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Why this course?

In 1807 Jean Baptiste Joseph Fourier, in his desire to determine the heat distribution in a metal
plate, came up with the bold idea that every function can be written as a sum of harmonic
functions. Understandably his claim was met with scepticism, especially because Fourier did
not provide a proof of his claim. Several years later (still within Fourier’s lifetime) Niels Henrik
Abel settled the issue with a proper proof: Fourier was right after all, and this sum of harmonic
functions since then carries his name: the Fourier series.

Nowadays it is difficult to imagine a world without Fourier series. Trillions of Fourier se-
ries are calculated routinely every second. For instance your laptop computes 250000 such
series for every second that it is talking wirelessly to your modem, and your modem does the
same. Ever wondered what JPEG files are? They are essentially just a collection of Fourier co-
efficients that your computer (by computing a Fourier series) can turn into a picture. Fourier
is everywhere in audio and video processing (such as MP3, MPEG, et cetera) and the digital
revolution would have been way less succesfull if it were not for the Fourier series and the
discovery of the “fast fourier transform” which is an algorithm that can compute Fourier se-
ries very efficiently.

Fourier analysis is a standard tool in many engineering sciences. It offers an alternative
representation of “signals” and “systems” providing lots of insight, and the above mentioned
set of applications are just a few of them. Fourier analysis plays a very important role in signal
processing applications, it is the work-horse behind efficient algorithms for computation of
products of very long integers, and is used to solve partial differential equations, and much
more.

In this course we analyze the Fourier series in detail and we use it to solve a number of
“signal processing” problems and — which is how it all started — to solve certain differential
equations and partial differential equations. The course also introduces the Laplace trans-
form, which can be seen as an extension of the Fourier transform.

The material presented in Chapters 2–5 is quite common in engineering sciences. The
first chapter, however, is of a different nature and might fit in an advanced course on linear
algebra or a first course on functional analysis. It introduces Banach and Hilbert spaces and
more, providing an abstract and general view of Fourier series.
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Chapter 1

Introduction to Banach and Hilbert
Space

This chapter assumes basis knowledge of linear algebra, in particular it assumes familiarity
with real and complex vector space, with subspaces, basis and dimensions of finite dimen-
sional vector space, and with linear transformations defined on vector space.

We make frequent use of the following notation:

N set of positive integers {1,2,3, . . .}
N0 set of nonnegative integers {0,1,2,3, . . .}
Z set of integers {. . . ,−2,−1,0,1,2, . . .}
Q set of rational numbers
R set of real numbers
C set of complex numbers
Rn set of ordered n-tuples (u1, . . . ,un) with uk ∈R ∀k = 1,2, . . . ,n
Cn set of ordered n-tuples (u1, . . . ,un) with uk ∈C ∀k = 1,2, . . . ,n

We always assume that Rn is equipped with the standard vector addition and scalar multipli-
cation, and this makes Rn a real vector space. Likewise Cn is a complex vector space. Both
are vector spaces of finite sequences. For vector spaces of infinite sequences – with similar
vector addition and scalar multiplication – we use the notation

` infinite sequence space {(u1,u2, . . .) | uk ∈R∀k ∈N}

`(A;B) general sequence space {u : A → B} with A ⊆Z. For instance `= `(N;R)

`finite {u :N→R | uk 6= 0 for finitely many k ∈N} . It is a subset of `.

`p {u ∈ ` |
∑∞

k=1 |uk |p <∞}. Assumes 0 < p <∞.
For p =∞ it is defined as {u ∈ ` | supk∈N |uk | <∞}. More on this later.

The above assume that A ⊆Z. For arbitrary subsets A of R we use the following notation. Also
these naturally are vector spaces.

F (A;B) Function space { f : A → B}, i.e. the set of all functions that map from A to B .
For instance Cn =F ({1, . . . ,n};C) and `=F (N;R).
Typically, though, F is used for function spaces such as F ([0,1];R).

C (A;B) The set of functions f : A → B that are continuous. It is a subset of F (A;B).
We assume A ⊆R, and B =Rn or B =Cn .

L p (A;B) Set of functions f : A → B for which
∫

A | f (t )|p dt <∞. It is a subset of F (A;B).
Assumes 1 ≤ p <∞ or p =∞, and A ⊆R, and B =Rn or B =Cn . More on this later.
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1.1 Module 2 summary: normed vector space & convergence

A normed vector space loosely speaking is a vector space in which a “length” of a vector is
available. This additional structure allows us to deal with convergence and optimal approxi-
mations within vector spaces. A “length” is called a norm if it has the following properties.

Definition 1.1.1 (norm). Let X be a real or complex vector space. A mapping ‖ · ‖ from X to
R is a norm if for all x, y ∈X and all scalars α it satisfies the three axioms:

1. ‖αx‖ = |α|‖x‖, (positive homogeneous)

2. ‖x + y‖ ≤ ‖x‖+‖y‖, (triangle inequality)

3. ‖x‖ > 0 for every x 6= 0. (positive definite)

�

For α= 0 the first axiom tells us that ‖0‖ = 0. So a norm ‖x‖ is zero if and only if x is the
zero vector. A normed vector space is a vector space on which a norm is defined. Formally
one should say “(X,‖ · ‖) is a normed vector space” but we usually just say “X is a normed
vector space” assuming that the choice of norm is clear from the problem at hand. Be aware,
however, that a vector space can be equipped with different norms, see the next example.

‖x‖1 ≤ 1
(1,0)

(0,1)

(a)

‖x‖2 ≤ 1
(1,0)

(0,1)

(b)

‖x‖∞ ≤ 1

(1,1)(−1,1)

(c)

FIGURE 1.1: The unit balls {x ∈R2 | ‖x‖p ≤ 1} for p = 1,2,∞.

Example 1.1.2 (Three different norms on R2). Consider R2.

1. The 1-norm on R2 is defined as

‖x‖1 = |x1|+ |x2|.

In the first quadrant — where x1 and x2 are nonnegative — the 1-norm is just the sum
of the entries, ‖x‖1 = x1 + x2. In the first quadrant therefore the norm is at most 1 iff
x2 ≤ 1−x1, which is the region

{x ∈R2 | x1 ≥ 0, x2 ≥ 0, x1 +x2 ≤ 1}
(1,0)

(0,1)

Combined with the other three quadrants we get that the unit ball {x ∈ R2 | ‖x‖1 ≤ 1} is
a polytope, see Fig. 1.1(a).

2. The Euclidean norm on R2, also known as the 2-norm, is defined as

‖x‖2 :=
√

x2
1 +x2

2 .

In this norm the unit ball {x ∈R2 | ‖x‖2 ≤ 1} is the standard unit disc, see Fig. 1.1(b).
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3. The max-norm, or ∞-norm on R2 is defined as

‖x‖∞ = max(|x1|, |x2|).

Now in this norm the unit ball {x ∈R2 | ‖x‖∞ ≤ 1} is a square with its axes parallel to the
x1- and x2-axis, see Fig. 1.1(c).

In Exercise 1.1.2 we ask you to prove that all three are indeed norms. �

The 1-norm is sometimes called the manhattan norm because in a rectangular street grid
— which is common in US cities — the 1-norm ‖x − y‖1 is the minimal Euclidean distance
over the road required to travel from junction x to junction y , see Fig. 1.2.

x

y

FIGURE 1.2: Manhattan norm: all three routes from x to y are equally long: ‖x − y‖1.

The triangle inequality ‖x + y‖ ≤ ‖x‖+‖y‖ roughly speaking says that, in any norm, trav-
eling from 0 to x + y via x or y can only mean a detour. Moving the ‖y‖ to the left-hand side
of the inequality turns the triangle inequality into a statement that says that the length of any
side in a triangle is at least the difference of that of the other two sides,

‖x + y‖−‖y‖ ≤ ‖x‖.

‖x‖
‖y

‖‖x+ y‖

This is sometimes called the reverse triangle inequality, and it is commonly formulated in
terms of z = x + y as:

Lemma 1.1.3 (Reverse triangle inequality). |‖z‖−‖y‖| ≤ ‖z − y‖. �

The reverse triangle inequality demonstrates that when two vectors z and y are “close”
then their norms are “close” as well:

Lemma 1.1.4 (Norms are continuous). Every norm ‖ ·‖ :X→R is uniformly continuous.

Proof. Recall that a mapping A : X→ R is continuous at x0 ∈ X if for every ε > 0 there is a
δε > 0 such that ‖x − x0‖ < δ implies |A(x)− A(x0)| < ε. For A :=‖ ·‖ we can simply take δε = ε
because, by the reverse triangle inequality, |A(x)− A(x0)| = |‖x‖−‖x0‖| ≤ ‖x − x0‖. This works
for every x0 ∈X. (Continuity is uniform if we can choose δε independent from x0; that is the
case here.)

This is a very useful property, and we will exploit it later (be patient).

Example 1.1.5. Consider `finite, which is the vector space of infinite sequences f =
( f1, f2, f3, . . .) of real numbers, but with only finitely nonzero entries, so

`finite = { f :N→R | fk 6= 0 for finitely many k ∈N}.

5



On this space the 1-norm defined as

‖ f ‖1 :=
∞∑

k=1
| fk | (1.1)

is a norm (see Exercise 1.2). �

Implicit in the definition of norm is that the norm is well defined (exists) for every element
of the space. Hence on ` — which we use to denote the vector space of all real-valued infinite
sequences — the above 1-norm is not a norm because (1.1) is not convergent for the infinite
sequence f = (1,1,1, . . .) ∈ `.

Example 1.1.6 (Continuous functions in max-norm). Let a,b ∈ R and a < b. The standard
norm on the vector space C ([a,b];R) of continuous functions on the real interval [a,b] is the
max-norm, also known as ∞-norm, defined as

‖ f ‖∞ = max
t∈[a,b]

| f (t )|.

We now verify that this indeed satisfies the three axioms of norm, including existence:

0. Every continuous function on a finite interval is bounded and has a maximum, so ‖ f ‖∞
exists for all f ∈C ([a,b];R).

1. For every scalar α we have

‖α f ‖∞ = max
t∈[a,b]

|α f (t )| = max
t∈[a,b]

|α|| f (t )| = |α| max
t∈[a,b]

| f (t )| = |α|‖ f ‖∞.

2. The max norm inherits the triangle inequality from R: since for every p, q ∈ R we have
that |p +q | ≤ |p|+ |q|, we also have for every f , g ∈C ([a,b];R) that

‖ f + g‖∞ = max
t∈[a,b]

| f (t )+ g (t )|

≤ max
t∈[a,b]

| f (t )|+ |g (t )|

≤ max
t∈[a,b]

| f (t )|+ max
t∈[a,b]

|g (t )| = ‖ f ‖∞+‖g‖∞.

3. If f is not the zero function then f (t0) 6= 0 for at least one t0 ∈ [a,b]. Now ‖ f ‖∞ ≥
| f (t0)| > 0.

�

In the literature the vector space C ([a,b];R) is often identified with the normed vector
space (C ([a,b];R),‖ · ‖∞). This is unfortunate since we might want to consider other norms
on the space of continuous functions, for instance:

Example 1.1.7. Let a,b ∈ R and a < b. On C ([a,b];R) the function ‖ · ‖1 : C ([a,b];R) → R

defined as

‖ f ‖1 =
∫ b

a
| f (t )|dt (1.2)

is a norm (see Exercise 1.3). �

Notice that in this example the norm ‖ f ‖1 exists for every f ∈ C ([a,b];R). For the bigger
set F ([a,b];R) that is not case, and this is the reason we restricted attention to C ([a,b];R).
However the space of continuous functions also has its drawbacks for this norm:

6



Example 1.1.8 (Limit does not exist in the space). Consider C ([−1,1];R) and the 1-norm
defined in (1.2). In this norm the sequence of functions

fn(t ) =


0 t ∈ [−1,0]

nt t ∈ (0, 1
n )

1 t ∈ [ 1
n ,1]

1/n

1

does not converge in the space C ([−1,1];R) because no continuous function f exists for which
limn→∞ ‖ fn − f ‖1 = 0. (Convince yourself of this; Exercise 1.13 might be helpfull here.) Never-
theless the sequence of functions do approach one another in this norm, in the sense that

sup
n≥N ,m≥N

‖ fn − fm‖1

goes to zero as N →∞. This follows from the fact that for any n,m ≥ N we have

‖ fn − fm‖1 =
∫ 1

−1
| fn(t )− fm(t )|dt =

∫ 1/min(n,m)

0
| fn(t )− fm(t )|dt ≤

∫ 1/N

0
1 dt = 1

N
.

�

The above example demonstrates that there is a difference between converging sequences
and sequences whose elements become closer and closer. The latter is called “Cauchy se-
quence,” which we discuss next. Incidentally this difference is not specific to vector space. It
also shows up in sets like the rational numbers Q. Indeed, in Q we can construct sequences
that approach one another in absolute value but that do not have a limit in the set of ra-
tional numbers. An example is the sequence of rational numbers {3, 3.1, 3.14, 3.141, . . .} that
converges to the non-rational π.

Convergence and the Cauchy sequence

Quite often a vector x can be shown to have some desirable property by creating a sequence
of easier-to-work-with vectors {xn}n∈N and that converge to this vector x. It is for this reason
that the concept of convergence plays an important role in analysis. We define two types of
convergence:

Definition 1.1.9 (Cauchy sequence and convergent sequence). Let X be a normed vector
space and let {xn}n∈N be a sequence in X (that is, xn ∈X for every n ∈N).

• We say that {xn}n∈N is a Cauchy sequence if ‖xn − xm‖ → 0 as n,m → ∞. This means
∀ε> 0 ∃Nε ∈N such that

‖xn −xm‖ < ε ∀n ≥ Nε,m ≥ Nε.

• We say that {xn}n∈N converges in X if an x ∈ X exists such that ‖x − xn‖→ 0 as n →∞.
This means ∀ε> 0 ∃Nε > 0 such that

‖x −xn‖ < ε ∀n ≥ Nε.

In that case x is called the limit of the sequence. �

7



If xn converges then its limit x is unique (Exercise 1.13(a)). We denote this limit x as
x = limn→∞ xn . The Cauchy property can be expressed in terms of limits as well: a sequence
xn is a Cauchy sequence (on some vector space with norm ‖ ·‖) if and only if

lim
N→∞

(
sup

n≥N ,m≥N
‖xn −xm‖

)
= 0.

The term in between brackets is, so to say, the “maximal” distance between any two elements
xn and xm in the “tail” of the sequence {xN , xN+1, xN+2, . . .}. For real sequences this is de-
picted in Fig. 1.3. It can be shown that for sequences {xn} of real numbers the two notions are
equivalent1. I.e. a real sequence converges iff it is a Cauchy sequence. Figure 1.3 makes this
plausible.

ǫ

Nǫ n →

xn

FIGURE 1.3: Cauchy criterion for real sequences xn .

Example 1.1.10 (Integral test for real-valued sequences). Consider the real sequence xn =
1+ 1

22 + 1
32 +·· ·+ 1

n2 ∈R. Now for every m ≥ n ≥ N we have

|xm −xn | =
m∑

k=n+1

1

k2

<
∞∑

k=N+1

1

k2

N +1

1/t 2

t →

<
∫ ∞

N

1

t 2 dt

N +1

1/t 2

t →

= −1

t

∣∣∣∞
N
= 1

N
.

Therefore supn,m≥N |xm −xn | converges to zero as N →∞, which shows that it is a Cauchy se-
quence. But for real sequences being Cauchy is equivalent to being convergent, so limn→∞ xn

exists. The beauty and strength of Cauchy is that we do not need to know the limit of a real
sequence in order for us to know that the limit exists. (Cliff hanger: later on in this course we
will see that the limit is π2/6 = 1.644934..., see Example 3.5.5.) �

While on R every Cauchy sequence converges, Example 1.1.8 demonstrates that Cauchy
sequences on other normed vector spaces need not always converge. The converse does hold
on every vector space:

Theorem 1.1.11 (Convergence implies Cauchy). Every convergent sequence is a Cauchy se-
quence.

Proof. If limn→∞ ‖ fn − f ‖ = 0 then ∀ε> 0 there exists N ∈N such that ‖ fn − f ‖ < ε/2 ∀n ≥ N .
From the triangle inequality it now follows that ‖ fn − fm‖ = ‖( fn − f )− ( fm − f )‖ ≤ ‖ fn − f ‖+
‖ fm − f ‖ < ε/2+ε/2 = ε for every n,m ≥ N . So fn is a Cauchy sequence.

1See the course Analysis 1
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1.2 Banach space

Normed sets on which every Cauchy sequence converges are so desirable that we give them
a name:

Definition 1.2.1 (Complete set & Banach space). A normed set X is complete if every Cauchy
sequence in X converges in X. A Banach space is a complete normed vector space. �

In a Banach space, therefore, a sequence converges if and only if it is a Cauchy sequence.
This is convenient because the Cauchy property is often easier to check as it does not require
knowledge of the limit, see Example 1.1.10. This will be of great help in the final section of
this chapter.

Over the years many vector spaces have been shown to be Banach spaces, but also many
fail to be. In this course we will not worry about completeness proofs too much because the
proofs are often technical. We simply list a couple in the remainder of this section, and we
prove only a few.

Theorem 1.2.2 (Continuous functions with max norm). C ([a,b];R) is a Banach space in the
max-norm ‖ ·‖∞.

Proof. Suppose fn is a Cauchy sequence. Then ∀ε > 0 there is an Nε > 0 such that ‖ fn −
fm‖∞ < ε for all n,m ≥ Nε. Then at every t ∈ [a,b] we have

| fn(t )− fm(t )| ≤ ‖ fn − fm‖∞ < ε ∀n,m ≥ Nε. (1.3)

So for every fixed t ∈ [a,b] the sequence of real numbers { fm(t )}m∈N is Cauchy. Since R (in
the absolute value as norm) is complete, we have for every t that the sequence fm(t ) of real
numbers converges as m →∞. Denote this limit as f (t ). Letting m →∞ in (1.3) shows that

| fn(t )− f (t )| ≤ ε ∀n ≥ Nε,

and that this Nε does not depend on t . Hence ‖ fn − f ‖∞ → 0 as n →∞. Remains to show that
this f is continuous. Fix an n ≥ Nε/3. By continuity of fn we have at each t that | fn(t )− fn(t +
h)| < ε/3 for all h ∈ [−δt ,δt ] for some small enough δt . For all such h there holds

| f (t +h)− f (t )| = | f (t +h)− fn(t +h)+ fn(t +h)− fn(t )+ fn(t )− f (t )|
≤ | f (t +h)− fn(t +h)|+ | fn(t +h)− fn(t )|+ | fn(t )− f (t )|
< ε/3+ε/3+ε/3 = ε.

So f is continuous.

Notice that C ([a,b];R) is not complete in the 1-norm (Example 1.1.8) thus completeness
not only depends on the vector space, it also depends on the choice of norm. On finite di-
mensional space, however, it does not depend on the choice of norm:

Theorem 1.2.3 (Finite dimensional space). Every real or complex finite dimensional normed
vector space is a Banach space. �

Proof (idea only). Let S :={v1, . . . , vm} be a basis of the space. If fn is a Cauchy sequence then
its coordinate vectors cn (with respect to basis S) is a Cauchy sequence in Rm (or Cm) in, for
example, the Euclidean norm. This implies that each entry cn,i of these coordinate vectors is
a Cauchy sequence in R (or C) with norm ‖xi‖ = |xi |. By completeness of R each entry cn,i

hence converges as n →∞ to some c∞,i . The corresponding f :=c∞,1v1 +·· ·+ c∞,m vm is well
defined, and one can show that limn→∞ ‖ fn − f ‖ = 0. So fn converges as n →∞.
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This theorem implies that R2 is a Banach space in each of the three norms as considered
in Example 1.1.2. On infinite dimensional vector space matters are more complicated. Let us
have a look at the infinite sequence space ` defined as

`= {(v1, v2, v3, . . .) | vi ∈R∀i ∈N}.

On this set the 1-norm, 2-norm and ∞-norm, that we defined on Rn , become the series and
supremum

‖v‖1 :=
∞∑

i=1
|vi |

‖v‖2 :=
√

∞∑
i=1

|vi |2

‖v‖∞ :=sup
i≥1

|vi |.

These, however, are not norms on ` for the simple reason that ‖v‖1 and ‖v‖2 are not always
convergent, and ‖v‖∞ does not always exist (i.e. might be ∞). For instance all three “norms”
are not defined for the growing sequence

v = (1,2,3,4,5, . . .) ∈ `.

The way out of this problem is as simple as it is elegant. Merely restricting the sequence space
` to those elements that have finite norm will do the job, and the result is a Banach space:

Theorem 1.2.4 (Complete sequence spaces). All three sequence spaces

`1 :={v ∈ ` | ‖v‖1 <∞},

`2 :={v ∈ ` | ‖v‖2 <∞},

`∞ :={v ∈ ` | ‖v‖∞ <∞}

are complete vector spaces in their respective norms, i.e. they are Banach spaces in their re-
spective norms. The same holds for the complex versions `1(N;C),`2(N;C),`∞(N;C).

Proof ,. We prove it only for `2, which is the most important case for our course. Exer-
cise 1.27 shows that `2 is a vector space and that ‖v‖2 is a norm on this vector space. The
completeness proof we do here. This proof follows the standard steps in completeness proofs:

• assume vn is a Cauchy sequence,

• suggest a candidate limit w of vn ,

• show that w is in the space (i.e. in `2),

• show that limn→∞ vn = w .

So assume that vn is Cauchy, and realize that each vn is itself a sequence, vn = (vn,1, vn,2, vn,3, . . .).
For every fixed index k0 ∈N, the entries {vn,k0 }n∈N is a Cauchy sequence because

|vn,k0 − vm,k0 | ≤
√

∞∑
k=1

|vn,k − vm,k |2 = ‖vn − vm‖2 → 0 as n,m →∞.

Since vn,k0 is in R, and R is complete, we conclude that wk0
:= limn→∞ vn,k0 exists. As candi-

date limit w of vn we now propose w :=(w1, w2, w3, . . .). Next we show that this w is in `2.
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Since vn is Cauchy, there is for every ε> 0 an Nε ∈N such that ‖vn −vm‖2 < ε for all n,m ≥ Nε.
Now fix an L ∈N and note that then

L∑
k=1

|vn,k − vm,k |2 < ε2 ∀n,m ≥ Nε.

For m →∞ this inequality says that
∑L

k=1 |vn,k −wk |2 ≤ ε2 for all n ≥ Nε. This holds for every
L, and so as L →∞ we find that

∞∑
k=1

|vn,k −wk |2 ≤ ε2 ∀n ≥ Nε.

This shows that

‖vn −w‖2 ≤ ε ∀n ≥ Nε. (1.4)

Hence vn −w ∈ `2 for every n ≥ Nε. Since `2 is a vector space, and vn ∈ `2, we see that w is in
`2 as well. Finally, (1.4) by definition means that w = limn→∞ vn .

Example 1.2.5 (Cauchy or not Cauchy). Consider the infinite sequence

vn = (1, 1
2 , 1

3 , . . . , 1
n ,0,0, . . .) ∈ `,

depending on n ∈N. For every n the sequence vn has only finitely many nonzero entries, so
it has finite 1-norm, finite 2-norm and finite ∞-norm, and thus is in all three vector spaces
`1,`2 and `∞. The sequence vn pointwise converges to the infinite sequence

w = (1, 1
2 , 1

3 , 1
4 , 1

5 , 1
6 , . . .).

This w is not in `1 because

‖w‖1 = 1+ 1
2 + 1

3 +·· · ,

which diverges to ∞. But w is in `2 and `∞ because

‖w‖2 =
√

1+ 1
22 + 1

32 +·· · <∞
‖w‖∞ = sup(1, 1

2 , 1
3 , . . .) = 1.

This is consistent with the observations that

• {vn}n∈N is not a Cauchy sequence in the 1-norm because no matter how large N is, the
quantity

‖vn − vm‖1 =
1

n +1
+ 1

n +2
+·· ·+ 1

m

can be taken arbitrary large by appropriate choice of m ≥ n ≥ N .

• {vn}n∈N is a Cauchy sequence in the 2-norm because for all n,m ≥ N we have ‖vn −
vm‖2

2 < 1/N → 0 as N → ∞ (See Example 1.1.10). Since `2 is a Banach space the vn

hence converges in `2. Indeed it does.

• {vn}n∈N is Cauchy in the ∞-norm because for all n,m ≥ N we have ‖vn−vm‖∞ < 1/N →
0 as N →∞. Hence, by the Banach property of `∞ the vn converges in `∞.

�
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The function space equivalent of `1 we naively define as

L 1([a,b];R) :={ f : [a,b] →R | ‖ f ‖1 <∞},

where the 1-norm is now taken to be

‖ f ‖1 =
∫ b

a
| f (t )|dt .

We allow a = −∞ and b = +∞. This definition of L 1([a,b];R) is not precise because it still
depends on the definition of integral

∫ b
a | f (t )|dt . The Riemann integral definition is not ideal

because one can construct a Cauchy sequence of Riemann integrable functions whose limit-
ing function is so crazy that its Riemann integral is no longer well defined. Hence the space
L 1([a,b];R) would then fail to be complete. The desire of having a complete function space
was so strong that it prompted mathematicians to look for alternative definitions of integra-
tion! In the beginning of the 20th century the issue was settled by Henri Lebesgue. He devised
the Lebesgue measure and Lebesgue integration with respect to which the space L 1([a,b];R)
is complete. The interested reader should follow a course on measure theory. The sym-
bol L is standard in the math literature and it is in honor of Lebesgue. The difference be-
tween Riemann- and Lebesgue integration only shows up in really weird functions, and in
this course we need not worry about such functions. We simply accept that:

Theorem 1.2.6 (Lebesgue space L 1). L 1([a,b];R) and L 1([a,b];C) are Banach spaces in the
1-norm. �

Built in in the definition of L 1 is that its elements have a well defined 1-norm. This space
contains all continuous functions but also many more, and they need not be bounded.

Example 1.2.7 (Several functions in L 1). All functions of Fig. 1.4 are elements of
L 1([0,1];R), except the last function: f9(t ) = 1/t . Indeed

∫ 1
0 f9(t ) dt = log(t )

∣∣1
0 =∞. �

Likewise, the counterpart of `2 is the space of square integrable functions:

Lemma 1.2.8 (Lebesgue space L 2). The space of square integrable functions

L 2([a,b];R) :={ f : [a,b] →R | ‖ f ‖2 <∞}

is a Banach space with respect to the 2-norm defined as

‖ f ‖2 :=
√∫ b

a
| f (t )|2 dt . (1.5)

�

Also here we allow a = −∞ and b = +∞. The top six functions of Fig. 1.4 are in
L 2([0,1];R). The final three functions are not L 2([0,1];R).

Example 1.2.9 (Complete in L 2, not complete in C ). Consider the standard 2-norm of func-
tions (1.5), and take a = 0,b = 1. For every n > 0 the function fn : [0,1] →R defined as

fn(t ) =
{

n6/5t 0 ≤ t ≤ 1/n

t−1/5 1/n < t ≤ 1

n1/5

1/n

12



0 1

f (t )= 1

0 1

f (t ) = t

0 1

0 1

sin(1/t )

0 1 0 1

ln(t )

0 1

1p
t

0 1

1/2p|t −1/2|

0 1

1/t

FIGURE 1.4: The first eight functions are in L 1([0,1];R); function number nine is not.
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is continuous. All fn are therefore in C ([0,1];R) as well as in L 2([0,1];R). As n goes to ∞ the
pointwise limit of fn(t ) is

f (t ) =
{

0 t = 0,

t−1/5 0 < t ≤ 1.

This function is not in C ([0,1];R) because it is not continuous and in fact it is not bounded.
It is in L 2([0,1];R), however, because the improper integral converges:

‖ f ‖2
2 =

∫ 1

0
f 2(t ) dt =

∫ 1

0
t−2/5 dt = 5

3 t 3/5
∣∣∣1

0
= 5

3
.

One can show that fn is a Cauchy sequence in the 2-norm (Exercise 1.10). Since the space
L 2([a,b];R) is complete (says Lemma 1.2.8) in this norm, and since fn is a Cauchy sequence
in this norm, it follows that limn→∞ fn exists in L 2([a,b];R). Indeed.

The space C ([a,b];R) is not complete in the 2-norm, and hence even though fn is a
Cauchy sequence, its limit is not guaranteed to exist in the space of continuous functions
C ([a,b];R). In fact, it is not hard to show that no continuous function g exists such that
limn→∞ ‖ fn − g‖2 = 0. �

But wait, we glossed over an unsettling problem: part of the definition of norm is that

‖ f ‖ > 0 for all f 6= 0,

but for L 1([a,b];R), and also for L 2([a,b];R), that is not the case! For example, function
number five of Fig. 1.4 — the function in the middle — defined as

f (t ) =
{

1 t = 1/2

0 elsewhere

is not the zero function, yet its 1-norm is zero. The simplistic way out of this problem is
to identify every function f with zero norm with the zero function. That is not far fetched
because if ‖ f ‖1 = 0 then

‖ f ‖1 =
∫ b

a
| f (t )|dt = 0,

implying that f (t ) is zero “almost everywhere2”. From now on we do not distinguish between
functions f , g ∈L 1 whenever their difference has norm zero, so from now on by definition we
say

f = g ⇐⇒ ‖ f − g‖1 = 0.

And likewise for f , g ∈L 2.

2In a course on measure theory this identification will be formalized through equivalence classes and then the
notion of almost everywhere will be properly defined.
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1.3 Module 2 summary: inner product

What is missing in a normed vector space is the notion of “angle” and “orthogonality” be-
tween vectors. We will see in this section that many (but not all) normed vector spaces can
be equipped with an inner product. This generalizes the dot product of Rn and, like the dot
product, allows to define orthogonality. We assume familiarity with inner products on finite
dimensional vector space.

Definition 1.3.1 (Real inner product). Let V be a real vector space. A function 〈·, ·〉 :V×V→R

is a (real) inner product if for every x, y, z ∈V and every α ∈R the following three axioms hold,

1. 〈x, y〉 = 〈y, x〉, (symmetric)

2. 〈αx + z, y〉 =α〈x, y〉+〈z, y〉, (linear in first argument)

3. 〈x, x〉 > 0 for all x 6= 0. (positive definite)

�

That is all. The second axiom for x = z and α = −1 demonstrates that 〈0, y〉 = 0. This
combined with the third axiom shows that 〈x, x〉 ≥ 0 for every x and that 〈x, x〉 = 0 if and only
if x = 0.

Once we settle on this definition we are forced to conclude that there are inner products
on Rn that differ from the dot product. Indeed we could equip R2 for instance with the fol-
lowing inner product:

Example 1.3.2. Consider as inner product on R2

〈x, y〉 :=x1 y1 +3x2 y2.

It is an inner product because it is well defined (in R) for every x, y ∈R2 and

1. 〈x, y〉 = x1 y1 +3x2 y2 = y1x1 +3y2x2 = 〈y, x〉,

2. 〈αx+z, y〉 = (αx1+z1)y1+3(αx2+z2)y2 =α(x1 y1+3y2x2)+(z1 y1+3z2 y2) =α〈x, y〉+〈z, y〉,

3. if x is nonzero then at least one of x1, x2 is nonzero. Then 〈x, x〉 = x2
1 +3x2

2 > 0.

�

As with norms, the definition of inner product implicitly says that it needs to exist for
every two elements of the vector space.

Example 1.3.3. On C ([a,b];R) the integral

〈 f , g 〉 :=
∫ b

a
f (t )g (t ) dt (1.6)

is an inner product. Let us verify (including existence):

0. If f , g ∈C ([a,b],R) then the product f g is continuous (and bounded) on [a,b]. So then
the integral 〈 f , g 〉 :=∫ b

a f (t )g (t ) dt exists and is a real number.

1. 〈 f , g 〉 = ∫ b
a f (t )g (t ) dt = ∫ b

a g (t ) f (t ) dt = 〈g , f 〉.

2. 〈α f + g ,h〉 = ∫ b
a (α f (t )+ g (t ))h(t ) dt = ∫ b

a α f (t )h(t ) dt +∫ b
a g (t )h(t ) dt =α〈 f ,h〉+〈g ,h〉.

3. If f is not the zero function then | f (t0)| > 0 for at least one t0 ∈ [a,b]. By continuity then
〈 f , f 〉 = ∫ b

a f 2(t ) dt > 0.
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On C ([a,b];R) the inner product exists for every two of its elements. On the bigger space
F ([a,b];R) — the space of all functions from [a,b] to R — the integral (1.6) is not an inner
product for the simple reason that the integral (1.6) is then not always convergent. Consider
for instance the functions

f (t ) = g (t ) =
{

0 if t = a,
1

t−a if a < t ≤ b.
a b

See also Exercise 1.14. �

Also complex vector space can be equipped with an inner product. The inner product is
then a function that maps to the complex numbers. We want to maintain, however, that 〈x, x〉
is a real number, in fact nonnegative:

Definition 1.3.4 (Inner product on a complex vector space). Let V be a complex vector
space. A function 〈·, ·〉 : V×V → C is a (complex) inner product if for every x, y, z ∈ V and
every α ∈C the following three axioms hold,

1. 〈x, y〉 = 〈y, x〉, (conjugate symmetric)

2. 〈αx + z, y〉 =α〈x, y〉+〈z, y〉, (linear in first argument)

3. 〈x, x〉 > 0 for all x 6= 0. (positive definite)

�

The conjugate symmetry property implies that 〈x, x〉 = 〈x, x〉, and this is another way of
saying that 〈x, x〉 is real.

Example 1.3.5. On C ([a,b];C) the integral

〈 f , g 〉 :=
∫ b

a
f (t )g (t ) dt

is an inner product (Exercise 1.15). �

On complex vector space, linearity of an inner product in its first argument does not imply
linearity in its second argument. Using the properties of inner product we find that

〈x,αy + z〉 = 〈αy + z, x〉 =α〈y, x〉+〈z, x〉 =α〈x, y〉+〈x, z〉.

In particular, 〈x,αy〉 =α〈x, y〉. This property of inner products is called conjugate linearity.

Norm on inner product space & Cauchy-Schwarz inequality

On an inner product space (a vector space with inner product) we always define the norm via
the inner product:

Definition 1.3.6 (norm associated with inner product). The norm ‖x‖ on a vector space with
inner product is defined as ‖x‖ =p〈x, x〉. �

It is also possible to define norm without having inner product (see Definition 1.1.1); all
that the above says is that if we have an inner product space then we always define the norm
accordingly. Of course this assumes that the above satisfies the defining properties of norm.
It does:
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Lemma 1.3.7 (Norm). Let V be a real or complex vector space with inner product. The norm
‖ ·‖ associated with the inner product exists and satisfies the axioms of norm:

1. ‖αx‖ = |α|‖x‖, (positive homogeneous)

2. ‖x + y‖ ≤ ‖x‖+‖y‖, (triangle inequality)

3. ‖x‖ > 0 for all x 6= 0. (positive definite)

Proof. ‖x‖ exists because 〈x, x〉 exists. The first axiom follows from ‖αx‖ = p〈αx,αx〉 =√
αα〈x, x〉 = |α|‖x‖. The third axiom is obvious. The second (the triangle inequality) is more

involved. It follows from Cauchy-Schwarz’ inequality, which we will prove shortly (§ 1.3).

Since an inner product induces a norm, it is natural to ask whether every norm can be
seen as induced by an inner product. That is not the case. In fact one can elegantly charac-
terize which norms have an associated inner product.

