{lpha}\,s + \omega_{\mathsf{m}}}{s + \sqrt{lpha}\omega_{\mathsf{m}}}, \hspace{1em} \mathsf{with} \; lpha = rac{1 + \sin \phi_{m}}{1 - \sin \phi_{m}},$$

where $\phi_m \in (0, 90^\circ)$ is the maximal phase lead (occurs at $\omega = \omega_m$).

1-order lead: cost of phase lead

Phase lead is expensive, it leads to

- $\,$ the decrease of the low-frequency gain and
- $-\,$ the increase of the high-frequency gain

of the controller (both by the factor $\sqrt{\alpha}).$ Quantitatively,

- phase lead becomes wider
- α increases

2-order lead

General form:

$$\mathcal{C}_{\mathsf{lead2}}(s) = rac{lpha \, s^2 + 2\zeta \sqrt{lpha} \omega_{\mathsf{m}} s + \omega_{\mathsf{m}}^2}{s^2 + 2\zeta \sqrt{lpha} \omega_{\mathsf{m}} s + lpha \omega_{\mathsf{m}}^2}, \hspace{1em} \mathsf{with} \hspace{1em} \zeta \in \Big[rac{1}{\sqrt{2}}, \sqrt{2}\Big]$$

 and

11/56

$$lpha = 1 + 2\zeta \Big(\zeta + \sqrt{\zeta^2 + \cot^2 rac{\phi_m}{2}}\Big) \tan^2 rac{\phi_m}{2}$$

where $\phi_m \in (0, 180^\circ)$ is the maximal phase lead (occurs at $\omega = \omega_m$). Here - the case $\zeta = 1$ corresponds to $C_{\text{lead}2} = C_{\text{lead}}^2$,

- if $\zeta < 1/\sqrt{2},$ then $|\mathit{C}_{\mathsf{lead2}}(\mathsf{j}\omega)|$ is not monotonic, so might be trickier,

$$-$$
 if $\zeta > \sqrt{2}$, then it might be that $\angle C_{\mathsf{lead2}}(\mathsf{j}\omega) > \phi_m$ for some $\omega
eq \omega_\mathsf{m}$.

Lag

General form:

$$\mathcal{C}_{\mathsf{lag}}(s) = rac{10s + \omega_{\mathsf{m}}}{10s + \omega_{\mathsf{m}}/eta}, \quad ext{ with } eta > 1$$

where the phase lag at $\omega = \omega_{\rm m}$ is at most 5.7°.

M-circles

M-circles are contours of constant closed-loop magnitude on Nyquist plane.

Let
$$L(j\omega) = x + jy$$
. Then $T(j\omega) = \frac{x+jy}{1+x+jy}$. Hence,
 $|T(j\omega)|^2 = M^2 \iff M^2(1+x)^2 + M^2y^2 = x^2 + y^2$
 $\iff (1-M^2)x^2 - 2M^2x + (1-M^2)y^2 = M^2$.

Then two cases are possible:

 $M = 1 \text{ then } \mathbf{x} = -\frac{1}{2} \text{ (vertical line)}$ $M \neq 1 \text{ then } (1 - M^2) \left(x^2 - 2\frac{M^2}{1 - M^2} x \pm \frac{M^4}{(1 - M^2)^2} + y^2 \right) = M^2 \text{, so we get:}$ $\left(x - \frac{M^2}{1 - M^2} \right)^2 + y^2 = \left(\frac{M}{1 - M^2} \right)^2$ (circle centered at $\frac{M^2}{1 - M^2}$ with radius $\frac{M}{|1 - M^2|}$)

15/56

Outline

Loop-shaping tools

M- and N-circles

Nichols chart

Design example: the use of Nichols charts

Bode's gain-phase relation

Philosophical remark: Bode's sensitivity integral

N-circles

19/56

N-circles are contours of constant closed-loop phase on Nyquist plane:

Remedy: Nichols chart

Nichols chart of transfer function L(s) is plot of $|L(j\omega)|$ (in dB) vs. $\angle L(j\omega)$ (in degrees) as frequency ω changes from 0 to ∞ .

Nichols chart: advantages

Since phase scale is linear rather than polar,

- Nichols chart is typically cleaner than Nyquist plot

especially for systems with large phase lags, like time-delay systems.

As magnitude scale is in dB, regions with large magnitude don't dominate, hence

- the crossover region is more visible.

Also the consequence of the logarithmic scale of $|L(j\omega)|$ is that

multiplication of systems results in superposition

on Nichols chart, almost as easy as on the Bode diagrams.

Nyquist criterion on Nichols chart

The same idea as with the Nyquist plot, we should

- count encirclements of the critical point by the frequency-response plot.

This procedure might be less tangible with the Nichols charts as

- the critical point is not unique there

(any point with $|L(j\omega)| = 0 dB$ & arg $L(j\omega) = -180 \pmod{360}$ is critical).