Lemma 1.3.8 (Parallelogram law). Let ‖ · ‖ be a norm on a real or complex vector space X.
There is an inner product on X such that ‖x‖ = p〈x, x〉 for all x ∈X iff the norm satisfies the
parallelogram law

2(‖x‖2 +‖y‖2) = ‖x − y‖2 +‖x + y‖2,

see Fig. 1.5. In that case the inner product follows uniquely from the norm as

〈x, y〉 = ‖x + y‖2 −‖x − y‖2

4
(1.7)

on real vector space, or as

〈x, y〉 = ‖x + y‖2 −‖x − y‖2

4
+ i

‖x + iy‖2 −‖x − iy‖2

4
(1.8)

on complex vector space.

Proof. See Exercise 1.16.

0
x

y x + y

‖x‖

‖y‖

‖x‖

‖y‖
‖x + y‖

‖x− y‖

FIGURE 1.5: The parallelogram law on R2 with norm ‖x‖ =
√

x2
1 +x2

2 says that the sum of

squares of the lengths of the four outer sides of the parallelogram, 2(‖x‖2 +‖y‖2), equals
the sum of squares of the lengths of the two diagonals, ‖x − y‖2 +‖x + y‖2.

Example 1.3.9. Consider the three norms on R2 as used in Example 1.1.2:

‖x‖1 = |x1|+ |x2|,

‖x‖2 =
√

x2
1 +x2

2 ,

‖x‖∞ = max(|x1|, |x2|).

17



The 1-norm has no associated inner product because for x = [
1
0

]
and y = [

0
1

]
the parallelo-

gram law fails:

2(‖x‖2
1 +‖y‖2

1)︸ ︷︷ ︸
=4

6= ‖x − y‖2
1 +‖x + y‖2

1︸ ︷︷ ︸
=8

.

The 2-norm does have an inner product because ‖x‖2 equals
p〈x, x〉 for 〈x, y〉 :=x1 y1 +

x2 y2. (For completeness we should show that the above is indeed an inner product. Do this
yourself. Alternatively we could verify the parallelogram law for the 2-norm.)

The ∞-norm has no associated inner product because for x = [
1
0

]
and y = [

0
1

]
the paral-

lelogram law fails:

2(‖x‖2
∞+‖y‖2

∞)︸ ︷︷ ︸
=4

6= ‖x − y‖2
∞+‖x + y‖2

∞︸ ︷︷ ︸
=2

.

�

Orthogonal complement

We use x ⊥ y to mean that 〈x, y〉 = 0, so orthogonality is inner product dependent. Like-
wise for any nonempty subset S of some inner product space X we use S⊥ to mean the
orthogonal complement of S, i.e. the set of all vectors in X that are orthogonal to all elements
of S,

S⊥ = {x ∈X | 〈x, s〉 = 0∀s ∈S}.

Example 1.3.10. Consider again the non-standard inner product of Example 1.3.2 on R2,

〈x, y〉 :=x1 y1 +3x2 y2.

In this norm the so-called unit ball {x ∈R2 | ‖x‖ ≤ 1} is not a disc but an ellipse

{x ∈R2 | ‖x‖ ≤ 1} = {x ∈R2 | x2
1 +3x2

2 ≤ 1},

see Fig. 1.6(a). The orthogonal complement of the set S consisting of the single element,

S :=
[

1
−1

]
is now

S⊥ =
[

1
−1

]⊥
= {x | 〈[ 1

−1

]
, x〉 = 0} = {x | x1 −3x2 = 0} = span{

[
3
1

]
},

see Fig. 1.6(b). Orthogonality with respect to our inner product here does not mean “having
an angle of π/2”. �

The Pythagorean theorem remains valid on arbitrary inner product space:

Lemma 1.3.11 (Pythagoras). If x ⊥ y then ‖x + y‖2 = ‖x‖2 +‖y‖2.

Proof. If 〈x, y〉 = 0 then

‖x + y‖2 = 〈x + y, x + y〉
= 〈x, x + y〉+〈y, x + y〉
= 〈x, x〉+〈x, y〉︸ ︷︷ ︸

0

+〈y, x〉︸ ︷︷ ︸
0

+〈y, y〉 = ‖x‖2 +‖y‖2.

We used here that 〈y, x〉 = 〈x, y〉 = 0.
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‖x‖ ≤ 1
0

S

span[ 3
1]

span[ 1
−1]

FIGURE 1.6: (a) Unit ball for inner product 〈x, y〉 = x1 y1 +3x2 y2; (b) two orthogonal vec-
tors in this inner product.

In fact on real vector space, x ⊥ y is equivalent to ‖x + y‖2 = ‖x‖2 +‖y‖2, but on complex
vector space it is not equivalent, see Exercise 1.24.

Example 1.3.12 (Orthogonal sinusoids). Consider C ([0,2π];R) with inner product 〈 f , g 〉 =∫ 2π
0 f (t )g (t ) dt . On this space sine and cosine are orthogonal,

sin ⊥ cos.

Why? Because

〈sin,cos〉 =
∫ 2π

0
cos(t )sin(t ) dt =

∫ 2π

0

1
2 sin(2t ) dt = −cos(2t )

4

∣∣∣2π

0
= 0.

See Fig. 1.7(botttom left) for a “proof by picture” of orthogonality of these two functions.
The Pythagorean theorem now implies that ‖sin+cos‖2 = ‖cos‖2 +‖sin‖2 = π+π = 2π, see
Fig. 1.7(right). �

2π
0

sin(t )

cos(t )

2π
0

sin(t )cos(t )

2π
0

sin2(t ) cos2(t )1

2π
0

(sin(t )+cos(t ))2

1

FIGURE 1.7: The graph shown in the bottom-left figure suggests that sin(t )cos(t ) is zero
on average over [0,2π]. Hence 〈sin,cos〉 = 0. The top-right figure shows that ‖sin‖2 =
‖cos‖2 =π, and then the bottom-right figure shows that ‖sin+cos‖2 = 2π.

Cauchy-Schwarz inequality

Let x and y be elements of some inner product space. Fig. 1.8 suggests that x can uniquely
be written as a sum of two vectors where one is in span{y} and the other is orthogonal to this
span, i.e. that

x =αy + y⊥
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0

x

y

y⊥
αy

FIGURE 1.8: x =αy + y⊥.

for some unique αy and unique vector y⊥ orthogonal to y . That is indeed the case because
either y = 0 in which case we have αy = 0 and y⊥ = x, or else

x =αy + y⊥ ⇐⇒ (x −αy) ⊥ y

⇐⇒ 〈x −αy, y〉 = 0

⇐⇒ 〈x, y〉−α〈y, y〉 = 0

⇐⇒ α= 〈x, y〉
‖y‖2 .

Hence α is unique, and therefore αy and y⊥ :=x−αy are unique as well. Pythagoras says that
then

‖x‖2 = ‖αy‖2 +‖y⊥‖2 = |〈x, y〉|2
‖y‖2 +‖y⊥‖2. (1.9)

We derived here a one-dimensional version of the projection theorem (discussed later) but
more importantly we derived that inner products can be bounded by norms. This is the fun-
damental inequality of Cauchy-Schwarz:

Theorem 1.3.13 (Cauchy-Schwarz inequality). Every inner product satisfies

|〈x, y〉| ≤ ‖x‖‖y‖ ∀x, y,

and equality holds iff x and y are linearly dependent, i.e. iff x =αy or y =αx for some scalar
α.

Proof. The result is trivial if y = 0. For y 6= 0, Inequality (1.9) says that

‖x‖2‖y‖2 = |〈x, y〉|2 +‖y⊥‖2‖y‖2 ≥ |〈x, y〉|2,

and so the result follows. We have equality iff y⊥ = 0 and that is the case iff x and y are linearly
dependent.

Example 1.3.14 (Aligned vectors in R4). Let

x =


10
10
10
5

 , y =


1
1
1
β

 .

Then in the standard inner product (dot product) on R4 we have

〈x, y〉
‖x‖‖y‖ = 30+5βp

300+25
√

3+β2
.

0 β→

1

1/2
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The two vectors are linearly dependent (aligned) iff β= 1/2. Hence

〈x, y〉
‖x‖‖y‖ =±1 iff β= 1/2.

The fact that the ratio is plus 1 at β = 1/2 means that x and y are positively aligned, i.e. that
x =αy for some positive number α. �

The Cauchy-Schwarz inequality is very important and shows up in numerous applica-
tions, such as signal detection problems because we can use 〈x,y〉

‖x‖‖y‖ as a practical measure of
“similarity” of x and y . A consequence of Cauchy-Schwarz is the triangle inequality.

Lemma 1.3.15 (Triangle inequality). For any inner product and associated norm we have

‖x + y‖ ≤ ‖x‖+‖y‖.

Proof.

‖x + y‖2 = 〈x + y, x + y〉
= 〈x, x〉+〈x, y〉+〈y, x〉+〈y, y〉
= 〈x, x〉+〈x, y〉+〈x, y〉+〈y, y〉
= 〈x, x〉+2Re(〈x, y〉)+〈y, y〉
≤ 〈x, x〉+2|〈x, y〉|+〈y, y〉
≤ ‖x‖2 +2‖x‖‖y‖+‖y‖2

= (‖x‖+‖y‖)2.

1.4 Orthogonal projection

x

v∗V

FIGURE 1.9: The best approximation v∗ ∈V of x has the property that x−v∗ is orthogonal
to the subspace V.

With inner products comes along a notion of orthogonality and a notion of distance
(norm), so we can talk about “orthogonal projections” and “best approximations”.

Definition 1.4.1 (Best approximation). An element v∗ ∈V is said to be a best approximation
in V of x if

‖x − v∗‖ ≤ ‖x − v‖ ∀v ∈V.

�
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Figure 1.9 suggests that best approximations v∗ in a subspace V are such that x − v∗ is
orthogonal to V. That is correct, in fact, the orthogonality property is both necessary and
sufficient for optimality:

Theorem 1.4.2 (A projection theorem). Let X be a vector space with inner product, V a sub-
space of X, and x an element of X. Then

1. a v∗ ∈V is a best approximation in V of x iff (x − v∗) ⊥V,

2. if the best approximation v∗ ∈V exists then it is unique and it satisfies

‖x − v∗‖2 = ‖x‖2 −‖v∗‖2.

Proof. Suppose x−v∗ ⊥V for some v∗ ∈V. Then for any v ∈V the difference v −v∗ is in V by
the subspace property, and so by Pythagoras we get

‖x − v‖2 = ‖ (x − v∗)︸ ︷︷ ︸
∈V⊥

− (v − v∗)︸ ︷︷ ︸
∈V

‖2 = ‖x − v∗‖2 +‖v − v∗‖2 ≥ ‖x − v∗‖2.

Hence if v 6= v∗ then the norm of x − v exceeds that of x − v∗, making v∗ the unique best
approximation.

Conversely, suppose x − v∗ 6⊥ V. Then by definition there is a v ∈ V such that x − v∗ 6⊥
v i.e. such that 〈x − v∗, v〉 6= 0. In particular this v is nonzero. We construct an improved
approximation of x of the form v∗+αv with the scalar α yet to be determined.

‖x − (v∗+αv)‖2 = ‖(x − v∗)−αv‖2

= ‖x − v∗‖2 −2Re〈x − v∗,αv〉+‖αv‖2

= ‖x − v∗‖2 −2Re(α〈x − v∗, v〉)+|α|2‖v‖2.

For α= 〈x − v∗, v〉/‖v‖2 this becomes

= ‖x − v∗‖2 −2
|〈x − v∗, v〉|2

‖v‖2 + |〈x − v∗, v〉|2
‖v‖2

= ‖x − v∗‖2 − |〈x − v∗, v〉|2
‖v‖2 < ‖x − v∗‖2.

This shows that v∗ is not a best approximation.
The equality ‖x − v∗‖2 = ‖x‖2 −‖v∗‖2 is a restatement of Pythagoras, see Fig. 1.9.

With this theorem we can in many cases calculate best approximations. More on this
soon, but first a puzzling example. It may happen that a best approximation does not exist:

Example 1.4.3 (No solution exists). Consider the inner product space X = `2 and its sub-
space `finite of finitely nonzero sequences. There is no best approximation v∗ ∈ `finite of the
infinite sequence

x = (1, 1
2 , 1

3 , 1
4 , 1

5 , . . .)

because it can be approximated arbitrarily well by vn :=(1, 1
2 , 1

3 , . . . , 1
n ,0,0, . . .) but the approxi-

mation error cannot be zero because x 6∈ `finite. �

This example demonstrates that best approximations need not exist. For finite dimen-
sional subspaces, however, best approximations always do exist, and in fact can be deter-
mined explicitly:

22



Lemma 1.4.4 (Projection onto finite dimensional subspace). Consider a real or complex
inner product space X, and subspace V ⊆ X, and assume that V is spanned by a finite set
{v1, . . . , vn}.

1. Then v∗ is a best approximation in V of x if-and-only-if v∗ =
∑n

i=1αi vi for some α ∈Rn

(or Cn) that satisfies
〈v1, v1〉 〈v2, v1〉 · · · 〈vn , v1〉
〈v1, v2〉 〈v2, v2〉 · · · 〈vn , v2〉

...
...

...
...

〈v1, vn〉 〈v2, vn〉 · · · 〈vn , vn〉


︸ ︷︷ ︸

Gram matrix G

α=


〈x, v1〉
〈x, v2〉

...
〈x, vn〉

 . (1.10)

The so defined Gram matrix G is square.

2. If {v1, . . . , vn} is a basis of V then the Gram matrix is invertible, and for every x ∈ X the
solution α exists and is unique, and the best approximation v∗ exists (and is unique).

3. If {v1, . . . , vn} is not a basis of V then the Gram matrix is not invertible, but for every
x ∈X a solution α of (1.10) still exists (though not unique), and the best approximation
v∗ exists (and is unique).

Proof. Write the candidate best approximation v∗ as v∗ =
∑n

i=1αi vi .

1. By the projection theorem, a vector v∗ ∈V is a best approximation of x iff

(x − v∗) ⊥V ⇐⇒ (
x −

n∑
i=1

αi vi
)⊥ span{v1, . . . , vn}

⇐⇒ (
x −

n∑
i=1

αi vi
)⊥ vk ∀k = 1, . . . ,n

⇐⇒ 〈x, vk〉−
n∑

i=1
αi 〈vi , vk〉 = 0 ∀k = 1, . . . ,n

⇐⇒ 〈x, vk〉−
[〈v1, vk〉 〈v2, vk〉 · · · 〈vn , vk〉

]
α= 0 ∀k = 1, . . . ,n

⇐⇒ Equation (1.10) holds.

2. We show that the Gram matrix is invertible if {v1, . . . , vn} is a linearly independent set.
We use that the Gram matrix does not depend on x. Consider now the best approxi-
mation v∗ of x = 0. Clearly this is v∗ = 0 and it is unique. For x = 0, Equation (1.10)
becomes Gα= 0 where G is the Gram matrix. If G would have been singular then more
than one solution α would have existed, implying (by linear independence) that more
than one best approximation v∗ = ∑n

i=1αi vi would have existed. That is not the case,
i.e. G is not singular if {v1, . . . , vn} is independent.

3. If {v1, . . . , vn} is not linearly independent then, for some nonzero α, we have that
v∗ :=∑n

i=1αi vi is zero. Clearly this is the best approximation of x = 0, so this α must
satisfy (1.10), i.e. Gα = 0. Hence G is not invertible. Now either V = {0}, in which case
all vi are zero, and then the result trivially holds. Or V 6= {0}. In that case V has a basis,
so by part 2, a best approximation v∗ does exist. If we write this v∗ as v∗ = ∑n

i=1αi vi ,
then, by part 1, this α satisfies (1.10).
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Equation (1.10) is also known as the normal equation(s). For n = 1 the normal equations
state that

v∗ =αv1, α= 〈x, v1〉
〈v1, v1〉

.

This recovers the one-dimensional projection formula that we used to prove the Cauchy-
Schwarz inequality. Now with the Gram matrix we can determine orthogonal projections on
subspaces of finite dimension:

Example 1.4.5. Let us redo the projection of Example 1.3.10, that is, we want find the best
approximation in span{v1} for v1 =

[
1
−1

]
of

x =
[

2
2

]
with the non-standard inner product 〈x, y〉 = x1 y1+3x2 y2. According to the normal equations
we have as best approximation

v∗ = v1
〈x, v1〉
〈v1, v1〉

=
[

1
−1

]
2×1+3×2× (−1)

1+3
=

[
1
−1

] −4

4
=

[−1
1

]
.

See Fig. 1.10. �

V⊥

V

x

v∗

0

FIGURE 1.10: The best approximation in span(1,−1) of x = (2,2) with respect to inner
product 〈x, y〉 = x1 y1 +3x2 y2 is v∗ = (−1,1). See Example 1.4.5.

Example 1.4.6. Consider C ([−1,1];R) with standard inner product 〈 f , g 〉 = ∫ 1
−1 f (t )g (t ) dt .

We determine the best approximation of the function et in the subspace of polynomials of
degree at most 1. That is, we need to solve

min
α1,α2∈R

‖et − (α1 +α2t )‖.

A basis of this subspace of polynomials is {1, t }, and with this choice the normal equa-
tions (1.10) become[〈1,1〉 〈t ,1〉

〈1, t〉 〈t , t〉
][
α1

α2

]
=

[〈et ,1〉
〈et , t〉

]
.

The six inner products here equate to[
2 0
0 2/3

][
α1

α2

]
=

[
e− e−1

2e−1

]
.
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Its solution is[
α1

α2

]
=

[1
2 (e− e−1)

3e−1

]
.

The best approximation on [−1,1] of et by a degree one (or less) polynomial thus is

p∗(t ) = 1
2 (e− e−1)+3e−1t ,

see Fig. 1.11. �

1−1

et

p∗(t )

FIGURE 1.11: Best approximation of et by degree-1 polynomial p∗(t ). This polynomial
minimizes the norm of the approximation error et − p∗(t ) (shown in gray). See Exam-
ple 1.4.6.

Orthonormal sequence and Parseval identity

A drawback of the Gram matrix is that it does not easily extend to infinite dimensional sub-
spaces (its Gram matrix would be an infinite matrix). To avoid such problems it is customary
to assume more structure, namely the case where the Gram matrix (1.10) is the identity ma-
trix:

Definition 1.4.7 (Orthonormal sequence). A sequence {e1,e2,e3, . . .} in some inner product
space, is an orthonormal sequence if all elements have unit norm and are mutually orthogo-
nal: ‖ek‖ = 1 ∀k and ek ⊥ e j ∀k 6= j . �

Verify for yourself that the Gram matrix (1.10) is the identity matrix if {v1, . . . , vn} is an
orthonormal sequence {e1, . . . ,en}. As a result we immediately get that the solution α of (1.10)
then is

αi = 〈x,ei 〉,

and, therefore, that the best approximation of x in span{e1, . . . ,en} is

v∗ = 〈x,e1〉e1 +〈x,e2〉e2 +·· ·+〈x,en〉en . (1.11)

In the case of an orthonormal sequence, the coordinates αi :=〈x,ei 〉 are referred to as
Fourier coefficients. The orthonormal property also gives us that

‖v∗‖2 =
n∑

k=1
|〈x,ek〉|2.
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If x happens to be an element of span{e1, . . . ,en} then, obviously, v∗ = x so then

‖x‖2 =
n∑

k=1
|〈x,ek〉|2. (1.12)

This is known as Parseval’s identity and it should remind you of the fact that in Rn the Eu-
clidean norm of the vector can be expressed by its coordinates with respect to the standard
(orthonormal) basis as ‖x‖ = (x2

1 +x2
2 +·· ·+x2

n)
1
2 . Now an important example.

Example 1.4.8 (Finite real Fourier series). Consider C ([−1,1];R) with standard inner prod-
uct,

〈 f , g 〉 =
∫ 1

−1
f (t )g (t ) dt .

Similar to Example 1.3.12 we claim that cos(πt ) and sin(πt ) are orthogonal. In fact all cosines
and sines with period π are orthogonal! We mean that for whatever n, the set of 2n +1 har-
monic functions

{1/2, cos(πt ), sin(πt ), cos(2πt ), sin(2πt ), . . . , cos(nπt ), sin(nπt )}

is an orthonormal set (Exercise 1.36). In particular the set is therefore independent.
To keep matters simple, let us determine the best approximation of some f ∈C ([−1,1];R)

in the span of only 1, cos(πt ), sin(πt ). That is we want to determine

min
f∗(t )=c0+c1 cos(πt )+c2 sin(πt )

‖ f − f∗‖.

Exploiting the orthonormality of {e1,e2,e3} :={1/2,cos(πt ),sin(πt )} we find

f∗(t ) = 〈 f ,e1〉e1(t )+〈 f ,e2〉e2(t )+〈 f ,e3〉e3(t )

= 〈 f ,
1

2
〉1

2
+〈 f ,cos(π·)〉cos(πt )+〈 f , sin(π·)〉sin(πt ).

For f (t ) = t 2 the best approximation turns out to be f∗(t ) = 1
3 − 4

π2 cos(πt ), see Fig. 1.12. �

0 1−1

f (t ) = t 2

f∗(t ) = 1
3 − 4

π2 cos(πt )

t →
FIGURE 1.12: Function f (t ) = t 2 on [−1,1] and its best approximation f∗(t ) in
span{1/2,cos(πt ),sin(πt )}. The error f (t )− f∗(t ) is shown in gray.
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Example 1.4.9 (Legendre polynomials). Without proof we claim that the sequence of poly-
nomials

p0(t ) = 1,

p1(t ) = t ,

pk+1(t ) = (2k +1)t pk (t )−kpk−1(t )

k +1
∀k ≥ 1

defines an orthogonal sequence of polynomials on C ([−1,1];R) with the standard inner prod-
uct 〈 f , g 〉 = ∫ 1

−1 f (t )g (t ) dt . Their norms are

‖pk‖ =
√

2

2k +1
.

See Fig. 1.13. So then ek :=
√

2k+1
2 pk is an orthonormal sequence. The pk are known as the

Legendre polynomials in honor of Adrien-Marie Legendre (1752-1833) who introduced them
to describe Newtonian potentials. Legendre polynomials also play a role in numerical analysis
(google for “Gaussian quadrature” if you want to know). �

p0 p1 p2 p3

p4 p5 p6 p7

FIGURE 1.13: The first eight Legendre polynomials pk : [−1,1] →R.

1.5 Hilbert space

Inner product spaces may be incomplete, and this is unfortunate since then all sorts of limits
are not guaranteed to exist. For instance best approximations et cetera need not exist (Exam-
ple 1.4.3). In this final section we focus on inner product spaces that are complete. These are
known as Hilbert spaces in honor of the German mathematician David Hilbert (1862–1943).
Hilbert spaces by definition enjoy all the properties of Banach spaces and in addition they
have the rich structure brought about by the inner product. Most of our geometrical intuition
for R2 and R3 generalizes to arbitrary Hilbert space.

Definition 1.5.1 (Hilbert space). A Hilbert space is an inner product space that is complete
in the norm ‖x‖ :=p〈x, x〉. �

So a Hilbert space is a Banach space whose norm satisfies the parallelogram law. This
law is usually easy to check. Every inner product space that is finite dimensional is a Hilbert
space. For example

27



• Rn in whatever inner product, for instance the dot product, is a Hilbert space;

• The set of polynomials from [a,b] to R of degree n or less, with the standard inner prod-
uct 〈 f , g 〉 = ∫ b

a f (t )g (t ) dt , is a Hilbert space;

• Cn in whatever inner product, for instance 〈x, y〉 =∑n
k=1 xk yk , is a Hilbert space.

Arguably the most interesting Hilbert space for our course is `2:

Example 1.5.2 (Square-summable sequence space). Theorem 1.2.4 claims that the space of
real, square summable sequences

`2 = {(u1,u2, . . .) | uk ∈R,‖u‖2 <∞},

is a Banach space in the standard 2-norm ‖u‖2 :=
√∑∞

k=1 u2
k . This norm corresponds to the

inner product defined as

〈v, w〉2 =
∞∑

k=1
vk wk .

Hence `2 in this inner product is a Hilbert space. �

Similarly, `2(N;C) = {(u1,u2, . . .) | uk ∈ C,
∑∞

k=1 |uk |2 <∞} is a Hilbert space in the complex
inner product 〈x, y〉2 =

∑∞
k=1 yk xk . The spaces `1 and `∞ are not Hilbert spaces because they

are not even inner product spaces (Exercise 1.43). The Lebesgue space equivalent of `2 is L 2

and this, again, is a Hilbert space:

Lemma 1.5.3 (Square integrable function space). Let a,b ∈R, a < b, possibly a =−∞ and/or
b =∞. The set

L 2([a,b];R) :={ f : [a,b] →R |
∫ b

a
f 2(t ) dt <∞}

is a Hilbert space in the standard inner product

〈 f , g 〉 =
∫ b

a
g (t ) f (t ) dt . (1.13)

�

From one Hilbert space one can generate others.

Theorem 1.5.4 (Orthogonal complement). Let S be a non-empty subset of a Hilbert space
X. Then the orthogonal complement S⊥ is a Hilbert space.

Proof. First of all, S⊥ is a subspace and therefore a vector space. Remains to show that every
Cauchy sequence in S⊥ converges in S⊥. Let fn be a Cauchy sequence in S⊥. Since X is
Hilbert, the sequence fn has a limit f in X. Now by continuity of inner product (Exercise 1.52)
we have for every s ∈S that 〈 f , s〉 = limn→∞〈 fn , s〉 = 0. So f ∈S⊥.

Example 1.5.5 (Even functions). The orthogonal complement of the set S of odd functions

S = { f ∈L 2(R;R) | f (t ) =− f (−t ) ∀t }

are the even functions (verify this). So the set of even functions in L 2(R;R) is a Hilbert space.

�
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The projection theorem 1.4.2 claims that if a best approximation exists then it is unique.
It does not say that a best approximation exists and in fact it need not exist (Example 1.4.3).
In that example, we projected onto a space that is not a Hilbert space. Could it be? Yes:

Theorem 1.5.6 (Projection theorem, final version). Let X be an inner product space and
suppose V⊆X is a Hilbert space. Then every x ∈X has a best approximation v∗ ∈V, and the
best approximation is unique.

Proof. Uniqueness we showed earlier (Thm. 1.4.2). Existence we show now. Let β =
infv∈V ‖x − v‖. This implies that a sequence vn ∈V exists such that

‖x − vn‖2 ≤β2 + 1

n
∀n ∈N.

Below we show that vn is Cauchy. Then by completeness of Hilbert space we have that
v∗ := limn→∞ vn is in V. Now by continuity of norm we have ‖x − v∗‖ = β, making v∗ a best
approximation. Done.

Proof that vn is Cauchy. By the parallelogram law we have

‖vn − vm‖2 +‖vn + vm −2x‖2 = 2‖vn −x‖2 +2‖vm −x‖2,

see Fig. 1.14. Therefore

‖vn − vm‖2 = 2‖vn −x‖2 +2‖vm −x‖2 −‖vn + vm −2x‖2

= 2‖vn −x‖2 +2‖vm −x‖2 −4‖x − vn+vm
2 ‖2.

Since vn+vm
2 ∈V and since β is the smallest possible error norm, we have that ‖x− vn+vm

2 ‖ ≥β.
Therefore

‖vn − vm‖2 ≤ 2‖vn −x‖2 +2‖vm −x‖2 −4β2

≤ 2(β2 + 1
n )+2(β2 + 1

m )−4β2 = 2( 1
n + 1

m ).

It follows that vn is a Cauchy sequence.

0
vn −x

vm −x
vn +vm −2x

‖v n+v m
−2x‖

‖vn −vm ‖‖v
m
−x

‖

‖vn −x‖

FIGURE 1.14: Parallelogram law.

Complete orthonormal system

Many familiar results from Rn carry over to arbitrary Hilbert space. For instance the following
central and truly powerful theorem. It combines many results. For instance it generalizes the
notion of basis to infinite dimensional Hilbert space.
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Theorem 1.5.7 (Complete orthonormal system). Let X be a Hilbert space and let {e1,e2, . . .}
be an orthonormal sequence (possibly infinite) in X. The following conditions are equivalent.

1. The only x ∈X for wich x ⊥ ek for all ek is x = 0, (sequence is complete)

2. For every x ∈X we have x =∑∞
k=1〈x,ek〉ek , (x equals Fourier series)

3. For every x ∈X we have ‖x‖2 =∑∞
k=1 |〈x,ek〉|2. (Parseval’s identity)

In that case we say that {e1,e2, . . .} is a orthonormal basis or a complete orthonormal system
of X. �

Proof. We prove it for infinite sequences {e1,e2, . . .} (the finite case is simpler).
Proof of (1) =⇒ (2): for any n, the finite sum xn defined as

xn =
n∑

k=1
〈x,ek〉ek

is the best approximation of x in span{e1, . . . ,en} hence by Thm. 1.4.2 the norm of the approxi-
mation xn does not exceed that of x, so ‖∑n

k=1〈x,ek〉ek‖ ≤ ‖x‖ <∞. By Pythagoras this means
that the sequence of positive real numbers,

αn :=
n∑

k=1
|〈x,ek〉|2

are bounded from above by ‖x‖2 <∞. So αn is an increasing but bounded sequence. By the
monotone convergence theorem it therefore converges, α∞ = limn→∞αn . But then xn is a
Cauchy sequence because for any m ≥ n ≥ N ,

‖xn −xm‖2 =
∑

n<k≤m
|〈x,ek〉|2 =αm −αn ≤α∞−αN

which converges to 0 as N →∞. By the Hilbert property then x∞ :=∑∞
k=1〈x,ek〉ek exists in X.

This x∞ equals x by the following argument: for every index k there holds

〈x −x∞,ek〉 = 〈x,ek〉−〈 lim
n→∞xn ,ek〉

= 〈x,ek〉− lim
n→∞〈xn ,ek〉 by continuity of inner product

= 〈x,ek〉− lim
n→∞〈

n∑
m=1

〈x,em〉em ,ek〉

= 〈x,ek〉− lim
n→∞

n∑
m=1

〈x,em〉〈em ,ek〉

= 〈x,ek〉−〈x,ek〉 = 0 ∀k.

By completeness of the {e1,e2, . . .} this implies that x −x∞ = 0, i.e. that x = x∞.
Proof of (2) =⇒ (3): this is immediate from Pythagoras, continuity of norm and orthonor-

mality of {e1,e2, . . .}:

‖x‖2 = ‖ lim
n→∞xn‖2 = lim

n→∞‖xn‖2 = lim
n→∞

n∑
k=1

|〈x,ek〉|2.

Proof (3) =⇒ (1): if x ⊥ ek for all k then ‖x‖2 = ∑
k |〈x,ek〉|2 = 0 hence by the positive

definite property of norm we have x = 0.
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For finite dimensional space such as Rn the theorem is intuitive and says that {e1,e2, . . .}
span the entire space iff the orthogonal complement of span{e1,e2, . . .} is zero.

Lemma 1.5.8 (A polynomial orthonormal basis of L 2). Consider the Hilbert space
L 2([−1,1];R) with standard inner product 〈 f , g 〉 = ∫ 1

−1 f (t )g (t ) dt . There is an orthonor-
mal sequence of polynomials {ek }k=0,1,2,... with ek having degree k. Moreover this sequence is
then an orthonormal basis of L 2([−1,1];R).

Proof. Let vk−1(t ) be the best approximation of t k in the space of polynomials of degree at
most k−1. Then ek :=(t k−vk−1)/‖t k−vk−1‖ is an orthonormal sequence with ek having degree
k. (See also Example 1.4.9.)

According to Thm. 1.5.7 it suffices to show that the only function f ∈ L 2([−1,1];R) or-
thogonal to all ek is the zero function. So assume that 〈 f ,ek〉 = 0 for all k = 0,1, . . ., i.e.∫ 1

−1
f (t )t k dt = 0, k = 0,1,2, . . . .

Assume, for the moment, that f is continuous. If f is nonzero then f is > 0 (or < 0) through-
out some small enough interval [c,d ], see Fig. 1.15. Next let h(t ) be a parabola that exceeds 1

f (t )

h(t )
1

−1 1c d

FIGURE 1.15: A parabola h(t ) so that h(t ) ≥ 1 on [c,d ] and |h(t )| < 1 elsewhere on [0,1].

if c < t < d , and for all other t < c and t > d is positive but less than 1. Such a parabola exists.
Realize that every power hn of h is a polynomial (in fact hn has degree 2n so is an element of
span{e0,e1, . . . ,e2n}. The higher the power, the larger hn is in the interval [c,d ] and the smaller
it is elsewhere. Therefore for some large enough n we have

〈 f ,hn〉 6= 0.

This means that f can not be orthogonal to all ek . Hence the only continuous f that is or-
thogonal to all ek is the zero function, f = 0.

Now let f ∈ L 2([0,1];R), not necessarily continuous, and assume that f ⊥ ek for all k =
0,1, . . .. Again we show that f is then necessarily the zero function. Consider its antiderivative

F (t ) :=
∫ t

−1
f (τ) dτ.

This function is continuous. It is also orthogonal to all ek because

〈F,ek〉 =
∫ 1

−1
F (t )t k dt =

[
F (t )

t k+1

k +1

]1

−1

−
∫ 1

−1
f (t )

t k+1

k +1
dt = 0, ∀k = 0,1,2, . . . .

Here we used that F (0) = 0 and F (1) = ∫ 1
−1 f (t ) dt = 〈 f ,1〉 = 0. So F is orthogonal to ek for all

k = 0,1, . . .. Since F is continuous and orthogonal to all ek we have that F is the zero function.
Its derivative f hence is zero as well, which is what we set out to prove.
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So every square integrable function f : [−1,1] → R can be approximated (in the 2-norm)
arbitrary well by polynomials ek , and, in fact, f =∑∞

k=0 fk ek for fk = 〈 f ,ek〉. Not bad. In Chap-
ter 3 we will see that not only polynomials have this property but also harmonic functions (see
Theorem 3.1.1).

1.6 Exercises

1.1 Consider the three norms on R2 as defined in Example 1.1.2.

(a) Show that the 1-norm is a norm.

(b) Show that the 2-norm is a norm. (The triangle inequality is a tricky one to verify;
you probably want to read § 1.3 first.)

(c) Show that the ∞-norm is a norm.

1.2 Prove the claim of Example 1.1.5.

1.3 Prove the claim of Example 1.1.7.

1.4 Suppose ‖·‖a and ‖·‖b are two norms on the same vector space. Is ‖·‖a +‖·‖b a norm?

1.5 Show that ‖ ·‖ is a norm on R if and only if

‖x‖ = γ|x|

for some real number γ> 0. [Hint: use that a vector x ∈R can also be seen as the scalar
x ∈R times the vector 1 ∈R.]

1.6 Suppose X is a finite dimensional vector space with basis V = {v1, . . . , vn}. Denote the
coordinate vector of x ∈X as xV = (xV ,1, . . . , xV ,n). Is

‖x‖ :=
n∑

k=1
|xV ,k |

a norm on X?

1.7 Let XA and XB be two real vector spaces, and suppose ‖ · ‖A is a norm on XA and ‖ · ‖B

a norm on XB . Show that

‖(xa , xb)‖ :=max(‖xa‖A ,‖xb‖B )

is a norm on the cartesian product space

XA ×XB :={(xa , xb) | xa ∈XA , xb ∈XB }

1.8 Let P2(R;R) be the set of polynomials p : R→ R that have degree 2 or less. It is a sub-
space of F (R;R). Let p0, p1, p2 ∈R. Is

‖p0 +p1t +p2t 2‖ :=|p0|+ |p1|+ |p2|

a norm on P2(R;R)?

1.9 Let {xn}n∈N be a Cauchy sequence in some normed vector space. Show that the se-
quence of norms an :=‖xn‖ is a Cauchy sequence of real numbers (in the vector space
R with absolute values as its norm).
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1.10 Show that the fn of Example 1.2.9 is a Cauchy sequence in the 2-norm.

1.11 Show that every Cauchy sequence is bounded (meaning: for every Cauchy sequence
{ fn}n∈N there is an M > 0 such that ‖ fn‖ ≤ M for all n ∈N).

1.12 Bounded variation. Functions of bounded variation roughly are those functions whose
graph can be plotted up to any degree of precision, see Fig. 1.16. Formally, f ∈
F ([a,b];R) is of bounded variation if there is an M > 0 (that may depend on f ) such
that

N∑
k=1

| f (xk )− f (xk−1)| ≤ M

for every N and every partitioning a = x0 < x1 < ·· · < xN = b of [a,b]. The total variation
of f is defined as

V ( f ) := sup
a=x0<x1<···<xN=b

N∑
k=1

| f (xk )− f (xk−1)|.

Here the supremum is taken over all N ∈N and all ordered xk (with x0 = a, xN = b). Let
BV ([a,b];R) be the subset of F ([a,b];R) of functions whose total variation is finite.

(a) Argue that V ( f ) = f (b)− f (a) if f is a non-decreasing function, such as

f (a)

f (b)

ba

(b) Determine V ( f ) for f (t ) = (b − t )(t −a). A plausible argument suffices,

ba

(c) Show that BV ([a,b];R) is a subspace

(d) Show that V ( f ) is not a norm on BV ([a,b];R)

(e) Show that | f (a)|+V ( f ) is a norm on BV ([a,b];R)

(f) Find a continuous f ∈F ([0,1];R) whose total variation is infinite.

1.13 Uniqueness of limit. Let { fn}n∈N be a sequence in some normed vector space X.

(a) Suppose fn converges. Show that limn→∞ fn is unique.

(b) Let Y be a subspace of X (with the norm as on X). Suppose { fn}n∈N ⊆ Y is a se-
quence in Y (and hence in X) and that it converges in X to some f ∈X. Show that
{ fn}n∈N converges in Y if and only if f ∈Y. [Hint: this is an easy problem.]

(c) Use the previous part to show that the fn of Example 1.1.8 have a limit in
L 1([−1,1];R) in the 1-norm, but not in the subspace C ([−1,1];R) in the 1-norm.

1.14 Consider Example 1.3.3. Show that for the function space F ([a,b];R) also the third
axiom of inner product does not hold.
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FIGURE 1.16: Graph of t cos(1/t ) on [−0.1,0.1].

1.15 Prove the claim of Example 1.3.5

1.16 Parallelogram law. Let X be a vector space with inner product, and assume x, y ∈X.

(a) Prove that every inner product satisfies the parallelogram law:

‖x + y‖2 +‖x − y‖2 = 2‖x‖2 +2‖y‖2.

(b) Show that on real vector space we have (1.7).

(c) Show that on complex vector space we have (1.8).

1.17 Consider C ([0,1];R) with the max-norm, ‖ f ‖∞ = maxx∈[0,1] | f (x)|. Let

h(x) = 1, g (x) = x.

(a) Compute ‖h‖∞, ‖g‖∞, ‖h + g‖∞, ‖h − g‖∞
(b) Is there an inner product whose norm is the max-norm?

1.18 Let P2([0,1];C) be the set of polynomials p : [0,1] →C of degree 2 or less.

(a) Is

〈p, q〉 :=p(0)q(0)+p(1)(0)q (1)(0)

an inner product on P2([0,1];C)?

(b) Show that

〈p, q〉 :=p(0)q(0)+p(1)(0)q (1)(0)+p(2)(0)q (2)(0) (1.14)

is an inner product on P2([0,1];C).

(c) Determine 〈1, ix〉 for the inner product of (1.14)

(d) What is the distance between 1+ x + x2 and 2− 2x in the inner product (1.14)?
(The distance between two vectors f1 and f2 is defined as the norm ‖ f1 − f2‖ of
their difference.)

(e) Repeat 1.18c and 1.18d for the inner product

〈p, q〉 =
∫ 1

0
p(x)q(x) dx.
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1.19 Prove the following properties of complex inner products.

(a) 〈u1 +u2 +u3, v〉 = 〈u1, v〉+〈u2, v〉+〈u3, v〉
(b) 〈u,αv〉 =α〈u, v〉
(c) 〈u, v +w〉 = 〈u, v〉+〈u, w〉

1.20 Show that 〈x, y〉 = yTP x is an inner product on Rn if P =QTQ for some nonsingular n×n
matrix Q.

1.21 Suppose 〈x, y〉 = 0 for all x ∈X. Show that y = 0.

1.22 Is 〈A,B〉 := tr(B T A) an inner product on Rn×k ? Here tr is the trace, defined as the sum of
the diagonal entries.

1.23 Is it S⊥⊥ ⊆S or S⊆S⊥⊥?

1.24 Show that on real vector space ‖x+y‖2 = ‖x‖2+‖y‖2 iff x ⊥ y and find a counter example
for this equivalence for the complex vector space C.

1.25 Show that a c > 0 exists such that∣∣∣∣∫ π

0
f (t )cos(t ) dt

∣∣∣∣≤ c

√∫ π

0
| f (t )|2 dt ∀ f ∈C ([0,π];R),

and determine the smallest c∗ possible and a non-zero function f (t ) that achieves
equality for this smallest c∗.

1.26 Consider the vector space of continuous functions f defined on the complex unit circle,

f : {z ∈C | |z| = 1} →C.

Show that

〈 f , g 〉 =
∫ 2π

0
f (eiω)g (eiω) dω

is an inner product.

1.27 Consider the set

`2(N;C) = {u ∈ `(N;C) |
∞∑

n=1
|un |2 <∞}.

Its elements are the infinite sequences (u1,u2, . . .) whose entries un ∈C converge to zero
so fast that ‖u‖2 :=∑∞

n=1 |un |2 is convergent (is finite). In the exercise you will prove that
`2 is a subspace of `(N;C), and that `2 is, in fact, an inner product space.

(a) Show that 2|ab| ≤ |a|2 +|b|2 ∀a,b ∈C.

(b) Show that |a +b|2 ≤ 2|a|2 +2|b|2 ∀a,b ∈C.

(c) Show that `2(N;C) is a subspace of `(N;C).

(d) Show that ‖u‖2 :=
√∑∞

n=1 |un |2 is a norm on `2(N;C).

Now consider the following mapping

〈u, v〉 :=
∞∑

i=1
ui v i where u, v ∈ `2(N;C).
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(e) Show that 〈u, v〉 is well defined3 for every u, v ∈ `2(N;C).

(f) Show that this 〈·, ·〉 is an inner product on `2(N;C).

(g) Show that this 〈·, ·〉 is not an inner product on `(N;C).

1.28 For which α ∈R is

〈x, y〉 :=x1 y1 +α(x1 y2 +x2 y1)+x2 y2

an inner product on R2?

1.29 Consider L 2([0,1];R). Does a best approximation of et in the subspace of all polyno-
mial in L 2([0,1];R) exist?

1.30 Does 2|〈x, y〉| ≤ ‖x‖2 +‖y‖2 hold for any inner product?

1.31 Is
∫ 1

0 x(t )y(t ) dt +x(0)y(0) an inner product on C ([0,1];R)?

1.32 Consider C ([0,1];R). Show that none of the expressions below are inner products and
indicate which of the axioms of inner product fail:

(a) 〈x, y〉 :=∫ 1
0 x(t )y2(t ) dt

(b) 〈x, y〉 :=∫ 1
0

1
t x(t )y(t ) dt

(c) 〈x, y〉 :=∫ 0.5
0 x(t )y(t ) dt

(d) 〈x, y〉 :=∫ 1
0

∫ 1
0 x(t )y(s) dt ds

(e) 〈x, y〉 :=x(0)y(0)+x(1)y(1)

1.33 Consider C ([0,1];R) with standard inner product. Determine the best approximation of
t 2 in span{1, t }.

1.34 Consider C ([−1,1];R) with standard inner product. Determine the best approximation
of t 4 in span{1, t , t 2, t 3}.

1.35 Consider Cn . Let αk ∈C. Show that

〈x, y〉 :=
n∑

k=1
αk xk yk

is an inner product if and only if all αk are real and larger than zero.

1.36 Show that {1/2,cos(πt ),sin(πt ), . . . ,cos(nπt ),sin(nπt )} is an orthogonal set on C ([−1,1];R)
with standard inner product.

1.37 Legendre polynomials. Consider C ([−1,1];R) and its subspace P5([−1,1];R) (the sub-
space of polynomials p : [−1,1] →R of degree 5 or less.) It can be shown that the degree-
6 Legendre polynomial is

p6(t ) := 1

16
(231t 6 −315t 4 +105t 2 −5)

and that its norm is ‖p6‖ =
p

2/13.

(a) Determine the best approximation of t 6 in P5([−1,1];R).

3meaning that the infinite series
∑

i ui v i converges.
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(b) Determine the minimal approximation error minq∈P5([−1,1];R) ‖t 6 −q‖.

(Hint: lengthy derivations can be avoided. The answer for part (b) is approximately
0.027.)

1.38 Construct an orthonormal basis of the space span{e−t , e−2t , e−3t } as subspace of
L 2([0,∞);R) with standard inner product 〈 f , g 〉 = ∫ ∞

0 f (t )g (t ) dt .

1.39 Consider L 2([0,1];R) with standard inner product, and let P ([0,1];R) be the set of all
polynomials in L 2([0,1];R).

(a) Argue that the best approximation of et in the space of polynomials of any degree
P ([0,1];R) does not exist.

(b) Is the subspace P ([0,1];R) a Hilbert space?

1.40 Consider the set of even square summable sequences

`2,even = {x ∈ `2(Z,R) | xk = x−k }

and the standard inner product of `2(Z,R)

(a) Show that `2,even is a Hilbert space

(b) Determine a complete orthonormal system for `2,even

1.41 Show that `finite with standard inner product (that of `2) is not a Hilbert space.

1.42 Suppose X and V ⊆ X are both Hilbert spaces. Show that every x ∈ X has a unique
decomposition x = v + v⊥ with v ∈V and v⊥ ∈V⊥.

1.43 Show that `1 and `∞ with standard norms are not inner product spaces.

1.44 Hilbert matrix. Let Pn−1 be the subspace of C ([0,1];R) spanned by the monomi-
als {1, t , . . . , t n−1}. That is to say, Pn−1 is the subspace formed by the polynomials
p(t ) = α1 +α2t + ·· ·+αn t n−1 of degree at most n −1. We consider the standard norm,

‖ f ‖2 =
√∫ 1

0 f 2(t ) dt .

(a) Determine the normal equations (1.10) for the case that {v1, . . . , vn} = {1, t , . . . , t n−1}
and x(t ) = t n .

(b) Determine the best approximation of t 2 in P1.

1.45 Show that 〈 f , g 〉 :=∫ 1
0 f (t )g (t ) + f ′(t )g ′(t ) dt is an inner product on the vector space

C 1([0,1];R) of continuously differentiable functions f : [0,1] →R.

1.46 Can the arguments of Exercise 1.27(a,b) also be used to prove that L 2([a,b];R) is a sub-
space?

1.47 Is `1 ⊂ `2?

1.48 Let X be some complex Hilbert space.

(a) Let {vn}n∈N be an orthogonal sequence in X. Show that
∑

n∈N vn converges iff∑
n∈N ‖vn‖2 <∞.

(b) Let {en}n∈N be an orthonormal sequence in X, and αn ∈ C. Show that
∑

n∈Nαnen

converges iff α :=(α1,α2, . . .) is in `2(N;C).
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(c) Let {en}n∈N be an orthonormal sequence in X, and α,β ∈ `2(N;C). Show that

〈
∑

n∈N
αnen ,

∑
n∈N

βnen〉X = 〈α,β〉`2 .

Here 〈·, ·〉X is the inner product on X, and 〈·, ·〉`2 the standard inner product on
`2(N;C).

(d) Let {en}n∈N be an orthonormal sequence in X, and x ∈X. Derive Bessel’s inequality:∑
n∈N

|〈x,en〉|2 ≤ ‖x‖2.

Tougher problems

1.49 Norm or not a norm.

(a) Let µ ∈ [0,1]. Show that every norm satisfies

‖µx + (1−µ)y‖ ≤µ‖x‖+ (1−µ)‖y‖.

(b) Consider R2. Given two elements x, y ∈R2, say,

x

y

draw all elements of {z ∈R2 | z =µx + (1−µ)y,µ ∈ [0,1]}.

(c) Show that ‖z‖ ≤ max(‖x‖,‖y‖) for every element of {z | z =µx + (1−µ)y,µ ∈ [0,1]}

(d) Consider R2. Can this set

be the unit ball {x | ‖x‖ ≤ 1} for some norm on R2?

1.50 Consider the sequence spaces `1,`2,`∞ and two of their continuous counterparts
L 1,L 2. Prove or provide counter examples to the following claims:

(a) `2(N;R) ⊆ `∞(N;R) ?

(b) `1(N;R) ⊆ `2(N;R) ? [Hint: first assume that |xn | ≤ 1 for all n.]

(c) L 1([0,1];R) ⊆L 2([0,1];R) ?

(d) L 2([0,1];R) ⊆L 1([0,1];R) ? [Hint: first assume that | f (t )| ≥ 1 for all t .]

(e) L 2(R;R) ⊆L 1(R;R) ?

(f) L 1(R;R) ⊆L 2(R;R) ?

1.51 Consider two norms on Rn : an arbitrary norm ‖·‖ and the max-norm ‖·‖∞ (also known
as ∞-norm). In this problem we derive that all norms on Rn are “equivalent” meaning
that constants γ,δ> 0 exist (depending on n but not on x) such that

δ‖x‖∞ ≤ ‖x‖ ≤ γ‖x‖∞ ∀x. (1.15)
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(a) Show that there is a γ> 0 such that

‖x‖ ≤ γ‖x‖∞.

[Hint: write x as x = x1e1 +·· ·+ xnen where {ei }i=1,...,n is the standard basis of Rn

and express γ using the ‖ei‖.]

(b) The Bolzano-Weierstraß theorem says that every bounded sequence in Rn has a
convergent subsequence. This we can use to prove that a δ exists such that

δ‖x‖∞ ≤ ‖x‖.

To this end, let

δ0 := inf
‖x‖∞=1

‖x‖.

If δ0 is zero then a sequence {xk } of vectors in Rn exists for which ‖xk‖ → 0 as
k → ∞. Now, by Bolzano-Weierstraß this means that a convergent subsequence
{xkl } exists... Finish the proof, that is, prove that (1.15) holds.

1.52 Continuity of inner product. Let X be an inner product space and suppose that
x := limn→∞ xn exists in X. Use Cauchy-Schwarz to show that every inner product is
continuous in the sense that limn→∞〈xn , y〉 = 〈x, y〉.

1.53 Chebyshev Polynomials. Let Tn : [−1,1] →R be the Chebyshev polynomials

Tn(t ) = cos(n arccos(t )), n = 0,1,2, . . . .

See Fig. 1.17. Soon we will see that the Tn(t ) are indeed polynomials in t . In what
follows Pn([−1,1];R) denotes the set of polynomials p : [−1,1] →R of degree n or less.

(a) Show that {Tn}n=0,1,2,... are orthogonal with respect to the inner product

〈 f , g 〉 =
∫ 1

−1
f (t )g (t )

1p
1− t 2

dt . (1.16)

(Hint: substitute t = cos(φ) and use the goniometric formula cos(t+s)+cos(t−s) =
2cos(t )cos(s))

(b) What is ‖T0‖ and what is ‖Tn‖ for n > 0?

(c) Derive the recursion

Tn+1(t ) = 2tTn(t )−Tn−1(t ) ∀n ≥ 1,

and show that all Tn are polynomial. (Hint: again substitute t = cos(φ) and now

use that cos(α)+cos(β) = 2cos(α+β2 )cos(α−β2 ))

(d) Determine T0,T1,T2,T3.

(e) Use the previous part to determine the best approximation of t 3 in P2([−1,1];R)
with inner product (1.16).

(f) Let n > 0. Determine the approximation error minq∈Pn−1([−1,1];R) ‖t n − q‖ in the
norm defined by the inner product (1.16) (Hint: what is the leading coefficient of
Tn?)
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FIGURE 1.17: Graphs of the first six Chebyshev polynomials T0, . . . ,T5 : [−1,1] →R. (Exer-
cise 1.53)

1.54 Numerical solution. Verify that on C ([0,1];R) with its standard inner product we have
the recursion

〈t k , et 〉 = e−k〈t k−1, et 〉
for any k ∈N. Use this and MATLAB or PYTHON (or whatever software) to find the opti-
mal degree 10 polynomial p(t ) approximation of et and plot the error et −p(t ).

1.55 Basis for images. Let e1 =
[

1
0

]
and e2 =

[
0
1

]
. This is the standard basis of R2. The standard

basis for R2×2 can be expressed in terms of e1,e2 as[
1 0
0 0

]= e1eT
1 ,

[
0 1
0 0

]= e1eT
2 ,

[
0 0
1 0

]= e2eT
1 ,

[
0 0
0 1

]= e2eT
2 .

This suggests that we can construct orthonormal bases for Rn×k given any two bases
for Rn and Rk . We analyze this situation not for not Rn×k but for “continuous square
images”, that is,

L 2([0,1]× [0,1]) :={ f : [0,1]2 →C |
∫ 1

0

∫ 1

0
| f (t , s)|2dsdt <∞}.

This space is a Hilbert space in the inner product

〈x, y〉 =
∫ t=1

t=0

∫ s=1

s=0
x(t , s)y(t , s) dsdt .

(a) Suppose {e1(t ),e2(t ), . . .} is an orthonormal basis of L 2[0,1]. Show that

φi j (t , s) :=ei (t )e j (s), i ∈N, j ∈N
is an orthonormal set on L 2([0,1]× [0,1]).

(b) Show that 〈x,φi j 〉 = 0 for all i , j implies that x = 0 (this might be a tough problem).

(c) Show that {φi , j }i , j∈N is an orthonormal basis of L 2([0,1]× [0,1]).

(d) Let φm,n(t , s) :=ei2π(mt+ns). Is {φm,n}m,n∈Z an orthonormal basis of L 2([0,1] ×
[0,1])?

1.56 Example 1.5.5 shows that the even functions L 2
even(R) in L 2(R) is a Hilbert space.

Therefore, by Thm. 1.5.6, every f ∈ L 2(R) has a best approximation f∗ in L 2
even(R).

Show that

f∗(t ) = f (t )+ f (−t )

2

is this best approximation.

40



1.57 Legendre polynomials & Rodrigues’s formula. Define the polynomials pn as

pn(t ) = 1

2nn!

dn(t 2 −1)

dt n , n = 0,1,2, . . . .

(a) Argue that pn has degree n.

(b) Show that {pn}n∈N is an orthogonal sequence on C ([−1,1];R) with respect to the
standard inner product.

[Hint: derive first that dn

dt n (t 2 −1)n ⊥ 1, t , . . . , t n−1.]

(c) Show that (n +1)pn(t ) = (2n +1)t pn(t )−npn−1(t ) for all n ≥ 1.
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Chapter 2

Introduction to Signals and
Convolutions

t

(a)

f (t )

(b)

f (nTs)

n

FIGURE 2.1: A continuous-time signal and a discrete-time signal

2.1 Continuous-time and discrete-time signals

Quantities that change with time, such as the voltage across a resistor or the outdoor tem-
perature, may be regarded as functions f (t ) defined on R or on a subset of R. Functions that
depend on time are called signals. If a signal f (t ) is defined for all t ∈ R or for all t in some
interval (a,b) ⊂R, then we say that f (t ) is a continuous-time signal. If f (t ) is defined only for
a sequence of time instances

· · · < t−2 < t−1 < t0 < t1 < t2 < ·· · (tn ∈R),

then f (t ) is said to be a discrete-time signal. A typical example of discrete-time signal is
a signal obtained through sampling of a continuous-time signal. The sampled signal of a
continuous-time signal f (t ) is the discrete-time signal f (nTs), n ∈ Z, defined at integer mul-
tiples of the sampling period Ts > 0. Figure 2.1(a) shows the plot of a damped sinusoid
(continuous-time) and Figure 2.1(b) shows the corresponding sampled signal (discrete-time)
for a certain sampling period. In plots, discrete-time signals are represented by a series of
stems on the real axis, such as in Figure 2.1(b).

In this chapter we introduce a couple of standard signals and provide a classification of
signals. A second purpose of this chapter is to review some mathematical techniques that we
will need in the rest of this course.
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FIGURE 2.2: Several complex numbers in the complex plane

0

z

x

iy

φ

|z|

FIGURE 2.3: Modulus |z| and argument φ of a point z = x + iy in the complex plane C

2.2 Review of complex numbers

Signals in the real world take real values. Such signals are therefore called real signals or
real-valued signals. For a comprehensive theory of signals and their transforms, however, we
need complex signals. This section recaps a couple of results about complex numbers. This
is a concise recap and is not suited as a first contact with complex numbers.

A complex number z may be expressed in canonical form,

z = x + iy, x, y ∈R.

Here i is the imaginary unit which is a number having the property that

i2 =−1.

The number x is known as the real part of z = x + iy , and we denote it as

x = Re(z).

Likewise the imaginary part of x + iy equals y , notation

y = Im(z).

Note that the imaginary part is itself a real number (i.e. y ∈R).
A complex number z may also be expressed in polar form,

z = r cos(φ)+ ir sin(φ), in which r ≥ 0 and φ ∈R. (2.1)

Then r = |z| :=
√

x2 + y2 is the absolute value or modulus of z, and φ= arg(z) is the argument
of z. The argument is the angle in radians that z makes with the positive real axis, and it is
unique up to a multiple of 2π, see Fig. 2.3.

The set of complex numbers is denoted by C and it is commonly called the complex plane.
The complex conjugate of z ∈ C will be denoted by z∗ instead of the more common z̄. So if
z = x + iy with x, y ∈R then z∗ = x − iy , see Fig. 2.4.
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z

z∗

0

FIGURE 2.4: The complex conjugate of a z ∈C is denoted z∗ and is obtained by swapping
the sign of its imaginary part

Complex sum and product in canonical form

z1

z2

z1 + z2

0

FIGURE 2.5: Addition of two complex numbers in the complex plane

Sum of complex numbers. The sum of two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2

is obtained by adding both real parts and both imaginary parts,

z1 + z2 = (x1 +x2)+ i(y1 + y2).

This corresponds to addition of vectors, see Fig. 2.5.

Product of complex numbers. To form the product of two complex numbers z1 = x1 + iy1

and z2 = x2 + iy2 we can work out the product using the rule that i2 =−1. So

z1z2 = (x1 + iy1)(x2 + iy2)

= x1x2 +x1 iy2 + iy1x2 + i2︸︷︷︸
−1

y1 y2

= (x1x2 − y1 y2)+ i(x1 y2 +x2 y1).

Quotient of complex numbers. There is useful trick to find the canonical form of a quotient
z1/z2:

z1

z2
= z1

z2

(
z∗

2

z∗
2

)
︸ ︷︷ ︸

1

= (x1 + iy1)(x2 − iy2)

(x2 + iy2)(x2 − iy2)

= (x1x2 + y1 y2 + i(y1x2 −x1 y2)

x2
2 + y2

2

=
(

x1x2 + y1 y2

x2
2 + y2

2

)
+ i

(
y1x2 −x1 y2

x2
2 + y2

2

)
.

The following five rules are now readily verified.

|z∗| = |z|,
(z1 + z2)∗ = z∗

1 + z∗
2 ,

(z1z2)∗ = z∗
1 z∗

2 ,
|z|2 = zz∗,

arg(z∗) = −arg(z).

(2.2)
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Moreover, z∗ = z is a different way of saying that z is real.

The fundamental theorem of algebra

The familiar abc-formula states that the quadratic equation

az2 +bz + c = 0, (a,b,c ∈R, a 6= 0)

has as solution

z1,2 =
−b ±

p
b2 −4ac

2a
.

It may happen that b2 −4ac < 0 in which case the quadratic equation has no real solutions.
The formula however remains valid for complex numbers.

Example 2.2.1 (complex zeros). The two zeros of

z2 +2z +3

are

z1,2 =
−2±

p
−8

2
=−1± i

p
2.

Both zeros are complex. �

The example demonstrates that while second degree polynomials need not have zeros
over the real numbers z ∈ R, they always do have zeros over the complex numbers z ∈ C.
More generally there is the famous result:

Theorem 2.2.2 (Fundamental theorem of algebra). Every non-constant polynomial p(z) =
p0 +p1z +·· ·+pn zn (pi ∈C) has a zero z ∈C. �

A consequence is that every polynomial of degree n ∈N has precisely n zeros in the sense
that for any such polynomial p(z), numbers λk ∈ C, k = 1,2, . . . ,n and c ∈ C,c 6= 0 exist such
that

p(z) = c
n∏

k=1
(z −λk ).

Euler’s formula

The exponential function ez , with z ∈C, can be defined as the series

ez :=1+ z + 1

2!
z2 + 1

3!
z3 +·· · .

It is not hard to show that this series converges for every z ∈C. Without proof we state that the
familiar rule ea+b = ea eb for real a and b remains valid for a,b ∈C. The exponential function
is very interesting for imaginary z = iφ:

eiφ = 1+ (iφ)+ 1

2!
(iφ)2 + 1

3!
(iφ)3 + 1

4!
(iφ)4 ++ 1

5!
(iφ)5 +·· ·

=
(
1+ 1

2!
i2φ2 + 1

4!
i4φ4 +·· ·

)
+

(
iφ+ 1

3!
i3φ3 + 1

5!
i5φ5 +·· ·

)
=

(
1− 1

2!
φ2 + 1

4!
φ4 +·· ·

)
+ i

(
φ− 1

3!
φ3 + 1

5!
φ5 +·· ·

)
= cos(φ)+ i sin(φ).
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In the last equality we used the real Taylor series of cosine and sine. This connection is known
as Euler’s formula:

i

1

−i

−1

i sin(φ)

cos(φ)

eiφ

φ

FIGURE 2.6: Euler’s formula

Lemma 2.2.3 (Euler’s formula). eiφ = cos(φ)+ i sin(φ) for every φ ∈R. �

Since cos2(φ)+ sin2(φ) = 1 we have that |eiφ| = 1. That is, eiφ for every real φ is an ele-
ment of the unit circle, see Fig. 2.6. As its real part is cos(φ) and imaginary part is sin(φ) it is
immediate that arg(eiφ) =φ, see Fig. 2.6.

Euler’s formula expresses an exponential as a sum of cosine and sine, but it may also used
to express cosine and sine as sums of exponentials. Indeed from

eiφ = cos(φ)+ i sin(φ)

e−iφ = cos(φ)− i sin(φ)

we readily get that

cos(φ) = Re(eiφ) = eiφ+ e−iφ

2
, (2.3)

sin(φ) = Im(eiφ) = eiφ− e−iφ

2i
. (2.4)

A byproduct of Euler’s formula is that polar forms (2.1) can now be expressed more suc-
cinctly as

z = |z|ei arg(z).

This, in turn, opens up another way of forming products or quotients of complex numbers.
For instance if z1 and z2 are given in polar form as

z1 = r1eiφ1 , z2 = r2eiφ2

then their product in polar form simply is

z1z2 = r1eiφ1 r2eiφ2 = (r1r2)ei(φ1+φ2).

The modulus of the product hence is the product of the moduli; on the other hand, the argu-
ment of the product is the sum of the arguments. The interpretation is that taking products
in the complex plane means rotation about the origin. Similarly we have for quotients that

z1

z2
= r1eiφ1

r2eiφ2
= r1eiφ1

1

r2
e−iφ2 = r1

r2
ei(φ1−φ2).
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φ1

φ2

φ1 +φ2

z1

z2z1z2

FIGURE 2.7: The argument of a products z1z2 equals the sum of the arguments

1

FIGURE 2.8: The complex exponential signal e(− 1
5 +2i)t for t ≥ 0 traces out this curve in

the complex plane

2.3 Complex valued signals

The rules for sum, product and quotient also apply to complex-valued signals. For example,
every complex signal f (t ) can be expressed as

f (t ) = A(t )eiφ(t ),

where now modulus A(t ) = | f (t )| and argument φ(t ) = arg( f (t )) may depend on t .

Example 2.3.1 (Exponential signals).

• An important example of a complex-valued signal is the harmonic signal f (t ) = eiωt

(see also Section 2.4), where ω is a real-valued constant. The modulus | f (t )| is equal to
1 for all t since

|eiωt | = |cos(ωt )+ i sin(ωt )| =
√

cos2(ωt )+ sin2(ωt ) = 1 ∀t ∈R.

• Let a = u + iv ∈C, a 6= 0 and consider f (t ) = e−at . Then

| f (t )| = |e−(u+iv)t | = |e−ut e−iv t |
= |e−ut ||e−iv t | = e−ut = e−(Re(a))t ,

arg( f (t )) = arg(e−(u+iv)t ) = arg(e−ut e−iv t )

=−v t =− Im(a)t ,

f ∗(t ) = (e−(u+iv)t )∗ = (e−ut e−iv t )∗

= e−ut eiv t = e−(u−iv)t = e−a∗t .
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• Let a ∈C and suppose that Re(a) > 0. Then

lim
t→∞e−at = 0.

This is because its modulus |e−at | = e−Re(a)t decays exponentially to zero for Re(a) > 0
as t →∞. As a consequence we have for every Re(a) > 0 that∫ ∞

0
e−at dt = lim

M→∞

[
e−at

−a

]M

0
= 1

a
. (2.5)

• As t increases, the function

f (t ) = e(− 1
5+2i)t

traces out a curve in the complex plane that shrinks to zero (because Re(−1
5 +2i) < 0)

and that rotates counter-clockwise around the origin (because Im(−1
5 +2i) = 2 > 0). See

Fig. 2.8.

�

1

−1

0
2π
ω

−2π
ω

FIGURE 2.9: Graph of cos(ωt )

2.4 Periodic signals

A signal f (t ) is periodic if a T > 0 exists such that f (t +T ) = f (t ) for all t ∈ R. In that case T
is known as a period of f (t ). Be aware, however, that if T is a period then so is 2T and 3T
etcetera. A signal will be referred to as T -periodic if it is periodic with period T .

An important class of real-valued periodic signals are the sinusoids or real harmonic sig-
nals.

Definition 2.4.1 (Sinusoids). A real-valued signal f (t ) that can be written as

f (t ) = A cos(ωt +φ), A > 0, φ ∈R, t ∈R

is called a sinusoid or real harmonic signal. Then A is the amplitude, ω the angular frequency
and φ the initial phase of the signal f (t ). �

It is easy to verify that a period of such sinusoids is T = 2π/ω. If the time t expresses
seconds, then the angular frequency ω is in units of “radians” per second, and ω/(2π) is called
the frequency and is in units of hertz (Hz). One hertz is one cycle per second. Similarly for the
complex case we define the following.

Definition 2.4.2 (Harmonic signals). A signal f (t ) that can be written in the form

f (t ) = c eiωt

with c ∈ C and ω ∈ R, is called a (complex) harmonic signal with amplitude |c|, angular fre-
quency ω and initial phase φ :=arg(c). �
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The connection between a real and a complex harmonic signal lies in Euler’s formula
eiωt = cos(ωt )+ i sin(ωt ). Every linear combination of sinusoids with the same frequency, is
again a sinusoid. Indeed, if a,b,ω ∈R, then

a cos(ωt )+b sin(ωt ) = a
eiωt + e−iωt

2
+b

eiωt − e−iωt

2i

= a − ib

2
eiωt + a + ib

2
e−iωt

= {write a − ib in polar form a − ib = Aeiφ}

= 1

2
Aeiφeiωt + 1

2
Ae−iφe−iωt

= A
ei(ωt+φ) + e−i(ωt+φ)

2
= A cos(ωt +φ).

Note that complex harmonic signals are allowed to have a negative frequency. In the above
we assumed that both sinusoids have the same frequency. That is crucial. If the frequencies
differ, then the sum need not even be periodic. For example f (t ) = cos(πt )+ cos(t ) is not
periodic! In Chapter 3 we will see that practically every T -periodic signal can be written as a
sum (possibly an infinite sum) of harmonic signals whose angular frequencies ω are integer
multiples of 2π/T .

The next result expresses that the integral of a periodic signal over one period does not
depend on were the interval over which is integrated is situated. This is a minor and intuitive
result; it will be of use later.

Lemma 2.4.3. Suppose that f (t ) is integrable on [0,T ] and that f (t ) is periodic with period
T > 0. Then for every a ∈R, there holds

∫ a+T

a
f (t ) dt =

∫ T

0
f (t ) dt .

a a +T 0 T

Proof. We write∫ a+T

a
f (t ) dt =

∫ 0

a
f (t ) dt +

∫ T

0
f (t ) dt +

∫ a+T

T
f (t ) dt .

The result now follows because the first and third integral on the right-hand side cancel each
other, which follows by substitution t = τ+T ,∫ a+T

T
f (t ) dt =

∫ a

0
f (τ+T ) dτ=

∫ a

0
f (τ) dτ=−

∫ 0

a
f (τ) dτ. (2.6)

2.5 Standard signals

The following definition introduces four aperiodic signals that play a prominent role in this
course.

Definition 2.5.1 (Four standard signals).
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• For a given a > 0 the rectangular pulse recta(t ) is defined as

recta(t ) =


0 if |t | > a/2,
1
2 if |t | = a/2

1 if |t | < a/2. − a
2

a
2

1

In plots we normally use just one continuous line to represent the graph of the rectan-
gular pulse, even though the function is discontinuous (at t =±a/2).

• For a given a > 0 the triangular pulse triana(t ) is defined as

triana(t ) =
0 if |t | ≥ a,

1− |t |
a

if |t | < a.

−a a

1

• The unit step 1(t ) is defined as

1(t ) =


0 if t < 0,
1
2 if t = 0,

1 if t > 0.
0

1

• The function sinc(t ) (pronounced: “sink”) is defined as

sinc(t ) =


sin(t )

t
if t 6= 0,

1 if t = 0. π
2π

1

�

Note that at the jump discontinuities the function value is here taken to be the average of
the function immediately before and after the jump, f (t ) = ( f (t−)+ f (t+))/2. This choice is
arbitrary but circumvents certain technicalities when Fourier series and Fourier integrals are
considered.

Warning: In signal processing (and in MATLAB) the sinc function is defined as sinc(πt ). It is
a scaled version of our sinc, and it is zero at the nonzero integers (as opposed to the nonzero
integer multiples of π).

We end this section with the definition of the class of piecewise smooth signals. These are
signals that we will keep coming back to. The piecewise smooth signals encompass practically
all continuous-time signals one is likely to come across in practice.

Definition 2.5.2 (Piecewise smooth signals). A signal f (t ) is piecewise smooth on a finite
interval [a,b] if a finite partition, a = c0 < c1 < c2 < ·· · < cm = b, of the interval exists such that

1. f (t ) is continuously differentiable at every t ∈ (ci ,ci+1), (i = 0, . . . ,m −1).

2. At every ci , (i = 1,2, . . . ,m −1) the following limits exist

f (c+i ) := lim
h↓0

f (ci +h), f ′(c+i ):= lim
h↓0

f ′(ci +h),

f (c−i ) := lim
h↓0

f (ci −h), f ′(c−i ):= lim
h↓0

f ′(ci −h),
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3. f (a+), f (b−), f ′(a+) and f ′(b−) exist.

A signal f (t ) defined for all t ∈ (−∞,∞) is said to be piecewise smooth if it is piece-
wise smooth on every finite interval [a,b]. The points ci are sometimes called the
points of discontinuity, see Fig. 2.10. �

c1 c2 c3 c4 t →
FIGURE 2.10: An example of a piecewise smooth signal

2.6 Energy and power

It is customary in signal analysis to use “energy” instead of norm:

Definition 2.6.1 (Energy content). The energy E f of a signal f (t ) is defined as

E f =
∫ ∞

−∞
| f (t )|2 dt .