Nyquist criterion on Nichols chart (contd)

Remember (maybe; IC, Lect. 9):

- number of counterclockwise encirclements of -1 + j0 by the Nyquist plot of $L(j\omega)$ equals *twice* the net sum of crossings the ray $(-\infty, -1]$ by the polar plot of $L(j\omega)$ (plot direction is with the increase of ω).

The Nichols chart counterpart uses rays $[-180 + 360k, -180 + 360k + j\infty)$ for $k \in \mathbb{Z}$:

Gain and phase margins on Nichols chart

Gain margin $\mu_{\rm g}$ and phase margin $\mu_{\rm ph}$ are easily calculable from Nichols charts:

- $-~\mu_{\rm g}$ is the vertical distance from the critical point;
- $\,\mu_{\rm ph}$ is the horizontal distance from the critical point.

Nyquist criterion on Nichols chart: handling integrators

Polar plot: Each integrator adds a counterclockwise arc of 90° with infinite radius, starting at $L(j\omega)|_{\omega=0^+}$

Nichols chart: An arc centered at the origin has a constant magnitude and changing phase \implies an arc translates to a horizontal line on Nichols chart:

32/5

Outline

Loop-shaping tools

M- and N-circles

Nichols chart

Design example: the use of Nichols charts

Bode's gain-phase relation

Philosophical remark: Bode's sensitivity integral

This is below the actual crossover, so can be attained by the gain $k \approx 26.9$.

System (remember IC, Lect. 11)

A DC motor controlled in closed loop:

Requirements:

- closed-loop stability (of course)
- $-\omega_{c} = 5 \text{ rad/sec}$
- zero steady-state error for a step in r
- zero steady-state error for a step in d
- $\mu_{ph} \in \{45, 60\}$

35/56

Remark: We implicitly assume that the plant is normalized, in a sense that the control amplitude |u(t)| < 1 is "small" and |u(t)| > 1 is "large".

36/5

always holds

34/56

integrator in C(s)

- closed-loop bandwidth $\omega_{\rm b} \approx 8.3176$, which is a bit above the designe $\omega_{\rm c} = 5$ and higher than the open-loop bandwidth

-180 Open-Loop Phase (deg)

Example 2: adjusting low-frequency gain

Frequency, ω [rad/sec]

Now, let $\mu_{\rm ph}=60^\circ.$ The first design steps, up until the addition of the lag part, remain the same and we have

Here $\mu_{\sf ph} pprox 16^\circ$ and

 $-\,$ we now need a phase lead of $60^\circ-16^\circ=44^\circ,$ for which one lead is enough as well.

Note again Nichols chart location vis-à-vis M-circles ("nicer").

Outline

M- and N-circles

Nichols chart

Design example: the use of Nichols charts

Bode's gain-phase relation

Philosophical remark: Bode's sensitivity integral

41/56

Dream loop shape

We'd prefer to have narrow crossover region, something like this:

Intuitively, it is hard to believe that this is possible (too good to be true:-). It turns out that this "intuition" can be rigorously justified.

Bode's gain-phase relation: what does it mean Since $\ln \coth \frac{|v|}{2}$ decreases rapidly as ω deviates from ω_0 , - $\arg L(j\omega_0)$ depends mostly on $\frac{d \ln|L(j\omega)|}{dv} = \frac{d \ln|L(j\omega)|}{d \ln \omega}$ near frequency ω_0 . But - $\frac{d \ln|L(j\omega)|}{d \ln \omega} = \frac{d \log|L(j\omega)|}{d \log \omega}$ is the roll-off² of the Bode plot of $|L(j\omega)|$. It can be shown that arg $L(j\omega_0) < \begin{cases} -N \times 65.3^\circ, & \text{if roll-off of } |L(j\omega)| \text{ is } N \text{ for } \frac{1}{3} \leq \frac{\omega}{\omega_0} \leq 3 \\ -N \times 75.3^\circ, & \text{if roll-off of } |L(j\omega)| \text{ is } N \text{ for } \frac{1}{5} \leq \frac{\omega}{\omega_0} \leq 5 \\ -N \times 82.7^\circ, & \text{if roll-off of } |L(j\omega)| \text{ is } N \text{ for } \frac{1}{10} \leq \frac{\omega}{\omega_0} \leq 10 \end{cases}$ In other words, - high negative slope of $|L(j\omega)|$ necessarily causes large phase lag.

 $^2\mbox{Roll-off}$ is the absolute value of the negative slope, scaled by 20.