�

If E f <∞ (finite energy content), then the signal is said to be an energy signal. The rect-
angular and triangular pulses are examples of energy signals. Sinusoids and harmonic signals
are not. For example, the harmonic signal f (t ) = c eiω0t satisfies | f (t )| = |c| and, hence, E f =
∞. For a signal f (t ) to have a finite energy content it is necessary that limt→∞

∫ t
a | f (τ)|2 dτ

converges. Consequently, signals like sinusoids, periodic signals and the unit step and many
others, are not energy signals. In such cases it is customary to consider instead its averaged
energy per unit time, i.e., to look at its (averaged) power.

Definition 2.6.2 (Power). The power P f of a signal f (t ) is defined as

P f = lim
M→∞

1

M

∫ M/2

−M/2
| f (t )|2 dt .

�

Signals that have finite power are called power signals. The power of a bounded T -
periodic signal f (t ) is finite, and you may wish to verify that its power then equals the average
energy over one period,

P f =
1

T

∫ T /2

−T /2
| f (t )|2 dt if f (t ) is T -periodic.

Example 2.6.3 (Power of a sinusoid). The power of the sinusoid f (t ) = A cos(ω0t +φ) with
period T = 2π/ω0, is

P f =
ω0

2π

∫ π/ω0

−π/ω0

A2 cos2(ω0t +φ) dt = {substitute x =ω0t } = A2

2π

∫ π

−π
cos2(x +φ) dx = A2

2
.

The last equality uses that cos2(α) = 1
2 + 1

2 cos(2α) which shows that the average of cos2(α)
over a period is 1

2 . This example assumes that ω0 > 0. �
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2.7 Convolutions

Loosely speaking a convolution is a linear combination of shifted copies of a signal. For in-
stance

3g (t )−41g (t −1)+501g (t +100) (2.7)

is an example of a convolution of a signal g (t ). Note that the convolution is itself a signal.
More generally expressions like∑

τ
fτg (t −τ), fτ ∈R (2.8)

are known as convolutions, and so is its integral version which we take to be its definition.

Definition 2.7.1 (Convolution). The convolution or convolution product of two signals f (t )
and g (t ) is denoted as ( f ∗ g )(t ) and is defined as

( f ∗ g )(t ) =
∫ ∞

−∞
f (τ)g (t −τ) dτ.

�

It is an interesting fact that convolution products commute,

( f ∗ g )(t ) =
∫ ∞

−∞
f (τ)g (t −τ) dτ= {v = t −τ} =

∫ ∞

−∞
g (v) f (t − v) dv = (g ∗ f )(t ).

In the following section, where we introduce the delta function, we will see that the sum (2.8)
is a convolution as well (i.e. we can write it as this integral expression). Convolutions are very
common in applications, and are, for instance, useful if we want to remove noise from signals,
detect edges in pictures, soften pictures, etcetera.

0 1

u(t )

(a)
0 1

y(t )

(b)
0 1

y(t )

(c)

FIGURE 2.11: (a): A noisy signal; (b) averaged with P = 0.05; (c) averaged with P = 0.1

Example 2.7.2 (Sliding window averaging & noise reduction). For a given signal f (t ) we
construct the signal fswa(t ) by averaging f (t ) around t over an interval of a fixed length P ,
i.e., we consider

fswa(t ) = 1

P

∫ t+P/2

t−P/2
f (τ) dτ.

Averaging f (t ) this way filters out highly fluctuating noise. It is to be expected then, that
fswa(t ) is somewhat smoother than f (t ), but as long as P is not too large the graph of the
averaged fswa(t ) should retain roughly the same shape as the graph of f (t ). Figure 2.11(a)
shows an example of a noisy signal f (t ). Figure 2.11(b) shows fswa(t ) for the case that P = 0.05.
In plot (c) of that figure the average was taken over a wider interval (P = 0.1) and as expected
the plot is smoother than the one in (b).
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The signal fswa can be written as the convolution of f with a suitable function g :

fswa(t ) = 1

P

∫ t+P/2

t−P/2
f (τ) dτ= {v = t −τ} = 1

P

∫ P/2

−P/2
f (t − v) dv = ( f ∗ g )(t ),

for

g (t ) = 1

P
rectP (t )

−P
2

P
2

1/P

�

In order to determine a convolution it often is insightful to make plots of f (τ) and g (t −τ)
as functions of τ. We demonstrate this on an example.

g (t −τ) f (τ)

τ→t 0

g (t −τ) f (τ)

τ→t0

FIGURE 2.12: f (τ) = e−τ 1(τ) and g (t −τ) = e−2(t−τ) 1(t −τ) for t < 0 (left) and t > 0 (right)

Example 2.7.3 (Visualizing convolution). Let f (t ) = e−t 1(t ) and g (t ) = e−2t 1(t ). Convolving
f (t ) and g (t ) amounts to integration over all τ of the product of f (τ) and g (t−τ). To compute
the convolution it is helpful to fix t and then examine the plots of f (τ) and g (t−τ) as functions
of τ. Figure 2.12 shows two cases; one for t < 0 and one for t > 0. Clearly for t < 0 the nonzero
parts of the functions f (τ) and g (t −τ) do not overlap, hence

t < 0 =⇒ ( f ∗ g )(t ) =
∫ ∞

−∞
f (τ)g (t −τ) dτ= 0.

If t > 0 then there is an overlap on the time interval [0, t ]. Therefore

t > 0 =⇒ ( f ∗ g )(t ) =
∫ t

0
f (τ)g (t −τ) dτ=

∫ t

0
e−τe−2(t−τ) dτ

=
∫ t

0
e−2t eτ dτ= e−2t [eτ

]t
0 = e−t − e−2t .

With the unit step function we may combine the two cases t < 0 and t > 0:

( f ∗ g )(t ) = (e−t − e−2t )1(t ) ∀t .

�

Sufficient for the existence of ( f ∗ g )(t ) is that f (t ) is bounded while g (t ) is absolutely in-
tegrable, or the other way around. Another important class of signals for which convolutions
exist is the class of the so-called causal signals.

Definition 2.7.4 (Causal signal). A signal f (t ) is causal if f (t ) = 0 for all t < 0. (See Fig-
ure 2.13.) �
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0 t →
FIGURE 2.13: An example of a causal signal

A signal of the form f (t )1(t ) is causal because 1(t ) = 0 for t < 0. If f (t ) and g (t ) are causal,
then

( f ∗ g )(t ) = (
( f 1)∗ (g 1)

)
(t ) =

∫ ∞

−∞
f (τ)1(τ)g (t −τ)1(t −τ) dτ

=
∫ ∞

0
f (τ)g (t −τ)1(t −τ) dτ

=
{

0 if t < 0,∫ t
0 f (τ)g (t −τ) dτ if t ≥ 0,

=
(∫ t

0
f (τ)g (t −τ) dτ

)
1(t ).

The convolution of two causal signals apparently is itself causal, and since for each t the
integration above is over a finite interval [0, t ] it follows that the convolution exists for every t
and every causal piecewise smooth f (t ) and g (t ).

Example 2.7.5 (Convolution with the unit step). Convolution with the unit step amounts to
integration:

( f ∗ 1)(t ) =
∫ ∞

−∞
f (τ)1(t −τ) dτ=

∫ t

−∞
f (τ) dτ.

�

2.8 The delta function

FIGURE 2.14: A series of rn(t ) for n = 1, n = 2, n = 3 and n = 4

In applications we often encounter signals that have a very short duration but neverthe-
less have a definite impact. An example is when you punch someone in the face (try it, it
is fun). Such signals are called impulses. The standard impulse is the so-called Dirac delta
function also known as the unit impulse. The delta function δ(t ) is introduced as the limit as
n →∞ of

rn(t ) :=
{

n if |t | < 1
2n

0 if |t | > 1
2n

−1
2n

1
2n

n

(2.9)
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As n goes to infinity, the rectangular pulses rn(t ) become spikier and spikier, with their
spike around t = 0, see Figure 2.14. However, the area enclosed by the spike and the x-axis,∫ ∞
−∞ rn(t ) dt , equals 1 independent of n. We now naively define the delta function δ(t ) as the

limit

δ(t ) = lim
n→∞rn(t ), (2.10)

and we think of the delta function as a “function” that is zero everywhere except at t = 0 where
it has a spike so large that∫ 0+

0−
δ(t ) dt = 1.

The delta function is usually depicted as done in Figure 2.15, i.e., depicted by the zero func-
tion with a fat arrow pointing upwards at t = 0. The idea to see the delta function as a spike
in this sense is helpful, but mathematically it is far from sound. After all,

lim
n→∞rn(t ) =

{
0 if t 6= 0,

∞ if t = 0

and the integral of a function that is zero everywhere except for one point, is zero. Still, for
many applications with delta functions it is enough to see δ(t ) as the limit (2.10). Many tenta-
tive problems in calculations involving delta functions may be avoided if we stick to the rule
the-last-limit-you-take. By that is meant that in calculations with delta functions, first δ(t ) is
replaced with the well defined rn(t ) and only at the very last step the limit n →∞ is taken.
With this rule, for example, the following quintessential property of the delta function may be
derived.

0 t →
FIGURE 2.15: The delta function δ(t )

Lemma 2.8.1 (delta function). If f (t ) is continuous at t = 0, then∫ ∞

−∞
δ(t ) f (t ) dt = f (0).

Proof. First replace δ(t ) with rn(t ),∫ ∞

−∞
rn(t ) f (t ) dt = n

∫ 1/(2n)

−1/(2n)
f (t ) dt .

The integral is bounded from above by

n
∫ 1/(2n)

−1/(2n)
max

t∈[− 1
2n , 1

2n ]
f (t ) dt = max

t∈[− 1
2n , 1

2n ]
f (t )

and bounded from below by

n
∫ 1/(2n)

−1/(2n)
min

t∈[− 1
2n , 1

2n ]
f (t ) dt = min

t∈[− 1
2n , 1

2n ]
f (t ).

Now as n →∞ the interval [− 1
2n , 1

2n ] shrinks to zero and the two bounds converge to f (0).
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n

0 b
a

t = b
a + 1

2n|a|t = b
a − 1

2n|a|

1
n|a|

t →

FIGURE 2.16: Shifted and scaled rn(t )

0 t = b t →
FIGURE 2.17: Shifted delta function δ(t −b)

Properties of the delta function

Delta functions can be added, they can be multiplied with regular functions, they can be in-
tegrated etcetera. In this subsection we review the more important properties and rules for
delta functions.

The scaled and shifted delta function δ(at − b) we take to be defined as δ(at − b) =
limn→∞ rn(at −b). For t = b/a the argument at −b is zero, so rn(at −b) as a function of t
is centered around t = b/a, see Fig. 2.16. This is very much like a shifted copy of rn(t ) with
the difference that the spike does not have a unit area. The width of the spike of rn(at −b)
is easily seen to be 1/|an|, so the area of the spike is 1/|a|. In the limit as n →∞ the spike
therefore approaches 1/|a| times the delta function that has its spike at t = b/a:

δ(at −b) = 1

|a|δ(t − b

a
). (2.11)

We can now generalize Lemma 2.8.1. If f (t ) is continuous, then∫ ∞

−∞
δ(at −b) f (t ) dt =

∫ ∞

−∞
1

|a|δ(t − b

a
) f (t ) dt (let τ= t − b

a
)

= 1

|a|

∫ ∞

−∞
δ(τ) f (τ+ b

a
) dτ= 1

|a| f (
b

a
).

An immediate special case is that∫ ∞

−∞
δ(t −b) f (t ) dt = f (b), (if f (t ) is continuous at t = b). (2.12)

This property is known as the sifting property of the delta function. It is the property that out
of all values { f (t ) | t ∈ R} that f (t ) can take, the value at t = b is sifted out. Note that δ(t −b)
has its spike at t = b, see Figure 2.17, therefore another way to interpret the sifting property is
that it says that

∫ ∞
−∞δ(t −b) f (t ) dt equals f (t ) at that t where δ(t −b) has its spike. It is also

possible to determine the convolution product ( f ∗δ)(t ) of a signal f (t ) and the delta function
δ(t ).

( f ∗δ)(t ) =
∫ ∞

−∞
δ(t −τ) f (τ) dτ= {sifting property} = f (t ). (2.13)
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Here we used the fact that δ(t −τ) = δ(τ− t ) as a function of τ has its spike at τ = t . A final
useful property to have is the following.

Lemma 2.8.2 (Products with delta functions). If f (t ) is continuous at t = b, then

f (t )δ(t −b) = f (b)δ(t −b). (2.14)

Proof (idea). This is another instance were we will use the rule the-last-limit-you-take. The
function f (t )rn(t−b) is zero for all |t−b| > 1

2n . On the interval [b− 1
2n ,b+ 1

2n ] it generally has a
spike. Since limn→∞

∫ ∞
−∞ f (t )rn(t−b) dt = f (b) it means that the area of this spike approaches

f (b) as n →∞, so that f (t )rn(t ) approaches f (b) times the delta function δ(t −b).

Example 2.8.3.

1. tδ(t ) = 0×δ(t ) = 0, i.e. the zero signal.

2. eiω0tδ(t −b) = eiω0bδ(t −b).

3. δ(−t ) = δ(t ). This is because of the scaling property for a =−1 (Table 2.1).

4.
∫ t
−∞δ(τ) dτ= (1∗δ)(t ) = 1(t ) for all t 6= 0. So the step is an indefinite integral of δ(t ).

�

TABLE 2.1: Properties and rules of calculus for the delta function

Property Condition

Sifting
∫ ∞
−∞δ(t −b) f (t ) dt = f (b) f (t ) continuous at t = b

- f (t )δ(t −b) = f (b)δ(t −b) f (t ) continuous at t = b

Convolution ( f ∗δ)(t ) = f (t )

Scaling δ(at −b) = 1
|a|δ(t − b

a )

-
∫ t
−∞δ(τ) dτ= 1(t ) t 6= 0

Example 2.8.4 (Convolution with delta functions). Let

f (t ) = 3δ(t )−41δ(t −1)+501δ(t +100)

Then using the sifting property of delta functions we get that

( f ∗ g )(t ) =
∫ ∞

−∞
[3δ(τ)−41δ(τ−1)+501δ(τ+100)]g (t −τ) dτ

= 3g (t )−41g (t −1)+501g (t +100).

This example demonstrates that linear combinations of shifted copies of g (t ) are indeed con-
volutions as claimed in the previous section. �
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Generalized derivatives

Now that we have the delta function at our disposal we have a way of differentiating discon-
tinuous functions. Really! First an informal example.

Example 2.8.5. The unit step 1(t ) may be seen as the limit as n →∞ of

fn(t ) = 1

2
+ arctan(nt )

π
.

1

(Convince yourself of this.) A clear difference between these fn(t ) and their limit 1(t ) is that
all fn(t ) are differentiable in the classical sense while their limit 1(t ) obviously is not. Let us
examine the derivatives of fn(t ). These are

f (1)
n (t ) = 1

π

n

1+ (nt )2 .

n/π

And to what does it seem to converge as n →∞? To a function that is zero everywhere except
at zero where it is so huge that if we integrate over this peak we get∫ ∞

−∞
f (1)

n (t ) dt = fn(∞)− fn(−∞) = 1.

In other words the derivative f (1)
n (t ) converges to the delta function as n → ∞. Now it is

tempting to claim that the derivative of 1(t ) is δ(t ). Weird. �

It is actually not so difficult to make the claim of this example more precise. We simply
redefine slightly what we mean with derivative. If two continuous signals f (t ) and g (t ) satisfy

f (t ) = f (a)+
∫ t

a
g (τ) dτ

for a certain a ∈ R or a = −∞, then we know that f (t ) is continuously differentiable with
derivative f ′(t ) = g (t ). The integral equality, however, may also hold for non-differentiable
functions f (t ), and, even in that case we will say that f (t ) is differentiable and that g (t ) is its
(generalized) derivative, notation: f ′(t ) = g (t ). This generalization allows us to differentiate
discontinuous functions.

Example 2.8.6.

• Let f (t ) = |t | and consider the signal sgn(t ) defined as

sgn(t ) :=


1 if t > 0,

0 if t = 0,

−1 if t < 0.

The function sgn(t ) is the generalized derivative of f (t ) = |t |, because

|t | =
∫ t

0
sgn(τ) dτ.

• Let f (t ) = 1(t ). We showed earlier that

1(t ) =
∫ t

−∞
δ(τ) dτ.

So δ(t ) is the generalized derivative of 1(t ). Yes, we can differentiate discontinuous func-
tions now.
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1

1

1

1

FIGURE 2.18: f (t ) = 1(t )− 1(t −1)+ e−αt 1(t −1) and its generalized derivative f ′(t )

�

It may be shown that the product rule and chain rule of differentiation remain valid for
derivatives in the generalized sense.

Example 2.8.7. Consider the signal f (t ) depicted in Figure 2.18. It is the signal

f (t ) = 1(t )− 1(t −1)+ e−αt 1(t −1).

Its generalized derivative f ′(t ) equals

f ′(t ) = δ(t )−δ(t −1)−αe−αt 1(t −1)+ e−αtδ(t −1)

= δ(t )−δ(t −1)−αe−αt 1(t −1)+ e−αδ(t −1)

= δ(t )− (1− e−α)δ(t −1)−αe−αt 1(t −1).

The generalized derivative f ′(t ) is depicted in Figure 2.18(b). �

We note that differentiation of a function at a point of discontinuity results in a delta func-
tion. If f (t ) at t = b jumps from f (b−) to f (b+), then in the generalized derivative a delta
function ( f (b+)− f (b−))δ(t −b) shows up.

Example 2.8.8. The functions y(t ) = e−t 1(t ) and u(t ) = 1(t ) are a (generalized) solution of the
differential equation

y ′(t )+ y(t ) = u′(t )

because

y ′(t )+ y(t ) = (−e−t 1(t )+ e−tδ(t )
)+ e−t 1(t ) = e−tδ(t ) = δ(t ) = u′(t ).

�

2.9 Exercises

2.1 Plot z1 and z2 in the complex plane, and then compute and plot both sum z1 + z2 and
product z1z2 of

(a) z1 = 1+ i and z2 = 2+ i2,

(b) z1 = a + ib and z2 = b + ia for arbitrary a,b ∈R.

2.2 Verify the equalities in Eqn. (2.2).

2.3 Show that limt→0
e2it −1

t
= 2i.
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2.4 Does limt→∞ e−it 2
exist? Motivate your answer.

2.5 Show that limt→∞
eit

t
= 0.

2.6 Demonstrate that

f (t ) = 220sin(
π

25
t )+110cos(

π

25
t )

is a sinusoid, and find its amplitude.

2.7 Use Euler’s formula to prove that

sin(α)cos(β) = 1

2
sin(α+β)+ 1

2
sin(α−β), ∀α,β ∈R.

2.8 De Moivre: Show that
(
cos(φ)+ i sin(φ)

)n = cos(nφ)+ i sin(nφ).

2.9 Demonstrate that

f (t ) = sin(ω0t )+2cos(ω0t )−cos(ω0t +π/4)

is a sinusoid.

2.10 Let q ∈Z. What is the smallest period of sin(2t )− sin(qt )?

2.11 A good understanding of a complex-valued signal f (t ) can often be had from a plot of
the curve (Re( f (t )), Im( f (t ))) in the two-dimensional plane. Let ω0 6= 0. Sketch by hand
the curves in the complex plane

(a) f (t ) = eiω0t .

(b) f (t ) = eiω0t +0.1e10iω0t .

2.12 Calculate
∫ 2T

T e2iω0t cos2(ω0t ) dt , where ω0 = 2π/T > 0.

2.13 Suppose T > 0 and define ω0 = 2π/T . Let f1(t ) = sin(ω0t ) and f2(t ) = f1(t )1(t ). Sketch
the graphs of the two signals gi (t ) (i = 1,2) given by

gi (t ) =
∫ t+T

t
fi (τ) dτ.

2.14 Determine the power of the harmonic signal f (t ) = 2e−2iω0t .

2.15 Let f (t ) be a T -periodic signal with power P f .

(a) Show that for every t0 ∈R the power of f (t − t0) equals the power of f (t ).

(b) Express the power of f (2t ) in terms of the power P f of f (t ).

2.16 Determine the energy content of

(a) f (t ) = 2e−2iω0t recta(t ).

(b) f (t ) = rect2(t ) trian2(t ).

2.17 Show that for every t0 ∈R the energy content of f (t − t0) is the same as that of f (t ).

2.18 Show that the following signals are periodic, and determine their period.
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(a) cos( 5
12 t )cos( 1

6 t )

(b) cos( 2
3 t )+ sin( 4

7 t )

2.19 Sketch the following signals.

(a) 1(t )−31(t −2)+21(t −5).

(b) trian2(t )rect1(t ).

(c) e−t 1(t ).

(d) −et 1(−t +1).

(e) sinc(t )rect4π(t ).

(f) sinc(π(t −4)).

2.20 Simplify the following expressions:

(a) sin(t )δ(t ),

(b) e−5tδ(t ),

(c) (t 2 +2t )δ(t ),

(d) (t 2 +2t )δ(t −5),

(e) (t 2 +2t )δ(t +5),

(f) ( f ∗ g )(t ) where f (t ) = 1(t −5) and g (t ) = δ(t ),

(g) ( f ∗ g )(t ) where f (t ) = e5t and g (t ) = δ(5t +5).

2.21 Given is a continuous function f (t ).

(a) Let g1(t ) = δ(2t +4). Determine ( f ∗ g1)(t ).

(b) Let g2(t ) = δ(2t −1). Determine f (t )g2(t ).

2.22 Determine the derivative in the generalized sense of the following signals.

(a) t rect2(t ),

(b) sin(t )1(t ),

(c) t rect2(t −1),

(d) eit 1(t −π),

(e) rect1(t ) trian1(t ).

2.23 Let f (t ) and g (t ) be two continuously differentiable signals. Determine the generalized
derivative of f (t )1(−t )+ g (t )1(t ).

2.24 Let f (t ) = |sin(t )|. Compute the first and second order derivatives f (1)(t ) and f (2)(t ).

2.25 Determine the c,α ∈R for which h(t ) := c e−αt 1(t ) satisfies h(1)(t )+2h(t ) = 10δ(t ).

2.26 Determine the convolution ( f ∗ g )(t ) for the following signals.

(a) f (t ) = eat 1(−t ) and g (t ) = e−bt 1(t ) with a > 0 and b > 0,

(b) f (t ) = eat and g (t ) = 1(t −1) (Re(a) > 0),

(c) f (t ) = rect2(t ) and g (t ) = 1(t ).

(d) f (t ) = (1+ t )rect2(t ) and g (t ) = rect2(t ).
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2.27 Determine the convolution ( f ∗ g )(t ) for the cases that

(a) f (t ) = e−t 1(t ), g (t ) = sgn(t ),

(b) f (t ) = 1(2t +1), g (t ) = e−|t |,

(c) f (t ) = g (t ) = 1(t ),

(d) f (t ) = 1(t ), g (t ) = 1(t −1),

(e) f (t ) = 1(t −1), g (t ) = 1(t −1),

(f) f (t ) = e−t 1(t ), g (t ) = et 1(t ),

(g) f (t ) = eat 1(t ), g (t ) = ebt 1(t ) with a,b ∈C.

2.28 In the first part you will prove a property of the convolution which you will use in the
second part.

(a) Prove that ( f ∗ (g +h))(t ) = ( f ∗ g )(t )+ ( f ∗h)(t ).

(b) Use the previous result and Euler’s formula to determine the convolution of f (t ) =
e−t 1(t ) and g (t ) = cos(t )1(t ).

More involved exercises

2.29 Determine a closed-form expression for
∑N

n=1 sin(nφ).

2.30 Let n ∈N, n > 1, n even, and define z = eit . Show that sin(nt )
sin(t ) = zn−1+zn−3+·· ·+z−(n−3)+

z−(n−1) = 2
(
cos((n −1)t )+cos((n −3)t )+·· ·+cos(t )

)
.

2.31 Dirichlet kernel. Consider the Dirichlet kernel1 defined as

DN (φ) =
N∑

k=−N
eikφ.

(a) Is DN (φ) periodic?

(b) Show that for eiφ 6= 1 we have

DN (φ) = e−iNφ− ei(N+1)φ

1− eiφ
.

(c) Show that

DN (φ) =
{

2N +1 if φ is a multiple of 2π
sin((N+1/2)φ)

sin(φ/2) if φ is not a multiple of 2π

= (2N +1)
sinc((N +1/2)φ)

sinc(φ/2)
.

The plot of DN (t ) is quite interesting, see Fig. 2.19. It consists of a series of peaks at
integer multiples of 2π with oscillating behavior in between; oscillations that increase
in number as N increases.

1Warning: other definitions of “Dirichlet kernel” exist, such as 1
2πDN (φ) and 1

2N+1 DN (πt ).
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2N +1

0 2π−2π φ

FIGURE 2.19: The Dirichlet kernel DN (φ) for N = 8 (Exercise 2.31)
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Chapter 3

Fourier Series

FIGURE 3.1: Jean Baptiste Joseph Fourier (1768–1830)

Why do we like Taylor series expansions such as

et = 1+ t + 1

2!
t 2 + 1

3!
t 3 +·· · .

We like them because they break down complicated functions, here et , into a sum of simple
functions t k . Ever wondered how calculators and programming languages calculate et and
other functions? They rely on (a variation of) Taylor series expansions. Indeed, computation
of the terms in the Taylor series require only simple operations, so are readily computed. The
message of this short story is this:

The point of expansions is
to break down complicated signals

into a series of simpler signals.

Now what is considered complicated or simple depends very much on the application. If the
application is computation, then Taylor series expansions might be useful. However, in signal
analysis the simple signals are the harmonic signals. There are very convincing arguments
from systems theory which we can not go into here, but recall that harmonic signals are easy
to generate (think of the power grid) and that rain decomposes visible light into a series of
harmonic signals of different frequencies (the different colors of a rainbow).
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Thus the questions is: which signals f (t ) can be expanded into a series of harmonic sig-
nals, and how can we find these harmonic signals from f (t ). That is the central question of
this chapter. The discussion culminates in the famous result that says that practically every
T -periodic signal f (t ) can be expressed as a superposition1 of T -periodic harmonic signals,

f (t ) =
∑

k∈Z
fk eik 2π

T t , fk ∈C. (3.1)

The right-hand side is known as the Fourier series (expansion) of f (t ). Note that the harmonic
signals in the expansion indeed are all T -periodic:

eik 2π
T (t+T ) = eik 2π

T t+ik2π = eik 2π
T t eik2π︸ ︷︷ ︸

1

= eik 2π
T t ∀t ∈R.

If we define ω0 as

ω0 =
2π

T

then (3.1) is somewhat more succinctly described as

f (t ) =
∑

k∈Z
fk eikω0t . (3.2)

It shows that the frequencies kω0 of the harmonic signals that together form f (t ) are integer
multiples of ω0. For this reason ω0 :=2π/T is called the fundamental frequency of f (t ).

3.1 The fundamental theorem of Fourier series

We momentarily return to the Hilbert space theory of Chapter 1. Let us first observe that the
set of all complex harmonic functions with period T ,

ek (t ) :=ei 2π
T kt , k ∈Z

is an orthonormal sequence in the complex inner product

〈 f , g 〉 = 1

T

∫ T

0
f (t )g (t ) dt .

This is readily verified: we have

‖ek‖2 = 〈ek ,ek〉 =
1

T

∫ T

0
ei 2π

T kt ei 2π
T kt︸ ︷︷ ︸

=1

dt = 1

and, if k 6= n,

〈ek ,en〉 =
1

T

∫ T

0
ei 2π

T kt ei 2π
T nt dt = 1

T

∫ T

0
ei 2π

T (k−n)t dt = ei 2π
T (k−n)t

i2π(k −n)

∣∣∣T

0
= 0.

So immediately we get that the best approximation f∗ in span{. . . ,e−1,e0,e1, . . .} of a function
f ∈L 2([0,T ];C) is

f∗ =
∞∑

k=−∞
〈 f ,ek〉ek ,

1Superposition means sum.
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that is,

f∗(t ) =
∞∑

k=−∞
fk ei 2π

T kt

with

fk :=〈 f ,ek〉 =
1

T

∫ T

0
f (t )e−i2πkt dt .

The obvious question now is: is the Fourier series f∗ of f equal to f ? To put it differently,
is the sequence of harmonic functions {. . . ,e−1,e0,e1, . . .} a complete orthonormal sequence in
L 2([0,T ];C)? It is:

f (t)

h(t)

1

0 1c d

FIGURE 3.2: A shifted harmonic function h(t ) so that h(t ) ≥ 1 on [c,d ] and 0 ≤ h(t ) < 1
elsewhere on [0,1]

Theorem 3.1.1 (Fourier series in L 2). Let T > 0. Every f ∈ L 2([0,T ];C) equals its Fourier
series,

f (t ) =
∞∑

k=−∞
fk eik 2π

T t . (3.3)

Here fk are the Fourier coefficients of f (t ), defined as

fk = 〈 f , eik 2π
T •〉 = 1

T

∫ T

0
f (t )e−ik 2π

T t dt . (3.4)

Proof. For ease of exposition we prove it only for the case T = 1. According to Theorem 1.5.7
it suffices to show that the only function f orthogonal to all ek is the zero function. Assume
for the moment that f is real and continuous. If f is nonzero then f is > 0 (or < 0) throughout
some small enough interval [c,d ], see Fig. 3.2. Next let h(t ) be the harmonic function

h(t ) = b + 1

2
cos(2πt +a) = b + 1

4
(ei(2πt+a) + e−i(2πt+a))

where a,b are chosen such that h(t ) ≥ 1 on the selected interval [c,d ] and 0 ≤ h(t ) < 1 else-
where, see Fig. 3.2. Realize that every power hn of h is a sum of harmonic functions, in fact

hn ∈ span{e−n , . . . ,e0, . . . ,en}.

The higher the power, the larger hn(t ) is in the interval [c,d ] and the smaller it is elsewhere.
Therefore for some large enough n we have

〈 f ,hn〉 6= 0.
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This means that f can not be orthogonal to all ek . Hence the only continuous f that is or-
thogonal to all ek is the zero function, f = 0.

Now let f ∈L 2([0,1];R), not necessarily continuous, and assume that f ⊥ ek for all k ∈Z.
Again we show that f is then necessarily the zero function. Consider its antiderivative

F (t ) :=
∫ t

0
f (τ) dτ.

This function is continuous. It is also orthogonal to ek for all k 6= 0 because

〈F,ek〉 =
∫ 1

0
e−i2πkt F (t ) dt =

[ e−i2πkt

−i2πk
F (t )

]1

0
− 1

−i2πk
〈 f ,ek〉 = 0 ∀k 6= 0.

Here we used that F (0) = 0 and F (1) = ∫ 1
0 f (t ) dt = 〈 f ,e0〉 = 0. So F −〈F,e0〉e0 is orthogonal to

ek for all k ∈ Z, including k = 0. By continuity of F this implies that F −〈F,e0〉e0 is the zero
function, i.e. that F is a constant function. Its derivative f hence is the zero function, which
is what we set out to prove.

For complex f ∈ L 2([0,1];C) we can apply the arguments to both its real and imaginary
parts.

Be aware that equality (3.3) is to be understood in L 2-sense! I.e. f (t ) and its Fourier
series f∗(t ) might differ at some values of t , as long as they are the same for “almost all t”
in the sense that ‖ f − f∗‖2 = 0. Using (3.4) we can compute the Fourier series from a given
function.

0 T

T /2

−T /2

t →

FIGURE 3.3: Graph of the sawtooth of period T

Example 3.1.2 (Sawtooth). Figure 3.3 shows the graph of the sawtooth with period T . It is
the T -periodic signal f (t ) which on one period [0,T ) is given by

f (t ) = t −T /2 if 0 ≤ t < T .

The Fourier coefficients of f (t ) can be calculated explicitly from (3.4),

fk = 1

T

∫ T

0
f (t )e−ikω0t dt = 1

T

∫ T

0
(t −T /2)e−ikω0t dt .

Now we perform integration by parts to obtain, for k 6= 0, that

fk = −(t −T /2)e−ikω0t

ikω0T

]T

0

+ 1

ikω0T

∫ T

0
e−ikω0t dt

= −T /2e−ik2π−T /2

ikω0T
+ 1

ikω0T

∫ T

0
e−ikω0t dt︸ ︷︷ ︸

0
= i

kω0
.
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N = 1

N = 2

N = 4

N = 8

N = 16

FIGURE 3.4: The graph of the sawtooth (dashed) and of its truncated Fourier series∑N
k=−N fk eikω0t for N = 1,2,4,8,16
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This assumes that k 6= 0. Remains to compute f0. It is defined as f0 = 1
T

∫ T /2
−T /2 f (t ) dt which is

the average of f (t ) over one period. The average of the sawtooth is zero,

f0 =
1

T

∫ T /2

−T /2
f (t ) dt = 0.

Now we know all Fourier coefficients. Figure 3.4 shows plots of the partial sums
∑N

k=−N fk eikω0t

for N = 1,2,4,8,16, and it seems that they indeed converge in some way to the sawtooth f (t )
as N →∞. �

3.2 Pointwise convergence of Fourier series

Theorem 3.1.1 tells us that the Fourier series of f converges in L 2-norm to f whenever f ∈
L 2([0,T ];C). However, this does not imply that for every fixed t the partial sums

N∑
k=−N

fk eikω0t

converge (pointwise) to f (t ) as N →∞. In the example of the sawtooth the approximation is
pretty good, except near the discontinuities of f (t ). In fact, precisely at the points of discon-
tinuity the sawtooth, by definition, equals −T /2 whereas all truncated Fourier series are zero
at these points! In this section we analyze pointwise convergence of Fourier series. We will
soon see that the definition of convergence of Fourier series differs from that of other series.
The following example motivates the change of definition.

Example 3.2.1 (From a real to a complex Fourier series). Suppose f (t ) is a finite sum of real
harmonic signals,

f (t ) =
N∑

k=0
ak cos(kω0t ). (3.5)

This can be rewritten as a sum of complex harmonic signals as follows.

f (t ) =
N∑

k=0
ak cos(kω0t )

=
N∑

k=0

ak

2
(eikω0t + e−ikω0t )

=
N∑

k=0

ak

2
eikω0t +

0∑
k=−N

a|k|
2

eikω0t

=
N∑

k=−N
fk eikω0t (3.6)

for f0 :=a0 and fk := 1
2 a|k| for all k =±1,±2, . . . ,±N . �

The successive terms fk eiω0t generally are complex-valued functions of t , even if their
sum is a real-valued function. Note that whereas the index k in the real case (3.5) goes from
0 to N , in the complex case (3.6) the index k goes from −N to N . Inspired by this we define
pointwise convergence of Fourier series via symmetric limits:
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Definition 3.2.2 (Pointwise convergence of complex Fourier series). Given t ∈ R, a Fourier
series

∑∞
k=−∞ fk eikω0t is said to converge at t with limit f∗(t ) if

f∗(t ) = lim
N→∞

N∑
k=−N

fk eikω0t . (3.7)

�

When we write f∗(t ) =∑∞
k=−∞ fk eikω0t we always mean (3.7). Note that the above is about

pointwise convergence (at a given t ). This is fundamentally different from convergence in
L 2([0,T ];C) as considered in the previous section.

If in a Fourier series, f∗(t ) = ∑∞
k=−∞ fk eikω0t , only finitely many coefficients fk are

nonzero, then obviously the Fourier series converges at every t ∈R. More generally, pointwise
convergence at every t ∈R is ensured if the fk are absolutely summable, that is, if

∑∞
k=−∞ | fk |

converges. In this case the sum f (t ) is in fact continuous everywhere:

Theorem 3.2.3 (Existence of infinite Fourier series). If
∑∞

k=−∞ | fk | <∞, then the Fourier se-

ries
∑∞

k=−∞ fk eikω0t converges at every t ∈R and is continuous at every t ∈R. �

Proof. Since |eikω0 | = 1 it follows that |∑∞
k=−∞ fk eikω0t | < ∑∞

k=−∞ | fk | < ∞. We conclude that
the Fourier series converges absolutely at every t , and, hence, that the Fourier series itself
converges at every t . That the Fourier series is also continuous is shown2 in Appendix A.1.

Hence if f∗(t ) is not continuous then necessarily
∑∞

k=−∞ | fk | =∞, and in that case the par-

tial sums sN (t ) = ∑N
k=−N fk eikω0t may not provide a satisfactory approximation of f∗(t ) near

the points of discontinuity. A famous phenomenon in this respect is the Gibbs phenomenon
discussed in § 3.6.

The following central result settles the issue of pointwise convergence. In this result we
integrate over [−T /2,T /2] instead of [0,T ], but that is not relevant since all functions involved
are T -periodic.

Theorem 3.2.4 (The Fourier series theorem). Let f (t ) be a T -periodic signal and suppose it
is piecewise smooth on R. Then for every t ∈R there holds that

f (t+)+ f (t−)

2
=

∞∑
k=−∞

fk eikω0t ,

where fk are the Fourier coefficients of f (t ) defined as

fk = 1

T

∫ T /2

−T /2
f (t )e−ikω0t dt . (3.8)

Proof. The proof is technical. A complete proof is given in Appendix A.1.

If f (t ) is, besides piecewise smooth, also continuous everywhere, then f (t+)+ f (t−)
2 clearly

equals f (t ) everywhere, and hence the function and its Fourier series then are identical:

f (t ) =
∞∑

k=−∞
fk eikω0t ∀t ∈R.

2A nicer proof uses the fact that the partial sums sN (t ) :=∑N
k=−N fk eikω0t are Cauchy in C ([0,T ];C) with the

max-norm, and this space is a Banach space (Thm. 1.2.2), so sN converges to a continuous function.
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Example 3.2.5 (The sawtooth, continued). The sawtooth f (t ) is continuous everywhere ex-
cept at t = 0,±T,±2T, . . .. At these values t = nT the signal satisfies f (nT +) = f (0+) = −T /2
and f (nT −) = f (0−) = T /2, see Fig. 3.3. According to the Fourier theorem, at these points of
discontinuity the Fourier series equals ( f (nT +)+ f (nT −))/2 = 0. The Fourier series therefore
equals

∑
k 6=0

i

kω0
eikω0t =

{
0 if t = nT , n ∈Z,

f (t ) elsewhere.

This is consistent with Fig. 3.4. �

It is interesting to recall at this point Theorem 3.2.3. It says that
∑∞

k=−∞ | fk | < ∞ implies
continuity of f (t ). Now obviously the sawtooth is not continuous at t = nT , and, hence, we
must have that

∑∞
k=−∞ | fk | =∞. Indeed,

∑∞
k=−∞ | fk | =

∑∞
k=1 2/|kω0| =∞. The interpretation is

this: for small values of k the terms fk eikω0t only change gradually as a function of time. So
if a Fourier series is to approximate the abrupt change at a discontinuity of f (t ) then it needs
lots of high frequency components to accomplish this, i.e., the fk need to be relatively large
for large values of k, so large in fact that

∑∞
k=−∞ | fk | diverges to ∞.

Even though
∑∞

k=−∞ | fk | might diverge, we always have that Fourier coefficients fk of
piecewise continuous functions f (t ) converge to zero as k → ∞. This is a byproduct of the
Riemann–Lebesgue lemma:

Lemma 3.2.6 (Riemann–Lebesgue). If f (t ) is piecewise smooth on [a,b], then

lim
|ω|→∞

∫ b

a
f (t )eiωt dt = 0.

Proof. Suppose first that f (t ) is continuously differentiable on [a,b]. Then we can use inte-
gration by parts to obtain∫ b

a
f (t )eiωt dt = 1

iω

[
f (t )eiωt

]b

a
− 1

iω

∫ b

a
f ′(t )eiωt dt .

Since |eiωt | = 1 we can derive from this the bound∣∣∣∣∫ b

a
f (t )eiωt dt

∣∣∣∣≤ 1

|iω| (| f (b)|+ | f (a)|)+ 1

|iω|

∫ b

a
| f ′(t )|dt .

It is immediate that the right-hand side goes to zero as |ω|→∞, which proves the claim.
If f (t ) is not continuously differentiable, then, since f (t ) is piecewise smooth, we may

split [a,b] into a finite set of subintervals [ti , ti+1] (i = 1, . . .) such that f (t ) is continuously
differentiable on each of these subintervals. Similarly as done above (using integration by
parts) it follows that lim|ω|→∞

∫ ti+1
ti

f (t )eiωt dt = 0. Hence lim|ω|→∞
∫ b

a f (t )eiωt dt = 0.

An immediate consequence of the Riemann-Lebesgue lemma is that piecewise smooth
signals f (t ) satisfy

lim
|k|→∞

∫ T /2

−T /2
f (t )e−ikω0t dt = 0,

i.e., the Fourier coefficients fk converge to zero as |k|→∞. In fact, looking at the proof of the
Riemann–Lebesgue lemma, we may conclude that | fk | ≤ A/|k| for some A (depending on f
but not on k).
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Remark. There is also a Fourier series expansion for two-dimensional signals g (x, y), i.e.,
images, and like f (t ) may be represented by its Fourier coefficients, also pictures may be rep-
resented by Fourier coefficients. Simply discarding high frequency Fourier coefficients then
gives a finite set of Fourier coefficients that roughly capture the original signal or picture. This
is the essence of jpeg-encoding. (It also explains why jpeg pictures typically are softer than
the original: sharp edges need high frequency components but these are discarded in the
encoding.)

3.3 Real Fourier series

For real-valued signals f (t ) the Fourier coefficients obey the symmetry rule f−k = f ∗
k . This

follows from

f−k = 1

T

∫ T /2

−T /2
f (t )eikω0t dt = { f (t ) is real} = 1

T

∫ T /2

−T /2
f ∗(t )eikω0t dt

=
(

1

T

∫ T /2

−T /2
f (t )e−ikω0t dt

)∗
= f ∗

k .

The complex Fourier series of a real-valued function can then be rewritten as a real Fourier
series, that is, as a sum of real sinusoids. This goes as follows. First define real ak and bk via

ak = 2Re fk , bk =−2Im fk ∀k = 0,1,2, . . . . (3.9)

That is to say

f0 =
a0

2
, fk = ak − ibk

2
∀k > 0.

This rather odd looking definition of ak and bk will turn out to be useful. Then

∞∑
k=−∞

fk eikω0t = f0 +
∞∑

k=1
( f−k e−ikω0t + fk eikω0t )

= { f−k = f ∗
k } = f0 +

∞∑
k=1

(
( fk eikω0t )∗+ fk eikω0t )

= f0 +
∞∑

k=1
Re(2 fk eikω0t ). (3.10)

= 1
2 a0 +

∞∑
k=1

Re
[
(ak − ibk )︸ ︷︷ ︸

2 fk

(cos(kω0t )+ i sin(kω0t ))︸ ︷︷ ︸
eikω0 t

]
= 1

2 a0 +
∞∑

k=1

(
ak cos(kω0t )+bk sin(kω0t )

)
. (3.11)

This establishes that f (t ) is indeed a sum of sinusoids. It will be clear that any f (t ) that is of
the form (3.11) is a real-valued T -periodic signal with T = 2π/ω0. The series (3.11) is known
as the real Fourier series and the coefficients ak and bk are the real Fourier coefficients. The
term ak cos(kω0t )+bk sin(kω0t ) is sometimes referred to as the k-th harmonic of f (t ). Sum-
mary:

Theorem 3.3.1 (Fourier series theorem, real-valued case). Let f (t ) be a real-valued T -
periodic signal and suppose it is piecewise smooth. Then for every t ∈R we have

f (t−)+ f (t+)

2
= 1

2 a0 +
∞∑

k=1

(
ak cos(kω0t )+bk sin(kω0t )

)
,
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where ak and bk are the real Fourier coefficients of f (t ) defined as

ak = 2

T

∫ T /2

−T /2
f (t )cos(kω0t ) dt , k = 0,1, . . . , (3.12)

bk = 2

T

∫ T /2

−T /2
f (t )sin(kω0t ) dt , k = 1,2, . . . . (3.13)

Proof. Let fk be the complex Fourier coefficients of f (t ). In the above we showed that ak =
2Re fk and bk =−2Im fk . Therefore

ak = 2Re fk = 2Re
1

T

∫ T /2

−T /2
f (t )e−ikω0t dt = 2

T

∫ T /2

−T /2
f (t )cos(kω0t ) dt ,

and

bk =−2Im fk =−2Im
1

T

∫ T /2

−T /2
f (t )e−ikω0t dt = 2

T

∫ T /2

−T /2
f (t )sin(kω0t ) dt .

Example 3.3.2 (Sawtooth, real Fourier series). In Example 3.1.2 we found that the Fourier
coefficients of the saw tooth of Fig. 3.3 are

f0 = 0, fk = i

kω0
∀k 6= 0.

Hence the real Fourier coefficients are

ak = 2Re( fk ) = 0, bk =−2Im( fk ) =− 2

kω0
=− 2

k 2π
T

=− T

kπ
.

Surprisingly perhaps, all ak are zero, so the real Fourier series consists of sines only,

f (t−)+ f (t+)

2
=

∞∑
k=1

−T

kπ
sin(kω0t ).

All coefficients −T
kπ are negative. This is consistent with Fig. 3.4. �

It is not uncommon that Fourier series only consists of sine terms (or only cosine terms).
This is due to symmetry properties that signals f (t ) often have. The sawtooth is an odd signal.

Definition 3.3.3 (Even and odd signals). A signal f (t ) is odd if

f (t ) =− f (−t ) ∀t .

A signal f (t ) is even if

f (t ) = f (−t ) ∀t .

�

Another way to think of even and odd is that the graph of an even signal is symmetric with
respect to the ‘y-axis’ whereas odd means it is point-symmetric with respect to the origin.
Clearly cosines are even and sines are odd. It is then no surprise (and easily proved in general,
see the next example) that Fourier series of odd signals, such as the sawtooth, only consist of
sines, and Fourier series of even signals only consist of cosines.
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FIGURE 3.5: f (t ) = |sin(πt )|

Example 3.3.4 (Real Fourier coefficients). Consider the even signal f (t ) = |sin(πt )|, (see
Figure 3.5). This signal is periodic with period T = 1. This signal is even, but then all
gk (t ) := f (t )sin(kω0t ) are odd. Hence the integrals for bk ,

bk = 2

T

∫ T /2

−T /2
f (t )sin(kω0t )︸ ︷︷ ︸

gk (t )

dt , k = 1, 2, . . .

are all zero. The Fourier series of f (t ) entails only cosines.

ak = 2

T

∫ T /2

−T /2
f (t )cos(kω0t ) dt = 2

∫ 1/2

−1/2
|sin(πt )|cos(2kπt ) dt

= { integrand is even, hence
∫ y
−y = 2

∫ y
0 }

= 4
∫ 1/2

0
sin(πt )cos(2kπt ) dt

= { sin(α)cos(β) = 1
2 sin(α+β)+ 1

2 sin(α−β), see Exercise 2.7 },

= 2
∫ 1/2

0
(sin((2k +1)πt )− sin((2k −1)πt )) dt

= −2cos((2k +1)πt )

(2k +1)π

]1/2

0
− −2cos((2k −1)πt )

(2k −1)π

]1/2

0

= 2

π

( 1

2k +1
− 1

2k −1

)
= 4

π

1

1−4k2 .

The signal f (t ) is continuous and is piecewise smooth on R, so we conclude that

|sin(πt )| = 2

π
+ 4

π

∞∑
k=1

1

1−4k2 cos(2kπt )

for every t ∈ R. Funny formula. For t = 0 it says that
∑∞

k=1
1

1−4k2 = −1/2. For t = 1/2 it also
gives a funny formula (try it yourself). �

Time and frequency domain. According to the Fourier theorem, any piecewise smooth pe-
riodic signal f (t ) may be reconstructed from its Fourier coefficients fk , except at its points
of discontinuity. Possibly after redefining f (t ) at the discontinuities, one can say that f (t ) is
fully determined once its Fourier coefficients are known.

We say that fk describes f (t ) in the frequency domain, and that f (t ) itself describes the
signal in the time domain.

We sometimes refer to the fk as the line spectrum of f (t ). Line spectra are usually com-
plex numbers. These may be expressed in polar form as fk = | fk |eiφk . The plot of | fk | ver-
sus frequency index k (or versus frequency kω0) is referred to as the amplitude spectrum of
f (t ), and the plot φk versus k (or versus kω0) as the phase spectrum of f (t ). The phase for a
nonzero coefficient, is unique up to an integer multiple of 2π. For zero coefficients we often
set the phase equal to zero.
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If f (t ) is real-valued, then f−k = f ∗
k , hence, | fk | = | f−k | and φk =−φ−k . Real-valued signals

hence have an amplitude spectrum that is even and a phase spectrum that is odd (up to
multiples of 2π), see Fig. 3.6.

k →0 1 2

| fk |

k →0 1 2

arg( fk)

FIGURE 3.6: Amplitude spectrum (top) and phase spectrum (bottom) of the sawtooth,
see Example 3.3.5

Example 3.3.5 (Amplitude and phase spectrum). In Example 3.1.2 we found the Fourier co-
efficients of the sawtooth to be fk = i/(kω0) for k 6= 0 and fk = 0 for k = 0. The amplitude of
the Fourier coefficients is therefore | fk | = 1/|kω0|, except for k = 0 where it is zero. The phase
φk = arg fk equals π/2 for positive k, and −π/2 for negative k. The phase of f0 = 0 is not really
defined, but in such cases we take it to be zero. Figure 3.6 shows the amplitude and phase
spectrum of the sawtooth (for a certain ω0). The sawtooth is a real-valued function and this
is in accordance with the fact that the amplitude spectrum is an even function of k and that
the phase spectrum is an odd function of k. �

3.4 Fourier series properties

It is convenient to express the connection between a function f (t ) and its Fourier coefficients
fk as a pair with arrows:

f (t ) ←→ fk .

Table 3.1 collects a number of properties of Fourier series. We discuss them here.

Linearity. The linearity property says that for every two constants α,β we have

α f (t )+βg (t ) ←→α fk +βgk .

This is a consequence of linearity of integration: the Fourier coefficients dk of d(t ) =
α f (t )+βg (t ) equals

dk = 1

T

∫ T /2

−T /2
(α f (t )+βg (t ))e−ikω0t dt

=α 1

T

∫ T /2

−T /2
f (t )e−ikω0t dt +β 1

T

∫ T /2

−T /2
g (t )e−ikω0t dt =α fk +βgk .
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Time-shift. The time-shift property says

f (t −τ) ←→ e−ikω0τ fk .

To see this let d(t ) = f (t −τ). Its Fourier coefficients dk satisfy

dk = 1

T

∫ T /2

−T /2
f (t −τ)e−ikω0t dt let v = t −τ

= 1

T

∫ T
2 −τ

− T
2 −τ

f (v)e−ikω0(v+τ) dv apply Lemma 2.4.3:

= e−ikω0τ
1

T

∫ T /2

−T /2
f (v)e−ikω0v dv = e−ikω0τ fk .

Note that the amplitude of the Fourier coefficients are invariant under time shifts: |dk | =
|e−ikω0τ|| fk | = | fk |. This is not surprising because f (t ) and f (t −τ) clearly contain the
same frequencies and with the same amplitude.

Time reversal. This says that

f (−t ) ←→ f−k .

Proof: the Fourier coefficients dk of d(t ) := f (−t ) are

dk = 1

T

∫ T /2

−T /2
f (−t )e−ikω0t dt substitute v =−t

=− 1

T

∫ −T /2

T /2
f (v)eikω0v dv

= 1

T

∫ T /2

−T /2
f (v)e−i(−k)ω0v dv = f−k .

Conjugation. This rule claims that

f ∗(t ) ←→ f ∗
−k .

Proof: the Fourier coefficients dk of f ∗(t ) follows as

dk = 1

T

∫ T /2

−T /2
f ∗(t )e−ikω0t dt =

(
1

T

∫ T /2

−T /2
f (t )eikω0t dt

)∗
= f ∗

−k .

Frequency shift. The final property of Table 3.1 states

einω0t f (t ) ←→ fk−n ,

provided n ∈Z. Indeed, for a fixed n, the signal with Fourier coefficients fk−n is

∞∑
k=−∞

fk−n eikω0t = {substitute m = k −n}

=
∞∑

m=−∞
fm ei(m+n)ω0t

= einω0t
∞∑

m=−∞
fm eimω0t = einω0t f (t ).

This rule looks similar to the time-shift rule. Loosely speaking these two rules say that a
shift in one domain corresponds to a multiplication with a harmonic term in the other
domain.
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TABLE 3.1: Properties of the Fourier series

Property Time domain: f (t ) Frequency domain: fk

Linearity α f (t )+βg (t ) α fk +βgk

Time-shift f (t −τ), (τ ∈R) e−ikω0τ fk

Time-reversal f (−t ) f−k

Conjugation f ∗(t ) f ∗
−k

Frequency-shift einω0t f (t ), (n ∈Z) fk−n

3.5 Convolution and Parseval’s theorem

For periodic signals, convolution is defined differently:

Definition 3.5.1. The periodic convolution or periodic convolution product of two T -
periodic signals f (t ) and g (t ) is the signal ( f ⊗ g )(t ) defined as3

( f ⊗ g )(t ) = 1

T

∫ T /2

−T /2
f (τ)g (t −τ) dτ. (3.14)

�

Convolution products in the time domain reduce to ordinary products of the respective
line spectra in the frequency domain:

Theorem 3.5.2 (Convolution theorem for periodic signals). Let f (t ) and g (t ) be two T -
periodic piecewise smooth signals with line spectra fk and gk respectively. Then ( f ⊗ g )(t )
is T -periodic, piecewise smooth and continuous, and its line spectrum ( f ⊗ g )k satisfies

( f ⊗ g )k = fk gk , k ∈Z.

Proof. We omit the proof that ( f ⊗g )(t ) is piecewise smooth and continuous, since the proof
is technical but otherwise straightforward. Verify for yourself that f ⊗g is T -periodic. The line
spectrum ( f ⊗ g )k satisfies

( f ⊗ g )k = 1

T

∫ T /2

−T /2

(
1

T

∫ T /2

−T /2
f (τ)g (t −τ) dτ

)
e−ikω0t dt

= 1

T 2

∫ T /2

−T /2

∫ T /2

−T /2
f (τ)g (t −τ)e−ikω0t dτdt

= {change order of integration}

= 1

T

∫ T /2

−T /2
f (τ)

(
1

T

∫ T /2

−T /2
g (t −τ)e−ikω0t dt

)
dτ

= {see Table 3.1, time-shift}

= 1

T

∫ T /2

−T /2
f (τ)e−ikω0τgk dτ

=
( 1

T

∫ T /2

−T /2
f (τ)e−ikω0τ dτ

)
gk = fk gk .

3In the literature the factor 1
T is often omitted.

78



Remark. Since fk gk = gk fk we see that f ⊗ g = g ⊗ f , i.e., periodic convolution products
commute.

0 T

f (t )

(a)
0 T

fswa(t )

(b)
0 T

fswa(t )

(c)

FIGURE 3.7: (a): A noisy periodic signal; (b) averaged with ε = 0.025; (c) averaged with
ε= 0.1, see Example 3.5.3.

Example 3.5.3 (Sliding window averaging). For a given T -periodic signal f (t ) we construct
the signal f̂ (t ) by averaging f (t ) around t over an interval of a fixed length εT , ε ∈ (0,1) i.e.,
we consider

f̂ (t ) = 1

εT

∫ t+εT /2

t−εT /2
f (τ) dτ.

Averaging f (t ) this way filters out high-frequency noise. It is to be expected, then, that f̂ (t ) is
somewhat smoother than f (t ), but as long as ε is not too large the graph of the averaged f̂ (t )
should retain roughly the same shape as the graph of f (t ). Figure 3.7(a) shows an example of
a noisy signal f (t ). Figure 3.7(b) shows f̂ (t ) for the case that ε= 0.03. In plot (c) of that figure
the average was taken over a wider interval (ε = 0.09) and as expected the plot is smoother
than the one in (b).

The signal f̂ (t ) can be considered as the (periodic) convolution of f (t ) with a suitable
function g (t ):

f̂ (t ) = 1

εT

∫ t+εT /2

t−εT /2
f (τ) dτ= {v = t −τ} = 1

εT

∫ εT /2

−εT /2
f (t − v) dv

= 1

T

∫ T /2

−T /2
f (t − v)g (v) dv = ( f ⊗ g )(t ),

with g (t ) a T -periodic function defined by:

g (t ) =
{

1
ε if |t | ≤ εT /2,

0 elsewhere.

−ǫT
2

ǫT
2

1/ǫ

In frequency domain the process of averaging hence means multiplying the line spectrum
with the line spectrum gk of g (t ). We have

gk = 1

T

∫ T /2

−T /2
g (t )e−ikω0t dt

= 1

εT

∫ εT /2

−εT /2
e−ikω0t dt = {k 6= 0} = −1

ikω0εT
(e−ikω0

εT
2 − eikω0

εT
2 )

=
sin(kω0

εT
2 )

kω0
εT
2

= {ω0
εT
2 = 2π

T
εT
2 =πε} = sin(kεπ)

kεπ
,

g0 =
1

εT

∫ εT /2

−εT /2
dt = 1.
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Therefore

f̂k = sin(kεπ)

kεπ
fk .

Note that sin(kεπ)/(kεπ) equals sinc(kεπ). It tends to zero as k → ∞. The high-frequency
harmonics fk eiω0t are therefore more attenuated than the lower frequency harmonics. This
agrees with our understanding of averaging. Also, the greater the averaging interval, the
smaller is sinc(kεπ) for large k, i.e., the more are the high-frequency harmonics attenuated.
Again this agrees with our understanding of averaging. �

Since T -periodic signals are fully determined by its Fourier coefficients, it should be possi-
ble to express “any” property that f (t ) has in terms of its Fourier coefficients. It is for example
possible to express the power

P f =
1

T

∫ T /2

−T /2
| f (t )|2 dt (3.15)

of a T -periodic signal f (t ) in terms of the fk ’s.

Theorem 3.5.4 (Parseval identity for periodic signals). If f (t ) is a piecewise smooth T -
periodic signal, then

P f =
∞∑

k=−∞
| fk |2.

Proof. This is a consequence of Parseval’s identity as presented in Thm 1.5.7 (page 30) ap-
plied to Thm. 3.1.1. Indeed, in the inner product of Thm. 3.1.1 the power is the same as
‖ f ‖2 :=〈 f , f 〉, and according to Parseval and Thm. 3.1.1 the latter equals

∑∞
k=−∞ | fk |2.

(It can also be proved directly from Thm. 3.5.2: use g (t ) = f ∗(−t ) and then compare ( f ⊗
g )(t ) at t = 0 with its Fourier series at t = 0.)

A curious by-product of the Parseval identity is that we can now explicitly compute certain
classic series:

Example 3.5.5 (Power). Let f (t ) be the T -periodic sawtooth signal of Example 3.1.2. That is,
f (t ) = t −T /2 on [0,T ) and periodically continued elsewhere. In Example 3.1.2 we found that
fk = i/(kω0) for k 6= 0 and that f0 = 0. So on the one hand the power P f equals

P f =
1

T

∫ T

0
(t −T /2)2 dt = 1

12
T 2,

and on the other hand, by Parseval’s theorem,

P f =
∑

k∈Z,k 6=0

1

(kω0)2 = T 2

4π2

∑
k∈Z,k 6=0

1

k2 = T 2

2π2

∞∑
k=1

1

k2 .

We conclude that

T 2

2π2

∞∑
k=1

1

k2 = 1

12
T 2,

in other words,

∞∑
k=1

1

k2 = π2

6
.

Nice. �
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3.6 Gibbs phenomenon

Since f (t ) =∑∞
k=−∞ fk eikω0t , it is tempting to think that partial sums sN (t ) defined as

sN (t ) =
N∑

k=−N
fk eikω0t

form a “good” approximation of f (t ) if N is “large”. In L 2-sense that is correct, but the max-
imal difference, maxt | f (t )− sN (t )|, need not converge to zero! Let us illustrate it with the
square wave.

Example 3.6.1 (Square wave). The T -periodic square wave f (t ), with T = 2π, is defined on
[0,2π) as

f (t ) =


0 if t = 0 or t =π
1 if 0 < t <π
−1 if π< t < 2π.

0−π π 2π 3π

1

−1
t →

The square wave is real-valued, hence fk = f ∗
−k . Since the square wave is odd, the Fourier

series consists of sines only (i.e. no cosines). Verify for yourself that the Fourier series is

f∗(t ) = 4

π

(
sin(t )+ 1

3
sin(3t )+ 1

5
sin(5t )+ 1

7
sin(7t )+·· ·

)
.

The (2N −1)-th partial sum s2N−1(t ) hence is

s2N−1(t ) = 4

π

(
sin(t )+ 1

3
sin(3t )+ 1

5
sin(5t )+·· ·+ 1

2N −1
sin((2N −1)t )

)
.

The derivative of s2N−1(t ) clearly equals 4
π (cos(t )+cos(3t )+·· ·+cos((2N −1)t )) and from that

it can be shown that s2N−1(t ) is maximal at tN :=π/(2N ). This tN converges to zero as N →∞
but, surprisingly, its peak value sN (tN ) does not converges to 1: see Table 3.2 (p. 82). Figure 3.8
shows plots of the partial sums s2N−1(t ) for N = 4,8,12,16,32 and this confirms once more
that the peak value does not converge to 1. Instead it seems to converge to 1.17898. �

In above example the amount overshoot is close to 0.17898. This type of overshoot phe-
nomenon is called the Gibbs phenomenon. Without proof we claim that for every piecewise
smooth function, near whatever point t of discontinuity, the overshoot, as N →∞, converges
to4 ∫ 1

0
sinc(πt ) dt − 1

2
= 0.08948987223608

times the magnitude of the jump | f (t+)− f (t−)|. In the previous example the magnitude of the
jump at t = 0 is 2, so the overshoot converges to 2×0.08948987223608 = 0.178979744472167.

If the Fourier coefficients fk are absolutely summable, i.e., if
∑∞

k=−∞ | fk | < ∞, then the
Gibbs phenomenon does not occur. Indeed, if

∑∞
k=−∞ | fk | <∞, then the maximal approxima-

tion error equals

max
t∈R

| f (t )− sN (t )| = max
t∈R

∣∣∣∣∣ ∑
|k|>N

fk eikω0t

∣∣∣∣∣≤ ∑
|k|>N

| fk |,

and the rightmost side is independent of t and converges to zero as N →∞. In such cases
one says that the convergence of sN (t ) to f (t ) is uniform across t .

4It can be shown that sN
(
t + T

2N+1

)− f (t+) converges to
(∫ 1

0 sinc(πt ) dt − 1
2

)
( f (t+)− f (t−)) as N →∞.
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TABLE 3.2: The Gibbs phenomenon. Peak value of the s2N−1(t ) of Example 3.6.1

N s2N−1( π
2N )

4 1.180284

8 1.179305

16 1.179061

32 1.179000

64 1.178985

128 1.178981

256 1.178980

1

0 π 2π

1

1.17898

FIGURE 3.8: The partial sums s2N−1(t ) of the Fourier series of the square wave, for N =
2,4,8,16,32. A part near the discontinuity at t = 0 is magnified. See Example 3.6.1
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3.7 Applications

In this section we discuss some applications of Fourier series.

Filters described by differential equations

We start with the following recapitulation of a result in Appendix A.3.
Consider the differential equation

pn y (n)(t )+pn−1 y (n−1)(t )+·· ·+p1 y (1)(t )+p0 y(t ) (3.16)

= qmu(m)(t )+qm−1u(m−1)(t )+·· ·+q1u(1)(t )+q0u(t ),

with p0, p1, . . . , pn , q0, . . . , qm ∈R, and m ≤ n. We assume that u(t ) is given, and that the prob-
lem is to determine y(t ). In this context u(t ) is usually referred to as the input and y(t ) the
output.

Let s ∈C. For exponential inputs

u(t ) = est ,

the differential equation simplifies to

pn y (n)(t )+pn−1 y (n−1)(t )+·· ·+p1 y (1)(t )+p0 y(t ) (3.17)

= qm sm est +qm−1sm−1est +·· ·+q1sest +q0est

= (
qm sm +qm−1sm−1 +·· ·+q1s +q0

)
est .

Then (3.17) has a particular solution of the same exponential form

y(t ) = Aest ,

for some as yet unknown constant A. Substituting this form into (3.17), we find

pn Asn est+pn−1 Asn−1est +·· ·+p1 Asest +p0 Aest (3.18)

= (
qm sm +qm−1sm−1 +·· ·+q1s +q0

)
est .

Both sides of the equation has the invertible factor est , which hence may be canceled. This
way we find(

pn sn +pn−1sn−1 +·· ·+p1s +p0
)

A = qm sm +qm−1sm−1 +·· ·+q1s +q0. (3.19)

The term in between the brackets we recognize as the characteristic polynomial P (s) of the
differential equation. Likewise let Q(s) be the polynomial of the right-hand side of the equa-
tion. We thus have that

A = Q(s)

P (s)
= qm sm +qm−1sm−1 +·· ·+q1s +q0

pn sn +pn−1sn−1 +·· ·+p1s +p0
,

provided P (s) 6= 0, i.e. provided s is not a zero of the characteristic polynomial. We summarize
the above result in the following theorem. It also defines the notion of “transfer function”:

Theorem 3.7.1 (Transfer function). Consider (3.16), and let s ∈ C be such that pn sn +
pn−1sn−1 + ·· · + p1s + p0 6= 0. One particular solution y(t ) corresponding to input u(t ) = est

is ypart(t ) = H(s)est , where H(s) is the transfer function of the system given by

H(s) = qm sm +qm−1sm−1 +·· ·+q1s +q0

pn sn +pn−1sn−1 +·· ·+p1s +p0
. (3.20)

�
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In particular for complex harmonic signals with frequency ω,

u(t ) = eiωt

we observe that there is a complex harmonic particular solution, in fact with the same fre-
quency,

y(t ) = H(iω)eiωt .

For this reason H(iω), seen as a function of ω ∈R, is called the frequency response.
Now assume that u(t ) is periodic and consider its Fourier series,

u(t ) =
∞∑

k=−∞
uk eikω0t .

According to the above theorem to each exponential input eikω0t there corresponds an expo-
nential particular output H(ikω0)eikω0t . Also, by linearity (see Exercise A.3.1) we have that
a particular solution for αu1(t )+βu2(t ) is αy1(t )+βy2(t ), where yk is a particular solution
for uk ,k = 1,2. Repeating this argument we see that a particular solution corresponding to∑N

k=−N uk eikω0t is given by ypart(t ) =∑N
k=−N H(ikω0)uk eiω0kt . Letting N go to infinity we find

the following:

Theorem 3.7.2 (Response to periodic inputs). Let u(t ) be a T -periodic signal with Fourier
coefficients uk . Then a particular solution of differential equation (3.16) for this input is given
by

y(t ) =
∞∑

k=−∞
H(ikω0)uk eikω0t .

Here H(s) is the transfer function (3.20) of the differential equation. This particular solution
is also T -periodic and its Fourier coefficients yk are

yk = H(ikω0)uk . (3.21)

�

We apply this theorem on two examples. In the first example we show that certain RC -
networks can be seen as low-pass filters.

R

vR (t )←−
−→i (t )

C ↑ y(t )= vC (t )u(t ) ↑

FIGURE 3.9: An RC -network (Example 3.7.3)

Example 3.7.3 (RC -network). Consider the RC -network shown in Figure 3.9. We interpret
the RC -network as a system with the voltage delivered by the voltage source as the input,
u(t ), of the system, and the voltage across the capacitor as the output, y(t ).

84



The input and output are related by a differential equation that may be obtained using
Kirchhoff’s voltage law and the voltage-current relations of resistors and capacitors. Kirch-
hoff’s voltage law gives that

u(t ) = vR (t )+ y(t ) = Ri (t )+ y(t ). (3.22)

The voltage across the capacitor equals

y(t ) = q(t )

C
= {q(t ) is the charge, q(t ) =

∫ t

−∞
i (τ) dτ} = 1

C

∫ t

−∞
i (τ) dτ. (3.23)

Differentiation with respect to time gives

C y (1)(t ) = i (t ).

Substituting this expression for i (t ) in (3.22), we get a differential equation in the input and
output

y (1)(t )+αy(t ) =αu(t ), (3.24)

in which α = 1
RC . This is a first-order ordinary linear differential equation of the type (3.16)

with n = 1, p1 = 1, p0 = 1
RC , m = 0, and q0 = 1

RC . Hence by Theorem 3.7.2 we have that the
transfer function is given by

H(s) =
1

RC

s + 1
RC

= 1

RC s +1
. (3.25)

Let us take as input u(t ) the sawtooth of Example 3.1.2. For this input we computed the
Fourier coefficients, uk = i

kω0
, k 6= 0, and u0 = 0. The Fourier coefficients of the output y(t )

then follow as

yk = H(ikω0)uk =
{

1
ikω0RC+1 × i

kω0
if k 6= 0,

0 if k = 0.
(3.26)

Figure 3.10 shows the plot of the absolute value of these Fourier coefficients for different val-
ues of RC . Furthermore, we plot the corresponding time signal y(t ). In these plots we took
T = 2π. In all figures we notice that the magnitude of the Fourier coefficients for high index k
are much smaller for the output than they are for the input. Since these indices correspond to
a high frequency harmonics, we conclude that this RC -network filters out high frequencies.

We can make it even more apparent when we consider the input u(t ) = cos(t ) +
0.1cos(50t ), see Figure 3.11. The Fourier coefficients of this signal are

uk =


1
2 k =±1
1

10 k =±50

0 elsewhere.

If we choose RC = 1, then the Fourier coefficients of the output approximately are

yk =



0.5−0.5i k = 1

0.5+0.5i k =−1

0.0004−0.002i k = 50

0.0004+0.002i k =−50

0 elsewhere.
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RC = 0.1

0 1 2 k →

|u1|
|y1|

|uk | |yk |

0 T−T t →

RC = 1

0 1 2 k →

|u1|
|y1| |uk | |yk |

0 T−T t →

RC = 10

0 1 2 k →

|u1|

|y1|
|uk | |yk |

0 T−T t →

FIGURE 3.10: Left: Magnitude |yk | of the Fourier coefficients of the output y(t ) of the
RC -circuit for ω0 = 1 and for RC = 0.1, 1 and 10. (The magnitudes |uk | of the input are
shown in red). Right: corresponding output y(t ) (and the sawtooth input u(t ) in red).
See Example 3.7.3
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0 T

FIGURE 3.11: Input u(t ) = cos(t )+0.1cos(50t ) (in red) and its response y(t ) (in black) of
the RC -network with RC = 1, see Example 3.7.3

y(t )

u(t )

FIGURE 3.12: The hypnotist

Clearly, when compared to the input, the values y−50 and y50 of the output are practically zero,
meaning that frequency ω= 50 is practically absent in y(t ), only frequency ω= 1 remains. Its
amplitude and phase differs from that of u(t ). This amplitude and phase change is best seen
from a plot of amplitude and phase of the frequency response H(iω). �

Example 3.7.4 (Hypnotist). The standard act of a hypnotist is to swing a watch on a cord in
front of a candidate from the audience so as to hypnotize this volunteer, see Figure 3.12. The
horizontal position of his hand is denoted by u. The angle of the cord with the vertical axis is
denoted by y . Without proof we state that a model describing the relation between u and y ,
for y not too large, is given by

m`y (2)(t )+k`y (1)(t )+mg y(t ) =−mu(2)(t )−ku(1)(t ). (3.27)

Here ` is the length of the cord, g denotes the gravitational constant and k is a friction coef-
ficient. The transfer function of (3.27) is given by

H(s) = −ms2 −ks

m`s2 +k`s +mg
.