Bode's gain-phase relation: minimum-phase loop

Let L(s) be stable and minimum-phase and such that L(0) > 0. Then $\forall \omega_0$

$$\arg L(j\omega_0) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{d \ln|L(j\omega)|}{d\nu} \ln \coth \frac{|\nu|}{2} d\nu, \quad \text{where } \nu := \ln \frac{\omega}{\omega_0}$$

$$(\coth x := \frac{e^x + e^{-x}}{e^x - e^{-x}}). \text{ Function } \ln \coth \frac{|\nu|}{2} = \ln \left|\frac{\omega + \omega_0}{\omega - \omega_0}\right|:$$

$$\lim \operatorname{coth} \frac{|\nu|}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{-\frac{1}{2$$

Bode's gain-phase relation: implication

For systems with rigid loops, it is advisable to

- keep loop roll-off $\not\gg 1$ in the crossover region^3

to guarantee that $L(j\omega)$ is far enough from the critical point. This, in turn, means that

- low- and high-frequency regions should be well-separated.

This is the reason why our "dream shape" is not an option.

³I.e. not much smaller than -20 dB/dec slope of $|L(j\omega)|$.

Gain-phase relation: one nonminimum-phase zero

Let L(s) has one RHP zero at z > 0. Then

$$L(s) = \frac{-s+z}{s+z} L_{\rm mp}(s)$$

for a minimum-phase $L_{mp}(s)$. Since $\left|\frac{-j\omega+z}{j\omega+z}\right| \equiv 1$, $|L(j\omega)| = |L_{mp}(j\omega)|$ and

$$\begin{split} \arg L(j\omega_0) &= \arg L_{\rm mp}(j\omega_0) + \arg \frac{-j\omega_0 + z}{j\omega_0 + z} \\ &= \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{d\ln|L(j\omega)|}{d\nu} \ln \coth \frac{|\nu|}{2} d\nu - 2 \arctan \frac{\omega_0}{z}. \end{split}$$

Thus,

- nonminimum-phase zero adds a phase lag (especially at $\omega > z$) imposing additional constraints on the slope of $|L(j\omega)|$ in crossover region.

Gain-phase relation: complex nonminimum-phase zeros

Now, let L(s) has a pair of RHP zero at $z_r \pm j z_i$, $z_r > 0$. Then

$$L(s) = \frac{-s + z_r + jz_i}{s + z_r + jz_i} \frac{-s + z_r - jz_i}{s + z_r - jz_i} L_{mp}(s)$$

and we have:

$$\begin{split} \arg \mathcal{L}(j\omega_0) &= \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\mathrm{d} \ln |\mathcal{L}(j\omega)|}{\mathrm{d}\nu} \ln \coth \frac{|\nu|}{2} \mathrm{d}\nu + \arg \frac{-j\omega_0 + z_r \pm jz_i}{j\omega_0 + z_r \pm jz_i} \\ &= \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\mathrm{d} \ln |\mathcal{L}(j\omega)|}{\mathrm{d}\nu} \ln \coth \frac{|\nu|}{2} \mathrm{d}\nu \\ &- 2 \Big(\arctan \frac{\omega_0 + z_i}{z_r} + \arctan \frac{\omega_0 - z_i}{z_r}\Big). \end{split}$$

This harden constraints when $\omega_0 > z_i$, though may soften when $\omega_0 \ll z_i$.

50/56

Gain-phase relation: multiple nonminimum-phase zeros In this case

$$L(s) = \frac{-s+z_1}{s+z_1} \frac{-s+z_2}{s+z_2} \cdots \frac{-s+z_k}{s+z_k} L_{mp}(s)$$

and we have:

49/56

$$\arg L(j\omega_0) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{d \ln |L(j\omega)|}{d\nu} \ln \coth \frac{|\nu|}{2} d\nu - \sum_{i=1}^{k} \arg \frac{-j\omega_0 + z_i}{j\omega_0 + z_i}$$

which further harden constraints.

Limitations due to nonminimum-phase zeros

For systems with a single crossover frequency⁴ RHP zeros near ω_{c}

- impose additional limitations on the roll-off in the crossover region.

Consequently, a well-known rule of thumb says that for nonminimum-phase systems

 $-\,$ crossover frequency $\omega_{\rm c}$ should be < the smallest RHP zero.

Also, it is safe to claim (regarding RHP zeros) that

- closer to the real axis \implies more restrictive crossover limitations

 $^4 {\rm For}$ lightly damped systems it sometimes might be desirable to inject a phase lag by adding RHP zeros. Yet this must be done with maximal care (don't try it at home!)

Bode's sensitivity integral

Let L(s) be a loop transfer function having pole excess ≥ 2 . Then, provided S(s) is stable,

Outline Philosophical remark: Bode's sensitivity integral

What does it mean?

Some conclusions:

- since $\pi \sum \operatorname{Re} p_i \ge 0$, $|S(j\omega)|$ cannot⁵ be < 1 over all frequencies
- improvements in one region inevitable cause deterioration in other (so-called waterbed effect)

On qualitative level,

- controller can only redistribute $|S(j\omega)|$ over frequencies

and the art of control may thus be seen as art of redistribution of $|S(j\omega)|$.

⁵If pole excess of L(s) is \geq 2, of course. Yet this is typical in applications.