In practice k is a small positive constant, but if it would have been zero, then H(±i
√

g /`)
would not exist. Therefore for small positive k, the denominator of H(s) is small for s =
±i

√
g /` and H(s) is large in magnitude at these points. Figure 3.13 presents a numerical

example.
For the constants m = 0.1 [kg], k = 0.05 [kg/s], ` = 0.3 [m], and g = 9.81 [kg m/s2], we see

that the maximum of |H(iω)| is at approximately ω = 5. If the hypnotist moves his hand as
εcos(5t ) with ε small, we can see that the movement of the pendulum is relatively large. Let
us explicitly determine this movement. The Fourier series expansion of εcos(5t ) is

εcos(5t ) = ε

2
ei5t + ε

2
e−i5t .

87



arg H(iω)|H(iω)|

0 2 4 6 8 10
0

5

10

15

20

25

ω→
0 2 4 6 8 10

−4

−3

−2

−1

0

ω→
FIGURE 3.13: Amplitude and phase of H(iω) (where m = 0.1,k = 0.05,`= 0.4, g = 10), see
Example 3.7.4

Note that this is an application of Euler’s formula. The corresponding output is given by

y(t ) = ε

2
H(i5)ei5t + ε

2
H(−i5)e−i5t .

Writing H(i5) as |H(i5)|ei arg(H(i5)), and using the fact that H(−i5) is the complex conjugate of
H(i5), we find that

y(t ) = ε

2
H(i5)ei5t + ε

2
H(−i5)e−i5t

= ε

2
|H(i5)|ei arg(H(i5))ei5t + ε

2
|H(i5)|e−i arg(H(i5))e−i5t

= |H(i5)|
[ ε

2
ei(5t+arg(H(i5)) + ε

2
e−i(5t+arg(H(i5)))

]
= |H(i5)|εcos(5t +arg(H(i5)))

≈ 25εcos(5t −2).

The final equality we infer from the plot (Fig. 3.13). Notice the negative phase of about −2.
This means that the movement of the watch lags behind that of the hand. A modest periodic
movement of the hand, say a cosine with amplitude of merely 2cm = 0.02m, makes the angle
of the cord behave as a cosine as well with an amplitude of approximately 0.02×25 = 0.5rad.

Other cases are explored in Exercise 3.25. �

In the previous example we found that the response y(t ) to a real harmonic input u(t )
is again real harmonic (plus a homogeneous solution). This is practically always the case for
systems described by differential equations of the form (3.17). Indeed, suppose

u(t ) = cos(ωt ).

By Euler’s formula we have

u(t ) = 1
2 eiωt + 1

2 e−iωt .

We know that the response to eiωt is H(iω)eiωt , and that the response to e−iωt is H(−iω)eiωt .
It is easy to verify that for real parameters pi , qi the frequency response satisfies the symmetry
property H(−iω) = (H(iω))∗. Hence by linearity the response to u(t ) :=cos(ωt ) is

y(t ) = 1
2 H(iω)eiωt + 1

2

(
H(iω)

)∗e−iωt = 1
2 H(iω)eiωt + 1

2

(
H(iω)eiωt )∗

= Re
(
H(iω)eiωt )

= Re
(|H(iω)|ei arg(H(iω))eiωt )

= |H(iω)|cos(ωt +arg(H(iω))).
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We thus see that the output is again real harmomic, and that it has the same frequency as
u(t ). The amplitude and initial phase, however, usually differ. All we need is that H(iω) exists:

Theorem 3.7.5 (Response to real sinusoids). Consider differential equation (3.17). Let ω ∈R
and suppose s := iω is not a zero of P (s). Then a particular response y(t ) to u(t ) :=cos(ωt ) is
the real harmonic signal

y(t ) = |H(iω)|cos(ωt +arg(H(iω))).

Here H(iω) is the frequency response of the differential equation. �

3.8 Exercises

3.1 Suppose f (t ) is 2-periodic and that

f (t ) =
{

1 if 0 ≤ t < 1

0 if 1 ≤ t < 2
.

(a) Determine ω0.

(b) Determine the Fourier coefficients fk .

(c) For which t ∈R are the Fourier series and f (t ) the same?

3.2 Suppose f (t ) is 2-periodic and that

f (t ) = 2t for −1 ≤ t < 1.

(a) Determine the Fourier coefficients fk .

(b) For which t ∈R are the Fourier series and f (t ) the same?

(c) Use the previous results to compute
∑∞

n=0
(−1)n

2n+1 .

Hint: Evaluate the Fourier series at t = 1
2 .

3.3 Let f (t ) be the π-periodic signal that is given by

f (t ) = cos(t ) 0 ≤ t <π

(a) Sketch the graph of f (t ).

(b) Determine the Fourier coefficients fk .

3.4 Let f (t ) be the 2-periodic signal defined as

f (t ) = e−|t |, for −1 ≤ t < 1.

(a) Determine the complex Fourier coefficients fk .

(b) Determine the real Fourier coefficients ak , bk .

3.5 Express sin2(ω0t +π/3) as a superposition of complex harmonic signals and as super-
position of sinusoids.

3.6 Suppose a T -periodic signal f (t ) is such that its Fourier coefficients fk satisfy f−k =− f ∗
k

for all integers k. Show that f (t ) is imaginary-valued (that is, that i f (t ) is real-valued).

3.7 Given is a T -periodic signal f (t ). Suppose, in addition that f (t ) is real and even. Show
that fk is real and that f−k = fk for any integer k.
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3.8 Let f (t ) be a T -periodic signal that on period [0,T ] is given by f (t ) = rectT /2(t −T /2).

(a) Sketch the graph of f (t ).

(b) Determine the Fourier coefficients fk of f (t ).

(c) Sketch the amplitude and phase spectrum of f (t ).

(d) Determine the real Fourier series of f (t ).

3.9 Suppose f (t ) is a 2π-periodic signal with Fourier coefficients fk = 1/(k2 +1).

(a) Show that f (t ) is real and even.

(b) Determine the Fourier coefficients of f (t )cos2(ω0t ).

(c) Determine the Fourier coefficients of f (2t ).

(d) Determine the phase spectrum of f (2t −T /2).

3.10 Let f (t ) be the 2π-periodic signal such that

f (t ) = t 2 (−π≤ t ≤π).

(a) Determine the complex Fourier coefficients of f (t ) and write down the Fourier
series of f (t ).

(b) Determine the real Fourier series of f (t ).

(c) What is the third harmonic of f (t )?

(d) Calculate 1− 1
4 + 1

9 − 1
16 +·· · .

3.11 Let f (t ) be the 2π-periodic signal such that

f (t ) = (t −3)2 (3−π≤ t ≤ 3+π).

Determine the Fourier coefficients of f (t ).

3.12 Let f (t ) be the 2π-periodic signal such that

f (t ) = e4it t 2 (−π≤ t ≤π).

Determine the Fourier coefficients of f (t ).

3.13 Let f (t ) be the 2π-periodic signal such that

f (t ) = e2πit t 2 (−π< t ≤π).

Determine the Fourier coefficients of f (t ).

3.14 Let f (t ) be the π-periodic signal given by f (t ) = sin2(t ). Determine the second and third
harmonic of f (t ).

3.15 Let f (t ) be the T -periodic signal such that

f (t ) = rectT /2(t ) (−T /2 ≤ t ≤ T /2).

Determine the Fourier coefficients of f (t ).

3.16 Given is the T -periodic signal f (t ) that on one interval [0,T ] equals f (t ) = |t −T /2|.

(a) Show that f (t ) has a real-valued Fourier coefficients.
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(b) Calculate the power of the first harmonic of f (t ).

3.17 Let f (t ) be the T -periodic signal with Fourier coefficients fk and let ω0 = 2π/T .

(a) Determine the Fourier coefficients of f (t )cos2(ω0t ).

(b) Show that g (t ) = f (t )eiω0t/2 is periodic with period 2T .

(c) Determine the Fourier coefficients and power of g (t ).

3.18 Let f (t ) be a T -periodic signal and let g (t ) be the signal given by

g (t ) = 1

a

∫ t

t−a
f (u) du.

Here we assume that 0 < a < T .

(a) Show that g (t ) is T -periodic.

(b) Argue that g0 (the Fourier coefficient of g for k = 0) equals f0 (the Fourier coeffi-
cient of f for k = 0).

(c) Determine the other Fourier coefficients of g (t ).

(d) What can you tell about g (t ) for the case that a = T ?

3.19 Determine the power of the following signals.

(a) f (t ) = cos(ω0t )+2sin(ω0t ).

(b) f (t ) = |sin(ω0t )|.

3.20 Let f (t ) be a real T -periodic signal with real Fourier series

f (t ) = 1

2
a0 +

∞∑
k=1

(
ak cos(k 2π

T t )+bk sin(k 2π
T t )

)
.

Which coefficients ak , bk are guaranteed to be zero if

(a) f (t ) is even, that is, if f (t ) = f (−t ) for all t ,

(b) f (t ) is odd, that is, if f (t ) =− f (−t ) for all t ,

(c) f (t ) has period T /2. (Explain.)

3.21 Use Example 3.6.1 to show that 1− 1
3 + 1

5 − 1
7 +·· · = π

4 .

3.22 Consider a real-valued signal f (t ) and its real Fourier series (Theorem 3.3.1). Show Par-
seval’s theorem for the real Fourier series: P f = 1

4 a2
0 + 1

2

∑∞
k=1(a2

k +b2
k ).

3.23 Determine the complex Fourier series expansion of

(a) f (t ) = cos(t +θ)

(b) f (t ) = cos(2t +θ)

(c) f (t ) = sin(t )+cos(t )

(d) f (t ) = sin(2t )+cos(3t )

3.24 Consider the differential equation (3.16). Assume further that the input is given as
cos(ω0t ).

(a) Determine the complex Fourier series expansion of u(t ).
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(b) Determine the complex Fourier series expansion of the corresponding output y(t ).

(c) Show that this output is given by

y(t ) = |H(iω0)|cos(ω0t +arg(H(iω0))).

3.25 Consider the hypnotist of Example 3.7.4. As input we take u(t ) = cos(ω0t ). Furthermore,
we assume that the constants are the same as in the example.

(a) Calculate an output if ω0 = 0. Explain your answer also physically.

(b) What happens with the output if ω0 →∞?

(c) Determine the frequency ω0 for which y(t ) has maximal amplitude? What is this
maximum?

3.26 Let f (t ) and g (t ) be two T -periodic piecewise smooth functions, and that both func-
tions are in fact continuous for all t ∈ R. If their Fourier coefficients are the same:
fk = gk ∀k ∈Z do we then necessarily have that f (t ) = g (t ) for all t?

More involved problems

3.27 Suppose a given piecewise smooth signal f (t ) is such that f (t +T /2) = − f (t ) for all t
and a certain fixed T > 0. Show that f (t ) is periodic and that f2k = 0 for every integer k.

3.28 Determine the period and Fourier coefficients of the periodic signal

f (t ) = sin(2t )+ sin(3t )

sin(t )
.

3.29 Use Euler’s formula to determine a simple closed expression for the function

∞∑
k=0

cos(kt )

2k
.

3.30 Determine
∑∞

n=1
1

n4 . (Hint: Use Exercise 3.10.)

3.31 Lemma 3.2.6 implies that for each piecewise smooth function f (t ) a constant A exists
such that | fk | < A/|k| for all k. Show that if f (t ) is n times continuously differentiable
(i.e. f (n)(t ) exists and is continuous), then | fk | < A/|k|n for some A.

MATLAB problems

3.32 In Example 3.3.4 we found the real Fourier coefficients of f (t ) = |sin(πt )|,

ak = 4

π

1

1−4k2 , bk = 0.

To calculate in MATLAB the partial sums

a0

2
+

N∑
k=1

ak cos(kw0t ) (3.28)

we open a file with name, say, mysum.m and enter the following code

92



function sn = mysum(t,N)

w0=2*pi;

sn=2/pi;

for k=1:N,

sn=sn+ (4/pi)*(1/(1-4*k^2))*cos(k*w0*t);

end

Then the sum (3.28) can be computed by typing the following commands at the MATLAB

prompt.

t=0:0.01:1; % Discretized time

N=5; %

sn=mysum(t,N); % Calculate partial sum

plot(t,sn) % Plot it

hold on % Keep this plot

plot(t,abs(sin(pi*t)),'red') % Add a plot of f(t)

hold off %

Try this MATLAB code and then similarly plot the sum of the first N harmonics for N =
2,5,10 of the Fourier series of the π-periodic function f (t ) defined as

f (t ) = t (π− t ), (0 ≤ t ≤π).
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Chapter 4

Fourier Transform

The Fourier series expansion of the previous chapter applies to periodic signals. But what can
we do if f (t ) is not periodic, such as

f (t )

sin(πt )

While not periodic, we still feel that this signal f (t ) in some way contains a sinusoid sin(πt ).
This chapter is about a version of Fourier type expansions for aperiodic signals. Under mild
assumptions, aperiodic signals f (t ) can be seen as a “continuous sum” of harmonic signals,
that is to say, as an integral of weighted harmonic signals

f (t ) =
∫ ∞

−∞
f̂ (ω)eiωt dω.

Compare this with (3.2). Loosely speaking, integration is the same as summation, so the
above integral says that f (t ) is a sum (integral) of weighted harmonic signals eiωt , and the
“weight” f̂ (ω) may depend on frequency. This integral expression of f (t ) has similar applica-
tions as the Fourier series, and we will encounter more applications later in this chapter.

We assume throughout this chapter that the signals f (t ) are piecewise smooth, and that

f (t ) = f (t+)+ f (t−)

2
(4.1)

at every t . Equation (4.1) may always be achieved by redefining f (t ) at its points of disconti-
nuity, if necessary.

4.1 The Fourier integral theorem

The proof of the Fourier series theorem of the previous chapter (Theorem 3.2.4) as listed in
Appendix A.1 relies on the Riemann-Lebesgue Lemma (Lemma 3.2.6). A strengthened version
that we need for the results in this chapter is as follows.

Lemma 4.1.1 (Riemann-Lebesgue). Suppose f (t ) is absolutely integrable and piecewise
smooth. Then

lim
|ω|→∞

∫ ∞

−∞
f (t )e−iωt dt = 0. (4.2)

�
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This result is the basis of the following peculiar result that we soon need.

Lemma 4.1.2. Suppose f (t ) is absolutely integrable and piecewise smooth. Then

lim
a→∞

∫ ∞

−∞
f (t ) a sinc(at ) dt =π f (0−)+ f (0+)

2
. (4.3)

Proof. Essentially the same as that of Lemma A.1.1 in Appendix A.1.

In the two lemmas we assume that f (t ) is absolutely integrable, which is something we
have not yet defined. A signal f (t ) is said to be absolutely integrable if∫ ∞

−∞
| f (t )|dt

is convergent (i.e. is finite). Roughly speaking this means that f (t ) should go to zero fast
enough as t →±∞. This condition is needed to guarantee convergence of the integrals in the

following theorem. Be aware that the next theorem assumes f (t ) = f (t+)+ f (t−)
2 . With that out

of the way we can prove the famous result:

Theorem 4.1.3 (The Fourier integral theorem). Suppose f (t ) is absolutely integrable, piece-
wise smooth, and that it satisfies (4.1). Then

f (t ) = 1

2π

∫ ∞

−∞
f̂ (ω)eiωt dω, (4.4)

where f̂ (ω) is the Fourier transform of f (t ), defined as

f̂ (ω) =
∫ ∞

−∞
f (t )e−iωt dt . (4.5)

Proof. Substituting the integral expression (4.5) of f̂ (ω) in the right-hand side of (4.4) gives

1

2π

∫ ∞

−∞
f̂ (ω)eiωt dω= lim

a→∞
1

2π

∫ a

−a

∫ ∞

−∞
f (τ)eiω(t−τ) dτdω

= {change order of integration}

= lim
a→∞

1

2π

∫ ∞

−∞
f (τ)

∫ a

−a
eiω(t−τ) dωdτ

= lim
a→∞

1

2π

∫ ∞

−∞
f (τ)

eia(t−τ) − e−ia(t−τ)

i(t −τ)
dτ

= lim
a→∞

1

π

∫ ∞

−∞
f (τ) a sinc(a(t −τ)) dτ.

That the order of integration may be changed is due to the fact that f (t ) is absolutely inte-
grable. Since∫ ∞

−∞
f (τ) a sinc(a(t −τ)) dτ= {v = t −τ} =

∫ ∞

−∞
f (t − v) a sinc(av) dv,

we see that

1

2π

∫ ∞

−∞
f̂ (ω)eiωt dω= lim

a→∞
1

π

∫ ∞

−∞
f (t − v) a sinc(av) dv = f (t ).

The last identity follows from Lemma 4.1.2.
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Note the striking symmetry between the expressions for f (t ) and f̂ (ω). As it turns out,
absolute integrability of f (t ) is enough to ensure the Fourier integral theorem to be valid, i.e.,
we need not impose something similar on f̂ (ω).

Example 4.1.4. The rectangular pulse recta(t ) as defined in Definition 2.5.1 is bounded and
of finite duration, so it is absolutely integrable. Its Fourier transform f̂ (ω) equals

f̂ (ω) =
∫ ∞

−∞
recta(t )e−iωt dt =

∫ a/2

−a/2
e−iωt dt

= e−iωt

−iω

∣∣∣t=a/2

t=−a/2
= eiaω/2 − e−iaω/2

iω

= sin(aω/2)

ω/2
= a sinc(aω/2).

2π
a

a

�

The function f̂ (ω) is known under a variety of names. It is called the Fourier transform of
f (t ), and sometimes it is referred to as the spectrum or frequency spectrum of f (t ). Also plots
of f̂ (ω) as a function of ω are called spectrum or frequency spectrum. Since f̂ (ω) is generally
complex-valued, a plot of f̂ (ω) consists generally of two parts, one of its amplitude versus
frequency, and one of its phase versus frequency. This amplitude A(ω) and phase φ(ω) follow
from the polar form

f̂ (ω) = A(ω)eiφ(ω)

in which A(ω) is real and nonnegative, and φ(ω) also real, often restricted to the interval
[−π,π]. We call A(ω) the amplitude spectrum and φ(ω) the phase spectrum.

The Fourier transform f̂ (ω) is said to describe the function in the frequency domain or
the ω-domain. In the previous chapter we found that T -periodic signals are built up from
a discrete set of frequencies, namely the multiples of the fundamental frequency. Aperiodic
signals as we see now are built up from a continuum of frequencies: ω ∈R.

The Fourier transform can reveal properties of the signal f (t ) that may not be apparent
from f (t ) itself. Consider Example 4.1.4, where we computed the Fourier transform of the
rectangular pulse recta(t ). Figure 4.1 shows for three values of a the corresponding recta(t )
and its Fourier transform. What we notice is that for small values of a the Fourier trans-
form is smeared out over a wide frequency range (Figure 4.1a,b). More important for our
understanding of the Fourier transform is to see what happens if a is large, such as shown
in Figure 4.1(e,f). In that case recta(t ) is constant equal to 1 for a long time. As we see from
Figure 4.1(f), this apparently implies that the Fourier transform is practically built up from
the single frequency ω = 0 only; for all other frequencies the Fourier transform f̂ (ω) is very
small. Stated differently, the signal recta(t ) for large a has its “frequency content” concen-
trated around ω = 0. This, in hindsight, is actually not surprising, since f̂ (0) being relatively
large means that the zero frequency dominates, and zero frequency means constant signal.
Slightly more concrete: if f̂ (ω) is relatively large on some small interval [−ε,ε] and relatively
small outside this interval, then

f (t ) := 1

2π

∫ ∞

−∞
f̂ (ω)eiωt dω

approximately equals

1

2π

∫ +ε

−ε
f̂ (ω)eiωt dω≈ 2ε

2π
f̂ (0)e0t
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1

f1(t )= rect1/2(t )

(a)
0−50 50

0

5
f̂1(ω)= 1

2 sinc( 1
2ω/2)

(b)

0−1 1

0

1

f2(t )= rect2(t )

(c)
0−50 50

0

5
f̂2(ω) = 2sinc(2ω/2)

(d)

0−2.5 2.5

0

1

f3(t )= rect5(t )

(e)
0−50 50

0

5
f̂3(ω) = 5sinc(5ω/2)

(f)

0−2.5 2.5

0

1

f4(t )= rect5(t )cos(ω0t ), ω0 = 5π

(g)
0−50 50

0

5
f̂4(ω) = 1

2 ( f̂3(ω+ω0)+ f̂3(ω−ω0))

(h)
−ω0 ω0

FIGURE 4.1: Examples of signals fi (t ) and their Fourier transforms f̂i (ω)
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which is constant as a function of time. For similar reasons it is to be expected that a signal
f (t ) such as

f (t ) = recta(t )cos(ω0t )

has its frequency content concentrated around frequency ω=±ω0, that is, has a Fourier trans-
form f̂ (ω) with spikes near ω = ±ω0. Indeed, if we do the computation of f̂ (ω) then we get
what is shown in Figure 4.1(h).
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FIGURE 4.2: Vlissingen seawater level f (t ) and its | f̂ (ω)|

Example 4.1.5 (Low tide and high tide). Near the city of Vlissingen the water level f (t ) of the
sea is measured every ten minutes. Figure 4.2 depicts the water level for a time span of three
days and sixty days. The first measurement in both plots is from 1 September 1989 at ten
minutes past 11am. With numerical recipes it is possible to compute with high accuracy the
Fourier transform f̂ (ω) of f (t ). The two plots in the bottom half of the figure show | f̂ (ω)| over
two ranges of frequencies. Note the huge spike of | f̂ (ω)| just to the left of ω

2π = 2. This tells us
that f (t ) is close to periodic, with period T ≈ 1/2, which means half a day. It represents the
(first harmonic of the) fluctuation of the water level due to the moons gravitational pull. Also
note the little humps in | f̂ (ω)| at about ω

2π = 4 and ω
2π = 6. (We have something more to say

about this in § 4.5.) Can you explain the little spike of | f̂ (ω)| at precisely ω
2π = 1? �

Example 4.1.6 (Almost hidden frequencies). Visual inspection of the following superposi-
tion of two damped harmonic signals

f (t ) = [cos(2πt )+ 1

10
cos(3πt )]e−t 2/10

0 1
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reveals only one of the two frequencies, ω= 2π. The other frequency, ω= 3π, is hidden due to
its small amplitude. Both frequencies do show up in the Fourier transform:

f̂ (ω) =
0 2π 3π

Nice, the Fourier transform has the ability to reveal even the tiniest of harmonic signals. �

4.2 Fourier transform properties

The term Fourier transform refers to the function f̂ (ω) = ∫ ∞
−∞ f (t )e−iωt dt , but it also used for

the mapping F that sends f (t ) to f̂ (ω):

F{ f (t )} :=
∫ ∞

−∞
f (t )e−iωt dt .

Likewise, the inverse Fourier transform either refers to the mapping F−1 that sends f̂ (ω) to
f (t ), or refers to f (t ) itself, seen as the result of a given f̂ (ω).

The connection between f (t ) and f̂ (ω) is conveniently expressed as a transform pair

f (t )
F←→ f̂ (ω).

Several properties and rules of calculus are collected in Table 4.1. They are:

Linearity. This property says that a1 f1(t )+a2 f2(t )
F←→ a1 f̂1(ω)+a2 f̂2(ω) for every two com-

plex numbers a1 and a2. In words: the Fourier transform F is a linear mapping.

Reciprocity. This rule says f̂ (t )
F←→ 2π f (−ω). It is a curious one because f̂ is now considered

a function of time! The proof exploits the similarity between (4.4) and (4.5). Proof: first
in Eqn. (4.5) interchange ω and t :

f̂ (t ) =
∫ ∞

−∞
f (ω)e−iωt dω,

and then substitute w =−ω:

f̂ (t ) =
∫ w=−∞

w=+∞
f (−w)eiw t d(−w).

Swapping the integration boundaries swaps the sign of the integral, hence

f̂ (t ) = 1

2π

∫ ∞

−∞
2π f (−w)eiw t dw.

Finally we replace w by ω,

f̂ (t ) = 1

2π

∫ ∞

−∞
2π f (−ω)eiωt dω.

This says that 2π f (−ω) is the Fourier transform of f̂ (t ).

Conjugation. The conjugation rule f ∗(t )
F←→ f̂ ∗(−ω) is easily proved:

F{ f ∗(t )} =
∫ ∞

−∞
f ∗(t )e−iωt dt =

(∫ ∞

−∞
f (t )eiωt dt

)∗
= f̂ ∗(−ω).
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Time-scaling. This rule claims that f (at )
F←→ 1

|a| f̂ (ωa ), provided a ∈ R, a 6= 0. In particular it

says that f (−t )
F←→ f̂ (−ω). First the proof for a > 0. Then

F{ f (at )} =
∫ ∞

−∞
f (at )e−iωt dt = {substitute τ= at } = 1

a

∫ ∞

−∞
f (τ)e−iωτ/a dτ= 1

a
f̂ (
ω

a
).

If a < 0 then the integral gains a minus sign since the boundaries of integration −∞ and
∞ swap. This explains the absolute value in the general formula.

Time-shift. The rule f (t −τ)
F←→ f̂ (ω)e−iωτ follows directly

F{ f (t −τ)} =
∫ ∞

−∞
f (t −τ)e−iωt dt

= {substitute v = t −τ} =
∫ ∞

−∞
f (v)e−iω(v+τ) dv = f̂ (ω)e−iωτ.

Frequency-shift. Dual to the time-shift rule is the frequency-shift rule f (t )eiω0t F←→ f̂ (ω−ω0).
Proof:

F{ f (t )eiω0t } =
∫ ∞

−∞
f (t )e−i(ω−ω0)t dt = f̂ (ω−ω0).

Application of this and Euler’s formula readily gives the modulation theorem:

f (t )cos(ω0t ) = 1

2
( f (t )eiω0t + f (t )e−iω0t )

F←→ 1

2
( f̂ (ω−ω0)+ f̂ (ω+ω0)).

Differentiation with respect to time. This is going to be a very useful rule when we consider

differential equations. The rule is f ′(t )
F←→ iω f̂ (ω). Proof:

F{ f ′(t )} =
∫ ∞

−∞
f ′(t )e−iωt dt =

[
f (t )e−iωt

]∞
−∞

+ iω
∫ ∞

−∞
f (t )e−iωt dt = iω f̂ (ω),

provided limt→±∞ f (t ) = 0, which is usually the case if f (t ) is absolutely integrable.

Integration with respect to time. The converse of the differentiation rule is
∫ t
−∞ f (τ) dτ

F←→
f̂ (ω)
iω , provided f̂ (0) = 0. Proof: let g (t ) = ∫ t

−∞ f (τ) dτ, then g ′(t ) = f (t ) and

lim
t→∞g (t ) =

∫ ∞

−∞
f (τ) dτ=

∫ ∞

−∞
f (τ)e−i0τ dτ= f̂ (0) = 0,

and, also, g (t ) → 0 as t → −∞ because f (t ) is assumed absolutely integrable. Using
integration by parts and g ′(t ) = f (t ) we get that

F{g (t )} =
∫ ∞

−∞
g (t )e−iωt dt =

[
g (t )

e−iωt

−iω

]∞
−∞︸ ︷︷ ︸

0

+ 1

iω

∫ ∞

−∞
f (t )e−iωt dt = f̂ (ω)

iω
.

Differentiation with respect to frequency. This rule states −it f (t )
F←→ f̂ ′(ω). It follows from

integration by parts,

1

2π

∫ ∞

−∞
f̂ ′(ω)eiωt dω= 1

2π

[
f̂ (ω)eiωt ]∞

−∞− it

2π

∫ ∞

−∞
f̂ (ω)eiωt dω=−it f (t ),

provided limω→±∞ f̂ (ω) = 0, but this is always the case for absolutely integrable f (t )
(see Lemma 4.1.1).

Note the symmetry between the time-shift and frequency-shift rules, and between time-
and frequency differentiation rules. Table 4.1 collects the various properties. Table 4.2 brings
together some of the more standard Fourier transform pairs. In the derivation of these trans-
form pairs extensive use is made of the above properties.
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TABLE 4.1: Some standard Fourier transform properties

Property Time domain Freq. domain Condition

Linearity a1 f1(t )+a2 f2(t ) a1 f̂1(ω)+a2 f̂2(ω)

Duality f̂ (t ) 2π f (−ω)

Conjugation f ∗(t ) f̂ ∗(−ω)

Time-scaling f (at )
1

|a| f̂
(ω

a

)
a ∈R, a 6= 0

Time-shift f (t −τ) f̂ (ω)e−iωτ

Frequency-shift f (t )eiω0t f̂ (ω−ω0)

Modulation Thm. f (t )cos(ω0t )
f̂ (ω−ω0)+ f̂ (ω+ω0)

2

Differentiation (time) f (n)(t ) (iω)n f̂ (ω) lim
t→±∞ f (t ) = 0

Integration (time)
∫ t
−∞ f (τ) dτ

f̂ (ω)

iω
f̂ (0) = 0

Differentiation (freq.) −it f (t ) f̂ ′(ω)

TABLE 4.2: Some standard Fourier transform pairs

f (t ) f̂ (ω) Condition

recta(t ) a sinc(aω/2) a > 0

triana(t ) a sinc2(aω/2) a ∈R, a > 0

e−a|t | 2a

a2 +ω2 Re a > 0

t n

n! e−at 1(t )
1

(a + iω)n+1 Re a > 0; n ∈N

− t n

n! e−at 1(−t )
1

(a + iω)n+1 Re a < 0; n ∈N

e−(at )2
p
π

|a| e−(ω/(2a))2
a ∈R, a 6= 0

a sinc(at/2) 2πrecta(ω) a ∈R, a > 0
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4.3 Examples

Let us start with a very important example.

Example 4.3.1 (Rectangular pulse in frequency domain). In Example 4.1.4 we established
the pair

recta(t )
F←→ a sinc(aω/2).

Application of the reciprocity rule then gives us

a sinc(at/2)
F←→ 2πrecta(ω). (4.6)

The Fourier transform of the signal a sinc(at/2) apparently is 2πrecta(ω) even though the sinc
is not absolutely integrable. The formulas of the Fourier integral theorem remain valid in this
case. �

The interpretation is that sinc functions contain all “low enough” frequencies with equal
power, and that all “high enough” frequencies are completely absent. They play an important
role in signal processing as we will see later.

Example 4.3.2 (Rectangular and triangular pulse). Recall the triangular pulse triana(t ) as
defined in Definition 2.5.1. Now let f (t ) equal

f (t ) = recta(t +a/2)− recta(t −a/2) −a
a

1

−1

t →

Note that f̂ (0) = ∫ ∞
−∞ f (t ) dt = 0 and that

triana(t ) = 1

a

∫ t

−∞
f (τ) dτ.

Recall that recta(t )
F←→ 2sin(aω/2)/ω. Hence based on integration in time and time shift we

get that

triana(t )
F←→ 1

iω

2sin(aω/2)

aω
(ea iω/2 − e−a iω/2) = 4sin2(aω/2)

aω2 = a sinc2(aω/2).

Interestingly both f (t ) and f̂ (ω) are real-valued. The pair as a picture is

−a a

1 F←→
2π/a

a

�

Example 4.3.3 (Towards all rational Fourier transforms). In Example 2.3.1 we saw that for
Re(a) > 0 there holds that

∫ ∞
0 e−at dt = 1/a. An immediate consequence is the Fourier trans-

form of f (t ) = e−at 1(t ). Since Re(a + iω) = Re(a) > 0 we have that

e−at 1(t )
F←→

∫ ∞

−∞
e−(a+iω)t 1(t ) dt =

∫ ∞

0
e−(a+iω)t dt = 1

a + iω
.
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Differentiating with respect to frequency n times gives

(−it )n e−at 1(t )
F←→

(
d

dω

)n 1

a + iω
= (−1)n inn!

1

(a + iω)n+1 , (Re(a) > 0).

Therefore

t n

n!
e−at 1(t )

F←→ 1

(a + iω)n+1 , (Re(a) > 0). (4.7)

Note that the Fourier transform is rational in ω.
These transform pairs are for the cases where Re(a) > 0. If Re a < 0 then similarly it may

be shown that

− t n

n!
e−at 1(−t )

F←→ 1

(a + iω)n+1 , (Re(a) < 0).

The inverse Fourier transform of 1/(a + iω)n+1 hence depends rather dramatically on a. If
Re(a) > 0 then the inverse Fourier transform is t n

n! e−at 1(t ) which is zero for all negative time,

but if Re(a) < 0 then the inverse Fourier transform is − t n

n! e−at 1(−t ) which is zero for positive
time. �

Example 4.3.4 (More rational Fourier transforms). Suppose Re(a) > 0 and consider

e−a|t | = eat 1(−t )+ e−at 1(t ).

By linearity,

e−a|t | F←→ −1

−a + iω
+ 1

a + iω
= −(a + iω)+ (−a + iω)

(−a + iω)(a + iω)
= −2a

−a2 −ω2 = 2a

a2 +ω2 .

�

Example 4.3.5 (Gaussian Bell). We determine the Fourier transform of the Gaussian function

f (t ) = e−t 2
.

This is special derivation, and, interestingly, along the way we also derive the value of the
famous integral

β :=
∫ ∞

−∞
e−t 2

dt . (4.8)

Since e−t 2
is an even function, its Fourier transform equals

f̂ (ω) =
∫ ∞

−∞
e−t 2

cos(ωt ) dt .

Now differentiate this expression with respect to ω and then use integration by parts

f̂ ′(ω) =
∫ ∞

−∞
(−t e−t 2

)sin(ωt ) dt=
[

1
2 e−t 2

sin(ωt )
]∞
−∞︸ ︷︷ ︸

0

−ω
2

∫ ∞

−∞
e−t 2

cos(ωt ) dt=−ω
2

f̂ (ω).

This is a first order differential equation: f̂ ′(ω) =− ω
2a f̂ (ω). Next separate the variables, that is,

write the equation as

f̂ ′(ω)

f̂ (ω)
=−ω

2
.
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Integrating both sides from ω= 0, we find that ln | f̂ (ω)|− ln | f̂ (0)| = −ω2/4, or,

f̂ (ω) = f̂ (0)e−(ω/2)2
.

It is interesting to see that the Fourier transform of the Gaussian function is again a Gaussian
function. But what about the value of f̂ (0)? Realize that Fourier theory says that

f̂ (0) =
∫ ∞

−∞
e−t 2

e0 dt =β,

but it also says that

1 = f (0) = 1

2π

∫ ∞

−∞
f̂ (ω) dω= 1

2π

∫ ∞

−∞
βe−(ω/2)2

dω= β

π

∫ ∞

−∞
e−(ω/2)2

d(ω/2) = β2

π
.

So β equals β2/π. Hence we find that β=p
π. Nice. Application of the scaling property finally

gives us

e−(at )2 F←→
p
π

|a| e−(ω/(2a))2
.

Graphically:

1/a t →0

F←→
2a ω→0

�

More examples

Often the Fourier transform f̂ (ω) can be found through a combination of the rules of Ta-
ble 4.2.

Example 4.3.6 (Application of Fourier transform properties). The Fourier transform of
recta(t )cos(ω0t ) and e−at cos(ω0t )1(t ) may be obtained using the modulation theorem:

recta(t )cos(ω0t )
F←→ a

2
sinc(a(ω−ω0)/2)+ a

2
sinc(a(ω+ω0)/2), (a > 0).

(See Figure 4.1(h).) Likewise we find that

e−at cos(ω0t )1(t )
F←→ a + iω

(a + iω)2 +ω2
0

, (Re(a) > 0).

�

Example 4.3.7 (Another Application of Fourier transform properties). With help of the reci-
procity rule it follows that

1

a2 + t 2
F←→ π

a
e−a|ω|, (Re(a) > 0),

and the modulation theorem then gives

cos(ω0t )

a2 + t 2
F←→ π

2a
(e−a|ω−ω0|+ e−a|ω+ω0|), (Re(a) > 0).
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To find the Fourier transform of

f (t ) = sin2(at )

t 2 .

we use the reciprocity rule: since

trian2a(t )
F←→ 4sin2(aω)

2aω2 = 2

a
f (ω),

we have by the reciprocity rule that

2

a
f (t )

F←→ 2π trian2a(−ω) = 2π trian2a(ω).

Hence

sin2(at )

t 2
F←→πa trian2a(ω).

�

An important family of Fourier transforms are the rational functions of frequency:

Example 4.3.8 (Rational functions in frequency domain). In this example we calculate the
inverse Fourier transform of a rational function of the form

f̂ (ω) = Q(iω)

P (iω)
:= qm(iω)m +qm−1(iω)m−1 +·· ·+q1(iω)+q0

pn(iω)n +pn−1(iω)n−1 +·· ·+p1(iω)+p0
.

The coefficients pi and qi are assumed real. We shall further assume that the rational func-
tion is strictly proper which means that the degree of the numerator Q is less than that of the
denominator P . Additionally we assume that P has no zeros on the imaginary axis, i.e., that
P (iω) 6= 0 for all ω ∈R.

For rational functions there is a straightforward algorithm that always leads to an explicit
form of the inverse Fourier transform f (t ). Here we illustrate it by an example. Suppose that

f̂ (ω) = 6iω

(iω+1)(4+ω2)
. (4.9)

Now substitute s = iω and perform a partial fraction expansion (see Section A.4)

6s

(s +1)(4− s2)
= 3

s +2
− 2

s +1
− 1

s −2
.

Hence

f̂ (ω) = 3

iω+2
− 2

iω+1
− 1

iω−2
.

For each of the three terms in this sum the inverse Fourier transform has already been deter-
mined, see Table 4.2. By linearity then the inverse Fourier transform of the sum is the sum of
the inverse Fourier transforms and it equals

f (t ) = (3e−2t −2e−t )1(t )+ e2t 1(−t ).

�
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4.4 Convolution and correlation

Next we formulate and prove the convolution theorem for the Fourier integral. In fact we
consider two versions of the convolution theorem, one for convolution in the time domain
and one for convolution in the frequency domain. In the proofs we shall silently assume that
changing the order of integration is allowed. It is allowed but we do not prove it.

Theorem 4.4.1 (Convolution theorem in the time domain). Suppose that f , g are two abso-
lutely integrable functions. Then f ∗ g is also absolutely integrable and

( f ∗ g )(t )
F←→ f̂ (ω)ĝ (ω).

Proof. Determine the Fourier transform of ( f ∗ g )(t ) as follows:

F{( f ∗ g )(t )} =
∫ ∞

−∞
e−iωt

(∫ ∞

−∞
f (τ)g (t −τ) dτ

)
dt

=
∫ ∞

−∞
f (τ)

(∫ ∞

−∞
e−iωt g (t −τ) dt

)
dτ

now use the rule g (t −τ)
F←→ ĝ (ω)e−iωτ

=
∫ ∞

−∞
f (τ)ĝ (ω)e−iωτ dτ= f̂ (ω)ĝ (ω).

(We skip the proof that f ∗ g is absolutely integrable, although the proof is not hard.)

Theorem 4.4.2 (Convolution theorem in the frequency domain). Suppose that f (t )
F←→

f̂ (ω) and g (t )
F←→ ĝ (ω). Then

f (t )g (t )
F←→ 1

2π
( f̂ ∗ ĝ )(ω).

Proof. In the Fourier transform

F{ f (t )g (t )} =
∫ ∞

−∞
f (t )g (t )e−iωt dt

we substitute f (t ) for its Fourier integral

f (t ) = 1

2π

∫ ∞

−∞
f̂ (u)eiut du.

Then,

F{ f (t )g (t )} = 1

2π

∫ ∞

−∞

∫ ∞

−∞
f̂ (u)eiut du g (t )e−iωt dt

= 1

2π

∫ ∞

−∞
f̂ (u)

∫ ∞

−∞
g (t )e−i(ω−u)t dt du

= 1

2π

∫ ∞

−∞
f̂ (u)ĝ (ω−u) du = 1

2π
( f̂ ∗ ĝ )(ω). (4.10)

Example 4.4.3. Exercise 4.8 (page 118) claims that (recta ∗recta)(t ) = a triana(t ). Application
of the convolution theorem gives

F{triana(t )} = 1

a
(F{recta(t )})2 = a sinc2(aω/2).

This is in accordance with Table 4.2. �
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Example 4.4.4. Given that f (t ) = e−at 1(t )
F←→ 1/(a + iω) for all Re(a) > 0, it follows by the

convolution theorem that

F−1
{

1

(a + iω)2

}
= ( f ∗ f )(t ) =

(∫ t

0
e−aτe−a(t−τ) dτ

)
1(t ) = t e−at 1(t ).

�

In the case of periodic signals we found a way to express the power of a periodic signal in
terms of its Fourier coefficients. The result was called Parseval’s theorem. Similarly there is
a Parseval’s theorem for aperiodic signals that expresses the energy of an aperiodic signal in
terms of its Fourier transform. The energy of a signal f (t ) is defined as

E f =
∫ ∞

−∞
| f (t )|2 dt .

Theorem 4.4.5 (Parseval). Let f (t ) be a signal with E f <∞. Then

E f =
∫ ∞

−∞
| f (t )|2 dt = 1

2π

∫ ∞

−∞
| f̂ (ω)|2 dω.

Proof. The rule f (t )g (t )
F←→ 1

2π ( f̂ ∗ ĝ )(ω) when written out becomes∫ ∞

−∞
f (t )g (t )e−iωt dt = 1

2π

∫ ∞

−∞
f̂ (v)ĝ (ω− v) dv.

Now take ω= 0,∫ ∞

−∞
f (t )g (t ) dt = 1

2π

∫ ∞

−∞
f̂ (v)ĝ (−v) dv.

For a more symmetrical version, replace g (t ) with g∗(t ) and the corresponding Fourier trans-
form ĝ (ω) with ĝ∗(−ω). Then we get∫ ∞

−∞
f (t )g∗(t ) dt = 1

2π

∫ ∞

−∞
f̂ (v)ĝ∗(v) dv. (4.11)

This is an important equality. The result follows if we take g (t ) = f (t ).

Example 4.4.6. In Example 4.3.7 (for a = 1) we derived the Fourier transform pair sin2(t )
t 2

F←→
π trian2(ω). With the help of Parseval we then get∫ ∞

−∞
sin4(t )

t 4 dt = 1

2π

∫ ∞

−∞
(π trian2(ω))2 dω=π

∫ 2

0
(1− 1

2
ω)2 dω= 2

3
π.

�

An operation closely related to the convolution product is the cross correlation of two
signals.

Definition 4.4.7 (Cross correlation). Let f1(t ) and f2(t ) be two signals with E f1 <∞ and E f2 <
∞. The cross correlation ρ1,2(t ) of f1(t ) and f2(t ) is defined as

ρ1,2(t ) =
∫ ∞

−∞
f1(t +τ) f ∗

2 (τ) dτ.

�
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The Fourier transform of ρ1,2(t ) follows from the convolution theorem on noting that
ρ1,2(t ) is the convolution product of the signals f (t ) = f1(t ) and g (t ) = f ∗

2 (−t ) with respec-
tive Fourier transforms f̂1(ω) and f̂ ∗

2 (ω). Hence

ρ1,2(t )
F←→ f̂1(ω) f̂ ∗

2 (ω). (4.12)

If f2(t ) = f1(t ) = f (t ) then ρ(t ) = ρ1,1(t ) is called the autocorrelation of f (t ). The Fourier trans-
form of ρ(t ) is therefore equal to f̂ (ω) f̂ ∗(ω) = | f̂ (ω)|2, which is called the energy spectrum or
spectral density of f (t ). The inverse Fourier transform now yields the formula

ρ(t ) =
∫ ∞

−∞
f (t +τ) f ∗(τ) dτ= 1

2π

∫ ∞

−∞
| f̂ (ω)|2eiωt dω.

Substitute t = 0 and what follows is again Parseval’s equality. Moreover it follows that

|ρ(t )| ≤ 1

2π

∫ ∞

−∞
| f̂ (ω)|2|eiωt |dω= 1

2π

∫ ∞

−∞
| f̂ (ω)|2 dω= ρ(0),

In other words, the auto correlation is maximal for t = 0. This means that f (t ) correlates best
with itself. That makes sense.

Example 4.4.8 (Sliding window averaging & noise reduction, continued). In Example 2.7.2
we showed that averaging f (t ) over an interval of length P , like

fswa(t ) = 1

P

∫ t+P/2

t−P/2
f (τ) dτ

can be seen as a convolution fswa = ( f ∗ g ) with

g (t ) = 1

P
rectP (t ).

In frequency domain the process of averaging hence means multiplying the Fourier trans-
form with the Fourier transform of g (t ),

ĝ (ω) = sinc(ωP/2).

Therefore

f̂swa(ω) = f̂ (ω)sinc(ωP/2).

Note that ĝ (ω) tends to zero as ω→∞. The high-frequency components in f (t ) are therefore
attenuated more than the low frequency components. This agrees with our understanding
of averaging. Also, the larger the averaging interval P , the faster ĝ (ω) decays to zero as ω→
∞, i.e., the more the high-frequency components are attenuated. Again this agrees with our
understanding of averaging. �

4.5 Fourier transforms with delta functions

It makes sense to define the Fourier transform of the delta function using the sifting property,
that is,

F{δ(t )} =
∫ ∞

−∞
δ(t )e−iωt dt = 1. (4.13)
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From Theorem 4.1.3 we know that absolutely integrable signals can be recovered from their
Fourier transform through an inverse Fourier transform which is in the form of an integral. In
the case of the delta function, however, this integral

1

2π

∫ ∞

−∞
eiωt dω

diverges! In a proper setup — but that is beyond the scope of this course — the inverse
Fourier transform of 1 can be given a meaning and can be shown to equal δ(t ). We simply
define that

F{δ(t )} = 1.

Its implication that δ(t ) is built up from all harmonics 1
2π δ̂(ω)eiωt with equal weight 1

2π δ̂(ω) =
1

2π is a bit difficult to interpret.
Delta functions in the frequency domain δ(ω) have a more appealing interpretation. Con-

sider f̂ (ω) = δ(ω) and apply it to the inverse Fourier transform (assuming this makes sense)

f (t ) = 1

2π

∫ ∞

−∞
δ(ω)eiωt dω= {sifting property} = 1

2π
ei0t = 1

2π
.

It is a constant signal, i.e. a signal with frequency zero, and this agrees perfectly with our
understanding that δ(ω) only contains the zero frequency. Its Fourier transform f̂ (ω) =∫ ∞
−∞

1
2π e−iωt dt is now not defined, but also in this case it is possible, in a proper setup, to

give it a meaning and to show that the Fourier transform equals f̂ (ω) = δ(ω).
Summarizing, delta functions in one domain correspond to constant functions in the

other.

Example 4.5.1.

• δ(t −τ)
F←→ e−iωτ.

This is a direct consequence of the time-shift rule and the fact that δ(t )
F←→ 1.

• eiω0t F←→ 2πδ(ω−ω0).

This is a direct consequence of the frequency-shift rule and the fact that 1
2π

F←→ δ(ω).

• cos(ω0t )
F←→π(δ(ω+ω0)+δ(ω−ω0)).

It follows from the Modulation theorem (Page 101).

�

That the Fourier transform of f (t ) = cos(ω0t ) equals

f̂ (ω) =π(δ(ω+ω0)+δ(ω−ω0)),
−ω0 ω0 ω→

again agrees with our understanding of what the Fourier transform f̂ (ω) entails. The above
function f̂ (ω) consists of two spikes, one spike at frequency −ω0 and one at ω0. Its frequency
content is therefore concentrated at the frequencies ±ω0 only, and does not depend on any
other frequency. Indeed, cos(ω0t ) is like that. Table 4.3 collects some generalized Fourier
transform pairs, including some that we did not treat. The rules that hold for the classical
Fourier transform remain valid if we extend it with the Fourier transform pairs of Table 4.3
(proof is omitted). In those rules any derivative should now be understood to mean the gen-
eralized derivative. Even the convolution theorems remain valid.
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Example 4.5.2. Let f (t ) = e−t 1(t ). Then f ′(t ) = e−tδ(t )− e−t 1(t ) = δ(t )− e−t 1(t ). The Fourier
transform of f ′(t ) equals 1−1/(1+ iω) = iω/(1+ iω). Via the differentiation rule we get that
the Fourier transform of f ′(t ) equals the Fourier transform f̂ (ω) = 1/(1+ iω) of f (t ) multiplied
with iω. Indeed, this gives the same result. �

TABLE 4.3: Some generalized Fourier transform pairs. (Warning: the final two pairs are
not treated in this course. To understand these we would have to dig deeper into delta
functions and other generalized functions.)

f (t ) f̂ (ω)

δ(t ) 1

1 2πδ(ω)

δ(t −b) e−iωb

eiω0t 2πδ(ω−ω0)

cos(ω0t ) π(δ(ω−ω0)+δ(ω+ω0))

sgn(t ) 2
iω

1(t ) 1
iω +πδ(ω)

4.6 Applications

Frequency response for ODEs

In Section 4.4 we saw that we can use the Fourier transform to calculate certain convolutions.
In this section we show that the Fourier transform can also help to solve certain ordinary
differential equations.

Consider the differential equation (see also (3.16))

pn y (n)(t )+pn−1 y (n−1)(t )+·· ·+p1 y (1)(t )+p0 y(t ) (4.14)

= qmu(m)(t )+qm−1u(m−1)(t )+·· ·+q1u(1)(t )+q0u(t ), t ∈R,

with p0, p1, . . . , pn , q0 . . . , qm ∈ R, and u(t ) the input signal. Furthermore, we assume that m ≤
n. Suppose now that both u(t ) and y(t ) possess a Fourier transform, and that u(t ), y(t ) and
its derivatives are zero at plus and minus infinity, then we may take the Fourier transform of
Eqn. (4.14),

F{pn y (n)(t )+pn−1 y (n−1)(t )+·· ·+p1 y (1)(t )+p0 y(t )}

=F{qmu(m)(t )+qm−1u(m−1)(t )+·· ·+q1u(1)(t )+q0u(t )}.

Using the linearity of the Fourier transform, this equation is equivalent to

pnF{y (n)(t )}+pn−1F{y (n−1)(t )}+·· ·+p1F{y (1)(t )}+p0F{y(t )}

= qmF{u(m)(t )}+qm−1F{u(m−1)(t )}+·· ·+q1F{u(1)(t )}+q0F{u(t )}.

By the differentiation property this becomes

pn(iω)n ŷ(ω)+pn−1(iω)n−1 ŷ(ω)+·· ·+p1(iω)ŷ(ω)+p0 ŷ(ω) (4.15)

= qm(iω)mû(ω)+qm−1(iω)m−1û(ω)+·· ·+q1(iω)û(ω)+q0û(ω),
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where we have used our standard notation û(ω) =F{u(t )}, ŷ(ω) =F{y(t )}. The above equation
we can solve for ŷ(ω),

ŷ(ω) = qm(iω)m +qm−1(iω)m−1 +·· ·+q1(iω)+q0

pn(iω)n +pn−1(iω)n−1 +·· ·+p1(iω)+p0
û(ω). (4.16)

The function before û(ω) is called the frequency response, and is denoted by ĥ(ω). Thus

ĥ(ω) = qm(iω)m +qm−1(iω)m−1 +·· ·+q1(iω)+q0

pn(iω)n +pn−1(iω)n−1 +·· ·+p1(iω)+p0
. (4.17)

Note that the frequency response of (4.14) is the transfer function H(s) of this equation eval-
uated at s = iω, see Theorem 3.7.1:

ĥ(ω) = H(iω).

Summarizing, we see that we can write the Fourier transform of the output of (4.14) as a prod-
uct of the frequency response and the Fourier transform of the input, provided both Fourier
transforms exist.

Before we discuss the existence of the Fourier transform for these signals we take a closer
look at (4.17). From Example 4.3.8 we know that the inverse Fourier transform of a rational
function exists, provided it has no poles on the imaginary axis. Hence there exists a function
h(t ) whose Fourier transform is given by (4.17). This function is called the impulse response.
The name of this function can be easily understood: let u(t ) be the delta function δ(t ). The
Fourier transform of the delta function is 1, and so by (4.16) we obtain that the Fourier trans-
form of the corresponding output is given by

ŷ(ω) = qm(iω)m +qm−1(iω)m−1 +·· ·+q1(iω)+q0

pn(iω)n +pn−1(iω)n−1 +·· ·+p1(iω)+p0
1 = ĥ(ω).

Taking the inverse Fourier transform at the left- and right-hand side, we conclude that the
output (also known as the response) corresponding to the impulsive input signal u(t ) = δ(t )
is h(t ), hence the name impulse response.

Using the formula of (4.17), we can write Eqn. (4.16) as

ŷ(ω) = ĥ(ω)û(ω). (4.18)

Hence the Fourier transform of the output is the product of Fourier transform of the impulse
response and the Fourier transform of the input. By the Convolution Theorem 4.4.1 we obtain
an expression in time domain, namely

y(t ) = (h ∗u) (t ) =
∫ ∞

−∞
h(τ)u(t −τ)dτ. (4.19)

Now we have two remaining questions. Firstly,

• do u(t ) and y(t ) possess a Fourier transform?,

and, secondly,

• why do we find here only one solution y(t ) even though differential equations (4.14)
have many solutions?
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The second question we address in Example 4.6.1. We concentrate on the first question. The
existence of the Fourier transform of the input depends on the choice of the input. For ex-
ample e−t 1(t ) possesses a Fourier transform, whereas e−t 1(−t ) does not (it is not absolutely
integrable). Whether the input signal has a Fourier transform is usually easy to check. For the
output y(t ) there are two approaches:

1. First assume that the Fourier transform of the output exists, and then solve the equation
by calculating the inverse Fourier transform of (4.16). Once the output is found, check
whether it has a Fourier transform. This type of formal calculus in known as Heaviside
symbolic calculus.

2. Try to guarantee existence of the Fourier transform of y(t ) by exploiting properties of
u(t ) and the differential equation or h(t ). For systems described by ODEs (4.14) the fol-
lowing can be shown to hold: if u(t ) is absolutely integrable and Fourier transformable,
m ≤ n and the characteristic equation has no imaginary roots, then there always exists
an absolutely integrable Fourier transformable solution y(t ) of the ODE.

Normally, one takes the first approach. We illustrate this on the example of the RC -
network, see also Example 3.7.3.

R

vR (t )←−
−→i (t )

C ↑ y(t )= vC (t )u(t ) ↑

FIGURE 4.3: An RC -network (Example 4.6.1)

Example 4.6.1 (RC -network). Consider the RC -network from Example 3.7.3 as shown in Fig-
ure 4.3. In that example we derived the differential equation describing the relation between
the voltage delivered by the source, u(t ), and the voltage across the capacitor, y(t ),

y (1)(t )+αy(t ) =αu(t ), t ∈R (4.20)

in which α= 1
RC .

From equation (4.17) we see that the frequency response of the system is given by

ĥ(ω) = α

iω+α
Using Table 4.2 we obtain that the impulse response is given by h(t ) =αe−αt 1(t ).

Assume next that the input voltage is given by u(t ) = e−2αt 1(t ). This input signal has a
Fourier transform, which is given by

û(ω) = 1

iω+2α
.

Assuming that the output is Fourier transformable, we find that (see (4.18))

ŷ(ω) = α

iω+α
1

iω+2α
= α

(iω+α)(iω+2α)
.

Performing partial fraction expansion, we find

ŷ(ω) = 1

iω+α − 1

iω+2α
,

113



and thus

y(t ) = (
e−αt − e−2αt )1(t ). (4.21)

It is easy to see that this function has a Fourier transform, and so it is a solution of (4.20).
Now we can take a closer look at this solution. We know that given any particular solu-

tion, y(t ), we can generate another particular solution by adding any of the homogeneous
solutions. The function given in (4.21) satisfies (4.20); it is a particular solution. Now the
question is: why does the Fourier technique result in this particular solution and not in any
of the others,

y(t ) = (
e−αt − e−2αt )1(t )+ yhom(t ). (4.22)

Here is the reason: the homogeneous solutions satisfy y (1)
hom(t )+αyhom(t ) = 0, and it is well

known that these are the functions of the form yhom(t ) = c e−αt with c ∈ C. The general solu-
tion of (4.20) hence is(

e−αt − e−2αt )1(t )+ c e−αt .

As the homogeneous part, c e−αt , is an exponential function defined on the whole real line,
it is not absolutely integrable (unless c = 0). Hence it is not Fourier transformable (unless
c = 0), see Theorem 4.1.3. Thus the only solution (4.22) that possesses a Fourier transform
is the one given in (4.21). Since we have assumed from the start that our solution should
possess a Fourier transform, this is the solution we find. In the next chapter we introduce a
transformation that has the benefit of providing all solutions, with the proviso that it does so
only for positive time. �

Shannon’s sampling theorem

t →

(a)

f (t )

n →

(b)

f [n]

t →

(c)

g (t )

FIGURE 4.4: Continuous-time signal f (t ); discrete-time signal f [n] := f (nTs) derived
from samples of f (t ) and sampling period Ts > 0; One possible continuous-time signal
g (t ) derived from samples f [n] and Ts

Communication between the continuous-time we live in and the discrete-time world of
computers, is done through sampling and holding devices. As explained briefly on page 43,
sampling is the act of taking values of a continuous-time signal f (t ) at multiples of a fixed
sampling period Ts, resulting in a discrete-time signal f [n] := f (nTs), (n ∈ Z). A holding de-
vice is any device that takes a discrete-time signal f [n] and produces a continuous-time sig-
nal. The most obvious holding device is the zero order hold, which produces the piecewise
constant continuous-time signal g (t ) such that g (nTs+t ) = f [n] for every t ∈ [0,Ts) and n ∈Z.
Figure 4.4 illustrates the idea.

It is to be expected that with sampling some information of the original continuous-time
signal f (t ) is lost. It is unlikely that the samples f [n] are enough to reconstruct by some
sort of holding device the signal f (t ). For example if of the signal f (t ) shown in Figure 4.5
we are only given its samples f (nTs), then we can not be sure that the samples come from
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0 Ts 2Ts 3Ts 4Ts 5Ts 6Ts 7Ts 8Ts

f (t ) g (t )

FIGURE 4.5: The signals f (t ) and g (t ) = f (t )+ sin( πTs
t ) have identical samples

f (t ) and not from g (t ) = f (t )+ sin( πTs
t ), because g (t ) and f (t ) are identical at the sampling

instances t = nTs. However, in this example the signal g (t ) contains a term sin( πTs
t ) which

is a signal whose frequency may be unrealistically high if Ts is very small. If we know that
the samples are taken from a signal that does not contain such high frequencies, then we can
discard g (t ). In this section we derive the famous generalization of this idea, namely that
bandlimited signals f (t ) can be reconstructed error-free from their samples f (nTs) provided
the sampling period Ts is small enough, i.e., provided that the sampling frequency ωs :=2π/Ts

is large enough.

Definition 4.6.2 (bandlimited signals). A signal f (t ) is bandlimited if f̂ (ω) = 0 for all |ω| >ωb

for some ωb ≥ 0. The smallest such value ωb is the bandwidth of f (t ). �

Bandlimited thus means that the signal f (t ) is not built up from unlimited high frequen-
cies, so f (t ) is smooth and does not have unlimited rapid variations. The bandwidth is the
highest frequency in f (t ).

A pathological case of sampling is when we sample a sinusoid sin(ωbt ) precisely at its
zeros:

.

This happens when the sampling frequency ωs = 2π
Ts

satisfies

ωs = 2ωb. (4.23)

The value 2ωb is known as the Nyquist rate. To allow for reconstruction of a signal f (t ) with
bandwidth ωb it suffices to take the sampling frequency higher than 2ωb:

Theorem 4.6.3 (Shannon’s sampling theorem). A signal f (t ) with bandwidth ωb can be re-
constructed error-free from its samples f [n] := f (nTs), n ∈Z, iff

ωs := 2π

Ts
> 2ωb.

In that case the continuous-time f (t ) is uniquely determined by its discrete-time samples
f [n] via

f (t ) =
∞∑

n=−∞
f [n]sinc(π( t

Ts
−n)). (4.24)
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Proof. As f̂ (ω) = 0 for all |ω| >ωs/2 >ωb we have that

f (t ) = 1

2π

∫ ∞

−∞
f̂ (ω)eiωt dω= 1

2π

∫ ωs/2

−ωs/2
f̂ (ω)eiωt dω.

On the interval [−ωs/2,ωs/2] we express f̂ (ω) as a Fourier series with period ωs,

f̂ (ω) =
∞∑

n=−∞
Fn einωTs , ω ∈ (−ωs/2,ωs/2),

in which Ts = 2π/ωs. Note that Ts here is precisely the sampling period. Since f̂ (ω) has its
support on (−ωs/2,ωs/2) we may multiply with the rectangular pulse rectωs (ω) without chang-
ing the result,

f̂ (ω) =
∞∑

n=−∞
Fn einωTs rectωs (ω), ∀ω ∈R. (4.25)

The Fourier coefficients Fn can be expressed as

Fn = 1

ωs

∫ ωs/2

−ωs/2
f̂ (ω)e−inωTs dω

= { f̂ (ω) = 0 for |ω| >ωs/2} = 1

ωs

∫ ∞

−∞
f̂ (ω)e−inωTs dω

= 2π

ωs

1

2π

∫ ∞

−∞
f̂ (ω)e−inωTs dω

= {inverse Fourier transform of f (t )} = 2π

ωs
f (−nTs) = Ts f [−n].

Now replace n by −n and we see that (4.25) becomes

f̂ (ω) = Ts

∞∑
n=−∞

f [n]e−inωTs rectωs (ω). (4.26)

From Table 4.2 we know that
ωs

2π
sinc(ωst/2)

F←→ rectωs (ω),

and with the help of the time-shift rule we then get

1

Ts
sinc(ωs(t −nTs)/2)

F←→ e−inωTs rectωs (ω).

With all this we can apply the inverse Fourier transform term by term to (4.26) and we get
what we wanted to show,

f (t ) = Ts

∞∑
n=−∞

f [n]
1

Ts
sinc(ωs(t −nTs)/2) =

∞∑
n=−∞

f [n]sinc(π(t/Ts −n)).

This completes the proof.

Compact discs store sampled signals that are sampled with a frequency of 44.1×103Hz.
Knowing Shannon’s sampling theorem it should be no surprise that a frequency of 44.1 ×
103Hz is about twice as much as what human hearing can detect. It is in fact a bit more than
twice the bandwidth of the human ear, but then again, signals stored on CDs are not actu-
ally reconstructed by the reconstruction formula (4.24), but by something more realistic. The
ideal reconstruction formula is not practical since its reconstructed f (t ) as given by (4.24) de-
pends on all future and past f [n]. This would mean that the CD has to be read in its entirety
first before sound is produced! Not very practical. Shannon’s sampling theorem constitutes a
fundamental limitation of signal reconstruction through sampling: no one in the galaxy will
be able to reconstruct signals perfectly if all that is given is that ωs ≤ 2ωb, while on the other
hand if ωs > 2ωb then perfect reconstruction is possible and (4.24) is the unique answer.
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Remark: Viewing it from a different angle, the signal f (t ) defined by the reconstruction for-
mula (4.24) is the signal of smallest bandwidth that has the given samples f (nTs), n ∈Z.

n

f [n]

t →

f [n]sinc(π(t −n))

FIGURE 4.6: Graph of f [n]sinc(π(t −n))

Example 4.6.4. For Ts = 1 the reconstruction formula (4.24) becomes

f (t ) =
∞∑

n=−∞
f [n]sinc(π(t −n)).

Each term f [n]sinc(π(t −n)) in this sum is a function that is zero at all sampling instances
t ∈Z except at t = n where it equals f [n], see Figure 4.6. �

4.7 Exercises

4.1 Shown here are graphs of three real signals f (t ) and graphs of the absolute value of their
Fourier transforms (but in another order):

f (t ) | f̂ (ω)|

For each of the three f (t ) find the matching Fourier transform.

4.2 Sketch f (t ) and determine its Fourier transform.

(a)

f (t ) =
{

et if 5 < t < 6,

0 if t < 5 or t > 6.

(b) f (t ) = t rect1(t ).

(c) f (t ) = rect1(t −2)− rect1(t +2).

4.3 Let f (t )
F←→ f̂ (ω) and ω0 > 0. Determine the Fourier transforms of the following signals.

(a) f (t )sin(ω0t ),
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(b) f (at )eiω0t , (a 6= 0),

(c) Re( f (t )),

(d) Im( f (t )).

4.4 Determine the Fourier transforms of the following signals.

(a)
sin(4t )

t
,

(b) triana(2t ) (a > 0),

(c) e−at 1(t − t0), (Re(a) > 0),

(d) t e−at 2
, (a > 0),

(e) e−at sin(ω0t )1(t ), (Re(a) > 0),

(f)
1

1+ t 2 ,

(g)
1

t 2 +2t +2
.

4.5 Let f (t )
F←→ f̂ (ω). Determine the Fourier transforms of the following signals.

(a) 2 f (3t −1),

(b) e−2it f (t −2),

(c) t f (t ),

(d) f (−1
2 t ),

(e) f (1− t ),

(f) f (t )cos2(ω0t ).

4.6 The signal f (t ) is given by

f (t ) =
{

1
2 (1+cos(πt/T )) if |t | ≤ T ,

0 if |t | > T .

Here T > 0. Determine the Fourier transform of f (t ).

4.7 Let f (t )
F←→ f̂ (ω). Determine f (t ) for the cases that f̂ (ω) equals

(a) f̂ (ω) = rect2a(ω−ω0)+ rect2a(ω+ω0),

(b) f̂ (ω) = 2+ iω

4+5iω−ω2 ,

(c) f̂ (ω) = 9

(1+ iω)2(2+ iω)
.

4.8 Show that (recta ∗recta)(t ) = a triana(t ).

4.9 Determine the convolution ( f ∗g )(t ) for the following signals using Fourier transforms.

(a) f (t ) = eat 1(−t ) and g (t ) = e−bt 1(t ) with a > 0 and b > 0,

(b) f (t ) = sinc(αt ) and g (t ) = sinc(βt ) with α> 0 and β> 0,
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4.10 A signal f (t ) is given whose Fourier transform is

f̂ (ω) = 1

iω+b

with b a nonzero real constant. Determine the Fourier transform ĝ (ω) of the following
signals g (t ).

(a) g (t ) = f (5t −4),

(b) g (t ) = t 2 f (t ),

(c) g (t ) = e2it f (t ),

(d) g (t ) = cos(4t ) f (t ),

(e) g (t ) = f (2)(t ),

(f) g (t ) = ( f ∗ f )(t ),

(g) g (t ) = f 2(t ),

(h) g (t ) = 1
it−b .

4.11 Suppose f (t )
F←→ f̂ (ω). Determine f (t ) for the cases that f̂ (ω) equals

(a) f̂ (ω) = iω trian2(ω),

(b) f̂ (ω) = e−iωt0 rect8(ω),

(c) f̂ (ω) = cos(ω)rect2π(ω).

4.12 Consider the RC -network of Example 4.6.1. Calculate the output for the following input
signals

(a) u(t ) = e−αt 1(t ),

(b) u(t ) = eαt 1(−t ),

(c) u(t ) = δ(t −1)

(d) u(t ) = cos(t ), see also Exercise 3.24.

4.13 Consider the hypnotist of Example 3.7.4 for which the differential equation is given by

`y (2)(t )+k y (1)(t )+ g y(t ) =−u(2)(t ).

The parameters of this equation are ` = 0.3 m (the length of the cord), g = 9.81 m/s2

(the gravitational constant) and k = 0.2 m/s (the friction).

(a) Find the frequency response of the above model.

(b) Determine the impulse response of this system.

(c) Determine the step response of the system (i.e., the output when u(t ) = 1(t ))

(d) Calculate the output when the input is given as e−t 1(t ).

4.14 Consider the mechanical system as shown in Figure 4.7. It is a car connected to a wall
via a spring. We are interested in the position y(t ) of the car. The external force, u(t ), is
our input (i.e., it is the signal that we can choose). The spring is assumed to be a linear
spring with spring constant k, and there is also a friction force b(t ) acting on the car. It
is assumed that b(t ) equals −0.4 times the velocity of the car.
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(a) Show that a model of the the mechanical system is given by

my (2)(t ) =−0.4y (1)(t )−k y(t )+u(t ), (4.27)

where y(t ) denotes the position with respect to its equilibrium position.

(b) Determine the frequency response.

(c) For m = 0.1kg and k = 0.4N/m determine the impulse response.

(d) For the constants as given in the previous part determine the position y(t ) assum-
ing the external force is u(t ) = e−t 1(t ).

4.15 Given is the bandlimited signal with Fourier transform

f̂ (ω) = |ω|rect2π(ω).

(a) Is the signal f (t ) uniquely determined by its samples at the time instance t =
0,±1

2 ,±1,±3
2 , . . .?

Motivate your answer.

(b) Determine f [n] for n ∈Z.

(c) Determine the energy content of f (t ).

4.16 Given are the signals

f (t ) = e−|t | and h(t ) = sin(at )

t
(a > 0).

Let g (t ) be the convolution g (t ) = ( f ∗h)(t ). For which values of a is the convolution
uniquely determined by its samples at t = 0,±1,±2, . . .?

More involved problems

4.17 Let f (t ) be an absolutely integrable signal and let the signal g (t ) be given by

g (t ) = 1

a

∫ t+a/2

t−a/2
f (u) du.

(a) Show that g (t ) is absolutely integrable.

(b) Express the Fourier transform of g (t ) in terms of the Fourier transform of f (t ).

m
k

y(t )

u(t )

b(t )

FIGURE 4.7: A mechanical system. See Exercise 4.14.
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Chapter 5

Laplace Transform

FIGURE 5.1: Pierre Simon Laplace (1749–1827)

A drawback of the Fourier transform∫ ∞

−∞
f (t )e−iωt dt

is that many signals that we wish to consider do not have a Fourier transform. The unit step
1(t ), for example, only has a Fourier transform in the generalized sense (not treated in this
course), and et 1(t ) does not have a Fourier transform at all. The Laplace transform can be
seen as an extension of the Fourier transform. It is an extension that allows to consider a
much larger family of signals, but which still inherits most of the useful properties and in-
sights of the Fourier transform. As it turns out, it gives rise to some useful new properties and
insights as well. In accordance with the Fourier transform, the two-sided Laplace transform
of a signal f (t ) is defined as

F (s) =
∫ ∞

−∞
f (t )e−st dt .

In contrast to the Fourier transform, however, in the Laplace transform we allow for general
complex s ∈ C and not just imaginary s = iω ∈ iR. This simple extension makes it possible to
take Laplace transforms of signals that hitherto were not (Fourier) transformable.

In many cases we deal with causal signals, f (t ) = 0 ∀t < 0. Assuming a causal signal f (t )
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contains no delta function components, then the Laplace transform reduces to∫ ∞

−∞
f (t )e−st dt =

∫ ∞

0
f (t )e−st dt .

The latter expression∫ ∞

0
f (t )e−st dt

is the one-sided Laplace transform. In this course we only consider the one-sided Laplace
transform, from now on referred to as the Laplace transform. It is important to realize that this
Laplace transform will also be used for non-causal signals! Taking the Laplace transform of a
non-causal signal, means that all values f (t ), t < 0 are lost in the transformation. The Laplace
transform will therefore be of use only if we are not concerned with past time function values
f (t ), t < 0; a situation that is often the case.

Later when functions with delta function components are allowed, we have to revise the
definition of the Laplace transform a bit. In the following section we consider piecewise
smooth signals.

5.1 Laplace transform

Definition 5.1.1 (Laplace transform). The Laplace transform F (s) of a signal f (t ) is defined
as

F (s) =
∫ ∞

0
f (t )e−st dt (5.1)

for those s ∈C for which the integral is convergent. �

Generally the Laplace transform of a given signal f (t ) is defined only for a subset of the
complex numbers s. If f (t ) is exponentially bounded for t > 0, that is, if numbers C and a
exist such that

| f (t )| ≤C eat ∀t > 0,

then the Laplace transform exists for all s with Re(s) > a. Indeed, for such s the integral
of (5.1) converges absolutely:∫ ∞

0
| f (t )e−st |dt =

∫ ∞

0
| f (t )||e−Re(s)t | |e−i Im(s)t |︸ ︷︷ ︸

1

dt

=
∫ ∞

0
| f (t )|e−Re(s)t dt

≤
∫ ∞

0
C eat e−Re(s)t dt

=
∫ ∞

0
C e(a−Re(s))t︸ ︷︷ ︸

decays exponentially

dt <∞.

All polynomials in t are exponentially bounded for t > 0, all exponential functions of the form
ebt are exponentially bounded. All piecewise smooth periodic signals are bounded, hence,
exponentially bounded for t > 0 as well, and all products and sums of exponentially bounded
signals are again exponentially bounded. The Laplace transform therefore applies to many
signals, many more than can be handled with the Fourier transform.
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Example 5.1.2. The Laplace transform of f (t ) = 1 is F (s) = ∫ ∞
0 e−st dt . Now e−st is a decaying

exponential function only if Re(s) > 0. So the integral exists iff Re(s) > 0 in which case F (s) =∫ ∞
0 e−st dt = e−st

−s

]∞
0 = 1/s. �

This example is instructive in that it demonstrates a fundamental feature of convergence
of Laplace transforms:

0 Re(s)

Im(s)

s =α

C

FIGURE 5.2: Region of convergence {s ∈C | Re(s) >α}

Lemma 5.1.3 (Region of convergence). For every signal f (t ) there is a unique α ∈R, possibly
α=±∞, such that F (s) exists if Re(s) >α, and does not exist if Re(s) <α.

Proof. The statement is equivalent to this:

If F (s0) exists, then F (s) exists ∀Re(s) > Re(s0).

This we prove. So, suppose s0 is such that F (s0) exists. Then Ω(t ) defined as Ω(t ) =∫ t
0 e−s0τ f (τ) dτ converges to F (s0) as t →∞, which, in particular, means that Ω(t ) is bounded

on [0,∞). This we need soon. Now suppose that Re(s) > Re(s0). Then

F (s) = lim
M→∞

∫ M

0
e−st f (t ) dt

= lim
M→∞

∫ M

0
e−(s−s0)t e−s0t f (t ) dt

= lim
M→∞

∫ M

0
e−(s−s0)tΩ′(t ) dt

= lim
M→∞

(
e−(s−s0)tΩ(t )

]t=M
t=0 + (s − s0)

∫ M

0
e−(s−s0)tΩ(t ) dt

)
. (5.2)

Since Ω(t ) is bounded, and Re(s−s0) > 0 we see that the limit (5.2) exists. Therefore F (s) exists
whenever Re(s) > Re(s0).

The number α here is called the abscissa of convergence, and we refer to the set

{s ∈C | Re(s) >α}

as the region of convergence of the Laplace transform of f (t ), see Figure 5.2. On the region
of convergence the Laplace transform exists. On the boundary {s ∈C | Re(s) =α} of this region
the Laplace transform may or may not exist, depending on f (t ) and on the value of s. In
Example 5.1.2 the abscissa of convergence is α= 0, but it may in some unlikely cases also be
−∞ or +∞. For instance, the function

f (t ) = e−t 2

123



decays to zero so incredibly fast that F (s) = ∫ ∞
0 f (t )e−st dt converges for every s. The region

of convergence then is the whole complex plane and we take the abscissa of convergence to
be α=−∞. Another function is (mind the plus sign),

f (t ) = e+t 2
.

This function grows to ∞ so unbelievably fast as t →∞ that F (s) = ∫ ∞
0 f (t )e−st dt diverges no

matter what s is. Now the region of convergence is empty and then we take α=+∞.

Example 5.1.4 (Region of convergence).

1. The unit step 1(t ) has Laplace transform∫ ∞

0
e−st 1(t ) dt =

∫ ∞

0
e−st dt = lim

N→∞
e−st

−s

]t=N

t=0
= {if Re(s) > 0} = 1

s
.

The above limit exists only if Re(s) > 0. The abscissa of convergence is therefore α= 0.

2. The causal exponential function eat 1(t ) (with a complex) has Laplace transform∫ ∞

0
e−st eat 1(t ) dt =

∫ ∞

0
e−(s−a)t dt = 1

s −a
(Re(s) > Re(a)).

The abscissa of convergence is α= Re(a).

3. The Laplace transform of f (t ) = eat cos(bt )1(t ) with a complex and b real, follows sim-
ilarly as above:∫ ∞

0
e−st eat cos(bt ) dt = 1

2

∫ ∞

0
e−(s−a−ib)t + e−(s−a+ib)t dt

= 1

2

(
1

s −a − ib
+ 1

s −a + ib

)
provided Re(s −a ± ib) > 0

= s −a

(s −a)2 +b2 .

The abscissa of convergence is α= Re(a ± ib) = Re(a).

�

The mapping that sends a signal f (t ) to its Laplace transform F (s) is denoted by L. That
is,

L{ f (t )} =
∫ ∞

0
f (t )e−st dt .

(Yes, this notation is a bit awkward, but it is quite standard.) Both F (s) and the mapping L
are referred to as the Laplace transform. Without proof we state that causal piecewise smooth
signals are uniquely determined by their Laplace transform, except at points of discontinuity.

5.2 Signals with delta function components

So far we assumed that f (t ) is a regular function. If the function has delta function compo-
nents, then we have to revise the definition of the Laplace transform slightly.

We confine ourselves to signals f (t ) of the form

f (t ) = g (t )+
N∑

n=0
anδ(t − tn). (5.3)
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Here g (t ) denotes a regular signal, the coefficients an are (complex) numbers and the tn are
arbitrary time instances, tn ∈R.

The Laplace transform of the signal f (t ) of (5.3) is now taken to be

L{ f (t )} =L{g (t )}+
N∑

n=0
anL{δ(t − tn)}.

The Laplace transform of g (t ) is the Laplace transform of a piecewise smooth signal as dealt
with in the previous section. It will be no surprise that for the Laplace transform of δ(t − tn)
we shall use the sifting property of delta functions: If tn 6= 0, then

L{δ(t − tn)} =
∫ ∞

0
δ(t − tn)e−st dt =

∫ ∞

−∞
δ(t − tn)e−st 1(t ) dt

= {1(t ) is continuous at t = tn 6= 0} =
{

0 if tn < 0,

e−stn if tn > 0.

If tn = 0, then we end up with the integral
∫ ∞

0 δ(t )e−st dt , which, as it stands, has no meaning
since the delta function δ(t ) has its spike precisely at t = 0 which is on the boundary of the
interval over which is integrated. To accommodate for this problem it is customary to adjust
the definition of Laplace transform by expanding slightly the interval over which is integrated.
The Laplace transform will henceforth be understood as

F (s) =
∫ ∞

0−
f (t )e−st dt := lim

ε↓0

∫ ∞

−ε
f (t )e−st dt . (5.4)

Consequently, for any tn ∈R, possibly tn = 0, we have that

L{δ(t − tn)} =
∫ ∞

0−
δ(t − tn)e−st dt =

{
0 if tn < 0,

e−stn if tn ≥ 0.
(5.5)

In particular the Laplace transform of the delta function δ(t ) is equal to 1. For piecewise
smooth signals f (t ) it makes no difference whether or not integration in (5.4) begins at 0
or 0− or even 0+, but for generalized functions it does make a difference, and opting for 0−

means that we want to take the effect of δ(t ) fully into account.

5.3 Properties of the Laplace transform

Following is a list of properties and rules of calculus for the Laplace transform. Only those
properties are proved whose derivation is substantially different from their corresponding
Fourier transform property. In what follows, F (s) denotes the Laplace transform of f (t ), and
α denotes the abscissa of convergence of F (s).

Linearity.

L{a1 f1(t )+a2 f2(t )} = a1L{ f1(t )}+a2L{ f2(t )}, Re(s) > max(α1,α2).

Time scaling.

L{ f (at )} = 1

a
F (

s

a
), (a > 0, Re(s) > aα).

The only difference with Fourier is that we need a > 0. We challenge you to see what
happens if a < 0.
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TABLE 5.1: Standard Laplace transform properties

Property f (t ) F (s) Condition

Linearity a1 f1(t )+a2 f2(t ) a1F1(s)+a2F2(s) Re s > max(α1,α2)

Time-scaling f (at ) 1
a F ( s

a ) a > 0, Re s >α

Time-shift f (t − t0)1(t − t−0 ) F (s)e−st0 t0 > 0, Re s >α

Shift in s-domain f (t )es0t F (s − s0) Re s > Re s0 +α

Differentiation (t ) f (1)(t ) sF (s)− f (0−) Re s >α

f (2)(t ) s2F (s)− s f (0−)− f (1)(0−) Re s >α

Integration (t )
∫ t

0− f (τ) dτ F (s)
s Re s > max(0,α)

Differentiation (s) −t f (t ) F ′(s) Re s >α

Time-shift. Based on the time-shift rule of Fourier transformation one might be tempted to
conclude that L{ f (t − t0)} = F (s)e−st0 , but there is a catch: if f (t ) equals, say,

0−2

f (t )

t →

then its translation f (t −2) is

0 2−2

f (t −2)

t →

This shows that we cannot expect any connection between the Laplace transforms of
f (t ) and f (t −2), because the Laplace transform only considers t > 0 and thus the con-
tribution of the shaded part on the Laplace transform of f (t−2) is absent in the Laplace
transform of f (t ). The solution is to remove the initial interval [0,2] by considering

2−2

1(t −2) f (t −2)

t →

The general rule is

L{ f (t − t0)1(t − t−0 )} = F (s)e−st0 , (t0 > 0, Re(s) >α).

Now the proof of the corresponding Fourier transform property can be used.

Shift in the s-domain.

L{ f (t )es0t } = F (s − s0), (Re(s) > Re(s0)+α).
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Differentiation with respect to time.

L{ f (1)(t )} = sF (s)− f (0−), (Re(s) >α). (5.6)

Proof. We prove this only for that case that f (t ) is differentiable in the classical sense.
We shall further assume that on the region of convergence f (t )e−st → 0 for t →∞. This
is practically always the case. Integration by parts gives that∫ ∞

0−
f (1)(t )e−st dt = f (t )e−st

]∞
0− + s

∫ ∞

0−
f (t )e−st dt

=− f (0−)e−s0− + s
∫ ∞

0−
f (t )e−st dt

=− f (0−)+ sF (s).

If f (t ) is piecewise smooth, then the rule (5.6) remains valid, even if the derivative f ′(t )
exists only in the generalized sense.

Integration with respect to time. Let g (t ) = ∫ t
0− f (τ) dτ. Then

L{g (t )} = F (s)

s
, (Re(s) > max(0,α)).

The derivation of this rule is postponed till we treat the convolution theorem for Laplace
transforms (see Example 5.6.2).

Differentiation with respect to s.

L{−t f (t )} = F (1)(s), (Re(s) >α).

5.4 Examples

Example 5.4.1 (Application of the differentiation rule). Let g (t ) = f ′(t ). Then by the differ-
entiation rule we have that G(s) = sF (s)− f (0−). The Laplace transform of the second deriva-
tive can be obtained by applying the differentiation rule twice:

L{ f (2)(t )} =L{g ′(t )} = sG(s)− g (0−) = s
(
sF (s)− f (0−)

)− f ′(0−)

= s2F (s)− s f (0−)− f ′(0−).

Repeated use (n times) of the differentiation rule will give

L{ f (n)(t )} = snF (s)− sn−1 f (0−)− sn−2 f ′(0−)−·· ·− f (n−1)(0−). (5.7)

If f (t ) is causal, then f (k)(0−) = 0, so then

L{ f (n)(t )} = snF (s).

�

Example 5.4.2 (Differentiation rule in s-domain). Repeated use of differentiation rule in s
gives

L{(−t )n f (t )} = F (n)(s) (n = 0,1, . . .). (5.8)

�
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Example 5.4.3 (More applications of rules).

1. Consider the signal f1(t ) = eat and the causal signal f2(t ) = eat 1(t ), and realize that they
have the same Laplace transform F1(s) = F2(s) = 1/(s − a). The derivatives of f1(t ) and
f2(t ) are

f (1)
1 (t ) = aeat , f (1)

2 (t ) = aeat 1(t )+δ(t ).

The derivative of f2(t ) is a generalized derivative since f2(t ) is discontinuous at t = 0.
With help of the differentiation rule we find that

L{ f (1)
1 (t )} = s

s −a
− f1(0−) = s

s −a
−1 = a

s −a
,

L{ f (1)
2 (t )} = s

s −a
− f2(0−) = s

s −a
.

These findings may also be obtained from direct calculation of L{ f ′
1(t )} and L{ f ′

2(t )}.

2. We know that L{eat } = 1/(s −a). Differentiate n times in the s-domain and we arrive at

L{(−t )n eat } = (−1)nn!

(s −a)n+1 ,

hence

L

{
t n eat

n!

}
= 1

(s −a)n+1 .

�

Some of the more commonly used Laplace transform pairs and properties are collected in
Tables 5.1 and 5.2.

TABLE 5.2: Standard Laplace transform pairs

f (t ), (t > 0−) F (s) Region of conv.

eat 1

s −a
Re s > Re a

t n

n!
(n = 0,1, . . .)

1

sn+1 Re s > 0

t n

n!
eat (n = 0,1, . . .)

1

(s −a)n+1 Re s > Re(a)

cos(bt )
s

s2 +b2 Re s > 0

sin(bt )
b

s2 +b2 Re s > 0

eat cos(bt )
s −a

(s −a)2 +b2 Re s > Re a

eat sin(bt )
b

(s −a)2 +b2 Re s > Re a

δ(t ) 1 ∀s ∈C
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Example 5.4.4 (The sinc). In this example we derive that∫ ∞

0

sin(t )

t
dt = π

2
. (5.9)

This is an integral that we need in the proofs of the Fourier theorems (see Appendix A.1). It
may be tempting to try to compute this integral using familiar integration techniques such
as substitution and integration by parts, but this will probably fail as no closed form expres-
sion is known for the definite integral

∫ x
0

sin(t )
t dt . Instead we first use Laplace techniques to

compute

G(s) :=L{
sin(t )

t
} =

∫ ∞

0

sin(t )

t
e−st dt , (Re(s) > 0) (5.10)

and then compute G(0) to determine the integral (5.9) that we want. According to the rule

−t f (t )
L←→ F ′(s) we have that

−sin(t )
L←→G ′(s).

On the other hand we have that L{sin(t )} = 1
s2+1 , i.e.

G ′(s) =− 1

s2 +1
, (Re(s) > 0).

Hence

G(s) = c −arctan(s), (Re(s) > 0). (5.11)

The constant c may be determined by letting s approach ∞ (and s ∈ R). Clearly the larger s
the faster e−st decays to zero as t increases. Therefore from (5.10) we get that lims→∞G(s) = 0.
Hence c in (5.11) equals arctan(∞) =π/2, and, therefore,

G(s) = π

2
−arctan(s), (Re(s) > 0).

Now we can compute the integral that we want1,∫ ∞

0

sin(t )

t
dt = lim

s↓0

∫ ∞

0

sin(t )

t
e−st dt = lim

s↓0
G(s) = π

2
.

Nice. �

Example 5.4.5 (Partial fraction expansion). The inverse Laplace transform of rational func-
tions may be determined with the help of partial fraction expansion (see Appendix A.4). The
method is the same as for determining the inverse Fourier transform of rational functions.
Let F (s) be given as

F (s) = 6s

(s +1)(s2 −4)
.

The poles of this rational function are s1 =−1, s2 =−2 and s3 = 2. Verify for yourself that the
partial fraction expansion of F (s) is

F (s) = 2

s +1
+ 1

s −2
+ −3

s +2
.

Now, from Table 5.2 we can directly write down the inverse Laplace transform,

f (t ) = 2e−t + e2t −3e−2t , (t > 0−).

�

1But is the limit of the integral the same as the integral of the limit? Well, there are situations where they are
not the same! Here, though, they are. In the course Analysis 2 you will learn about such limits.
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5.5 Limit behavior

From the Laplace transform F (s) one can fairly easily determine the initial value f (0) of the
function in time domain, as well as the final value limt→∞ f (t ). Both cases use the fact
that F (s) is “very small” if s is positive, real and “very large”. This is an intuitive result be-
cause if s is positive and “large” then e−st as a function of t goes to zero rapidly, and, hence
F (s) :=∫ ∞

0 f (t )e−st dt is probably going to be “small”. Here is the proper statement and proof:

Lemma 5.5.1 (Behaviour of the Laplace transform of s →∞). If f (t ) is of exponential order,
and piecewise continuous, then

lim
s∈R,s→∞

F (s) = 0.

Proof. Piecewise continuity is used only to guarantee existence of integrals of the form∫ M
0 f (t )e−st dt . Since f (t ) is of exponential order there are γ,C ∈ R such that | f (t )| < C eγt

for every t > 0. Now

|F (s)| =
∣∣∣∣∫ ∞

0
e−st f (t ) dt

∣∣∣∣
≤

∫ ∞

0
|e−st || f (t )|dt ≤

∫ ∞

0
e−Re(s)tC eγt dt = C

Re(s)−γ if Re(s) > γ.

The upperbound goes to zero as s →∞.

Theorem 5.5.2 (Initial value theorem). Suppose f (t ) is of exponential order, and piecewise
continuous, and that the initial value f (0+) defined as

f (0+) = lim
t↓0

f (t )

exists. Then

lim
s∈R, s→∞

sF (s) = f (0+).

Proof. Let s ∈ R, s > 0. Then sF (s) = ∫ ∞
0 f (t )e−st d(st ) = ∫ ∞

0 f (τ/s)e−τ dτ. Notice that for ev-
ery τ > 0 we have lims→∞ f (τ/s) = f (0+). If f (t ) is bounded then lims∈R, s→∞ sF (s)− f (0+) =
lims→∞

∫ ∞
0 ( f (τ/s) − f (0+))e−τ dτ = 0. This proves the result for bounded f (t ). If f (t ) is

not bounded then for some large enough α the function g (t ) = f (t )e−αt is bounded (by
assumed exponential order). Then lims→∞ sF (s) = lims→∞ sG(s −α) = lims→∞(s +α)G(s) =
g (0+)+αG(∞) = g (0+) = f (0+) (here we used Lemma 5.5.1).

To motivate the next theorem consider the function

f (t ) = c + e−2t .

The part e−2t converges to zero as t →∞ so f (t ) converges to c:

lim
t→∞ f (t ) = c.

This limiting value is sometimes called the “final value”. The final value can also be obtained
through its Laplace transform. We have

F (s) = c

s
+ 1

s +2
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and we see that the final value c is the coefficient of 1/s, or to say it differently, it is the con-
stant part of

sF (s) = c + s

s +2
.

The right-hand side at s = 0 is precisely our final value c. The property that the final value can
be discerned from the Laplace transform holds under mild assumptions:

Theorem 5.5.3 (Final value theorem). Suppose that f (t ) is continuous on every finite inter-
val [0, N ] and that the final value f (∞) defined as

f (∞) = lim
t→∞ f (t )

exists. Then

f (∞) = lim
s↓0

sF (s).

Proof. If the final value f (∞) exists, then the function is bounded and, hence, of exponential
order 0. So F (s) exists for every Re(s) > 0. On the one hand we have that

lim
s↓0

L{ f ′(t )} = lim
s↓0

sF (s)− f (0−),

and on the other we have that

lim
s↓0

L{ f ′(t )} = lim
s↓0

∫ ∞

0−
e−st f ′(t ) dt =

∫ ∞

0−
f ′(t ) dt = f (∞)− f (0−).

So lims↓0 sF (s) = f (∞). We assumed here that we are allowed to interchange limit and integral.
A proper technical proof is documented in the footnote2.

Example 5.5.4 (Final value). Let f (t ) be a signal with Laplace transform

F (s) = 5

s(s2 +2s +5)
.

To find f (t ) we use partial fraction expansion,

5

s(s2 +2s +5)
= 1

s
− s +2

s2 +2s +5
= 1

s
− 1

(s +1)2 +4
− s +1

(s +1)2 +4
.

From Table 5.2 we copy

L{1} = 1

s
, L{

1

2
e−t sin(2t )} = 1

(s +1)2 +4
, L{e−t cos(2t )} = s +1

(s +1)2 +4
,

so that

f (t ) = 1− e−t (sin(2t )+cos(2t )), (t > 0−).

From this the final value f (∞) can be seen to exist and it equals limt→∞ f (t ) = 1. This value
is indeed equal to what the final value theorem states:

lim
s↓0

sF (s) = lim
s↓0

5

s2 +2s +5
= 1.

�

2,: Let g (t ) = f (t )− f (∞). Then g (∞) = 0, and |g (t )| over t > 0 is bounded by some M > 0. For any N > 0 let
dN be the supremum of |g (t )| over [N ,∞). Since g (∞) = 0 we have limN→∞ dN = 0. Now for any s > 0 we have
that |sG(s)| = |s ∫

g (t )e−st dt | and this is bounded from above by s(M
∫ N

0 e−st dt +dN
∫ ∞

N e−st dt ) = M(1− e−sN )+
dN (e−sN ). Let N = 1/

p
s, then this upperbound is M(1− e−

p
s )+dN e−

p
s . In the limit s ↓ 0 we have N →∞ and

the upperbound goes to 0. Hence lims↓0 sG(s) = 0. Finally, note that sG(s) = sF (s)− f (∞).
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Example 5.5.5 (Final & initial value). If f (t ) = 2+3e−2t then F (s) = 2
s + 3

s+2 for Re(s) > 0. In
this case the final value is

lim
t→∞ f (t ) = 2

and this agrees with

lim
s↓0

sF (s) = lim
s↓0

2+ 3s

s +2
= 2.

The initial value theorem is confirmed as well, because

lim
s→∞ sF (s) = lim

s→∞2+ 3s

s +2
= 2+3 = 5

and f (0) = 5. �

5.6 Convolution in Laplace domain

In Section 2.7 we saw that the convolution of two causal signals f (t ) and g (t ) is again causal
and that

( f ∗ g )(t ) =
(∫ t

0
f (τ)g (t −τ) dτ

)
1(t ).

Since the Laplace transform only deals with the causal part of a signal (i.e., the part f (t ) for
t ≥ 0), it is natural to define convolutions in this respect as

( f ∗ g )(t ) =
∫ t

0
f (τ)g (t −τ) dτ, (t > 0−). (5.12)

We stress that the signals f (t ) and g (t ) are allowed to be non-causal. Also, we want to allow
delta components in f (t ) and g (t ), and so in (5.12) we have to extend slightly the interval
[0, t ] over which the integration is performed,

( f ∗ g )(t ) =
∫ t+

0−
f (τ)g (t −τ) dτ. (5.13)

Theorem 5.6.1 (Convolution theorem for the Laplace transform). Let f (t ) and g (t ) be sig-
nals with Laplace transforms F (s) and G(s) respectively. Then

L{( f ∗ g )(t )} = F (s)G(s),

where ( f ∗ g )(t ) is the convolution product (5.13). �

Proof. Similar to that of Fourier transformation. It will be convenient to express the convo-
lution as∫ t

0
f (u)g (t −u) du =

∫ ∞

0
f (u)1(t −u)g (t −u) du.

This is correct because 1(t −u) = 0 for u > t , and 1(t −u) = 1 on [0, t ]. Now

L{( f ∗ g )(t )} =
∫ ∞

0
e−st

(∫ ∞

0
f (u)1(t −u)g (t −u) du

)
dt

=
∫ ∞

0
f (u)

(∫ ∞

0
e−st 1(t −u)g (t −u) dt

)
du

=
∫ ∞

0
f (u)L{1(t −u)g (t −u)} du

=
∫ ∞

0
f (u)e−suG(s) du =

(∫ ∞

0
e−su f (u) du

)
G(s) = F (s)G(s).
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For piecewise smooth signals f (t ) and g (t ) the proof of this theorem is the same as the
proof of the convolution theorem for the Fourier transform. It may be shown that the result
is still valid when f (t ) and g (t ) contain delta function components.

Example 5.6.2 (Convolution).

a) Consider the unit step 1(t ) and an arbitrary signal f (t ). Then

L{( f ∗ 1)(t )} =L

{∫ t

0−
f (τ) dτ

}
= F (s)

s
.

(This also proves the integration rule on page 127.)

b) Consider the delta function δ(t ) and an arbitrary signal f (t ). Then

L{( f ∗δ)(t )} = F (s)×1 = F (s).

In other words ( f ∗δ)(t ) = f (t ) for all t > 0−.

�

5.7 Applications

ODEs for positive time

The Laplace transform may be used in a much the same way as Fourier transforms to convert
differential equations to algebraic equations. The advantage however is that with Laplace
transforms

• initial conditions may be taken into account, and

• signals need only be Laplace transformable not necessarily Fourier transformable.

A minor drawback is that we have to limit attention to positive time. A typical application is
that of set-point change. First an example that does not yet use Laplace transforms.

Example 5.7.1 (Set-point change). Consider again the RC -circuit of Example 3.7.3. The dif-
ferential equation that relates the input voltage u(t ) and output voltage y(t ) across the capac-
itor was found to be

y (1)(t )+αy(t ) =αu(t ), (α= 1

RC
). (5.14)

Suppose that since long the voltage u(t ) has been equal to a constant value of 1. It is easy
to believe that then y(t ) (the voltage across the capacitor) settles to a constant value as well.
Assuming that y(t ) is constant, gives us that y (1)(t ) = 0, and so from (5.14) we see that neces-
sarily the output settles to a value of y(t ) = u(t ) = 1.

Now, at t = 0, we instantaneously increase the input voltage from 1 to 2 and, keep it con-
stant from then on

u(t ) = 2, ∀t > 0.

What will happen with y(t )? That is, what is y(t ) for t > 0? Intuition tells us that the response
y(t ) is unique, but we also know that the general solution y(t ) of ODE (5.14) is not unique. It
is readily verified — see Appendix A.3 — that the general solution for t > 0 is

y(t ) = 2+βe−αt , β ∈R.
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As argued, we have shortly before the set-point change at t = 0 that y(0−) = 1. This gives us β:

1 = y(0−) = 2+βe−α0 = 2+β.

So β=−1, and we found the (unique) response to the set-point change,

y(t ) =
{

1 if t < 0

2− e−αt if t > 0 1

2

In words, after that u(t ) is increased from 1 to 2, the output y(t ) grows continuously and
exponentially from 1 upwards and settles to a final value of 2. �

Changing the reference temperature on your central heating system is another instance of
a set-point change. Set-point changes are very common. With the Laplace transform we can
redo the previous example, but now more succinctly. Indeed, initial conditions can then be
taken into account right from the start and—importantly—we can solve the problem without
having to find a particular solution.

Example 5.7.2 (Set-point change via Laplace). To find the solution y(t ) of (5.14) for u(t ) = 2
we use Laplace transformation. Recall that

L{y (1)(t )} = sY (s)− y(0−).

So, taking the Laplace transform of the Equation (5.14) gives(
sY (s)− y(0−)

)+αY (s) =αU (s).

By assumption y(0−) = 1, and u(t ) = 2 ∀t > 0, giving U (s) = 2/s. Therefore

sY (s)−1+αY (s) =α2/s.

This is an algebraic equation, and its solution is

Y (s) = 1+2α/s

s +α = s +2α

s(s +α)
= {partial fraction expansion} = 2

s
− 1

s +α .

Its inverse Laplace transform yields the time-domain y(t ) that we are after,

y(t ) = 2− e−αt , t > 0−.

This agrees with what was found earlier. �

In Example 5.7.1 we found the solution by assuming that y(t ) is continuous at t = 0. Only
then can we say that y(0−) = 2+βe−α0 = 2+β, which we needed to determine y(t ). This as-
sumption is not generally valid. In certain systems y(t ) may jump as the result of a jump in
u(t ), so the procedure in Example 5.7.1 is not generally applicable. The use of the Laplace
transform in Example 5.7.2 does not rely on any continuity assumption. The Laplace trans-
form is generally applicable. The following example demonstrates a case where y(t ) jumps.

Example 5.7.3 (Set-point change with jump). Consider the ODE

y (2)(t )−4y(t ) = u(2)(t ) (5.15)
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and suppose that u(t ) = 1(t ) and that we are given the initial conditions y(0−) = 0, ẏ(0−) = 1.
To find y(t ) for t > 0− we apply the Laplace transform on the above equation. Using the
differentiation rule (Page 126) we find that

L{y (2)(t )} = s2Y (s)− s y(0−)− y (1)(0−) = s2Y (s)−1,

and

L{u(2)(t )} = s2U (s)− su(0−)−u(1)(0−) = s2U (s) = s2 1

s
= s.

Next take the Laplace transform of (5.15), and what we get is

(s2Y (s)−1)−4Y (s) = s2U (s) = s.

This is a linear equation in Y (s) with solution

Y (s) = s +1

s2 −4
= s +1

(s −2)(s +2)
= 3/4

s −2
+ 1/4

s +2
.

The output now follows from the inverse Laplace transform,

y(t ) = 3

4
e2t + 1

4
e−2t , (t > 0−). 1

0y(0−) = 0
ẏ(0−) = 1

At t = 0 the output jumps from y(0−) = 0 to y(0+) = 1. �

Coupled ODEs

So far we have seen that the Laplace transform makes it easy to solve certain ordinary dif-
ferential equations. However, sometimes it is a lot of work to derive the ODE that relates the
input and output. Often, modeling results in a set of coupled ordinary differential equations.
One can use this set of equations to find the output corresponding to the given input and
initial conditions. This is closely related to calculating the impedance of an RLC circuit. Let
us illustrate this by means of an example.

vR (t )= y(t )vC (t )u(t )

iL(t )

FIGURE 5.3: LRC circuit

Example 5.7.4. Consider the electrical circuit of Figure 5.3. We see the voltage delivered by
the voltage source, u(t ), as the input, and the voltage y(t ), over the resistor as the output. We
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denote the current through the resistor by iL(t ), and the voltage across the capacitor by vC (t ).
Using the basic models for the inductor and capacitor, and Kirchhoff’s laws, we find

Li (1)
L (t ) = u(t )− vC (t ) (5.16)

C v (1)
C (t ) = iL(t )− 1

R
vC (t ). (5.17)

Furthermore, we have that y(t ) = vC (t ). We assume that the current through the inductor and
the voltage across the capacitor are given for t = 0−.

On both sides of both equations (5.16) and (5.17) we can apply the Laplace transform, and
using the rule for derivatives, we find

L (sIL(s)− iL(0−)) =U (s)−VC (s) (5.18)

C (sVC (s)− vC (0−)) = IL(s)− 1

R
VC (s). (5.19)

Putting all the unknowns variables on the left hand side of the equation and the known vari-
ables on the right-hand side, we obtain

LsIL(s)+VC (s) =U (s)+LiL(0−) (5.20)

−IL(s)+
(
C s + 1

R

)
VC (s) =C vC (0−). (5.21)

This are two equations in two unknowns, IL(s),VC (s), which is easy to solve. For instance, if
we add Ls times (5.21) to (5.20) we get an equation in VC (s) alone:

VC (s)+Ls

(
C s + 1

R

)
VC (s) =U (s)+LiL(0−)+LC svC (0−). (5.22)

This leads to the following equation for the (Laplace transform of the) output

VC (s) = U (s)+LiL(0−)+LC svC (0−)

LC s2 + L
R s +1

. (5.23)

Taking the inverse Laplace transform of this function gives the desired output. �

Partial differential equations

Next is a rather spectacular example. It is a prime example of the power of Laplace transfor-
mation. The partial differential equation

∂u(x, t )

∂t
= k

∂2u(x, t )

∂x2

is the mathematical model of the temperature distribution u(x, t ) at position x and time t in
an isolated bar of a material with thermal conductivity k. In the example discussed below
the bar is between x = 0 and x = 1. The example further assumes the boundary conditions
u(0, t ) = u(1, t ) = 0 and this means that the temperature is kept at 0 degrees for all time at the
outer ends of the bar, and u(x, t ) = 3sin(2πx) means that the bar has a sinusoidal distribution
at initial time t = 0. Heat will diffuse through the bar. In the example below we show that the
heat distribution is sinusoidal for all time and we derive how fast it decreases in amplitude.
Fig 5.4 depicts the heat distribution over time t and space x.
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1

u(x, t )

t = 0.2

x →0

t →

FIGURE 5.4: Temperature profile u(x, t ) as a function of position x and time t , see Exam-
ple 5.7.5
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Example 5.7.5 (Heat equation — diffusion). A function u(x, t ) is sought that satisfies the
partial differential equation (PDE)

∂u(x, t )

∂t
= ∂2u(x, t )

∂x2 , 0 < x < 1, t > 0,

and which satisfies the boundary conditions

u(0, t ) = 0, u(1, t ) = 0 for t > 0,

and the initial value condition

u(x,0) = 3sin(2πx) for 0 ≤ x ≤ 1.

We take the Laplace transform of both terms of the PDE with respect to the variable t . For
this purpose we determine that

L{
∂2u(x, t )

∂x2 } =
∫ ∞

0

∂2u(x, t )

∂x2 e−st dt = ∂2

∂x2

∫ ∞

0
u(x, t )e−st dt = ∂2

∂x2L{u} = ∂2U (x, s)

∂x2 .

Here we assume that exchange of differentiation of x and integration over t is permissible.
The transformed PDE now becomes

sU (x, s)−u(x,0) = ∂2U (x, s)

∂x2 ,

so

∂2U (x, s)

∂x2 − sU (x, s) =−3sin(2πx). (5.24)

The PDE is thus transformed into an ordinary DE. For any fixed s it is a DE with constant co-
efficients. We solve this DE with using characteristic polynomials. (Solving using the Laplace
transform is also possible!) The characteristic equation is

λ2 − s = 0.

Therefore the general solution of this homogenous solution is:

Uhom(x, s) = A(s)ex
p

s +B(s)e−x
p

s .

Notice that the integration constants A,B may depend on s so they are, as yet, arbitrary func-
tions of s! For the particular solution of the inhomogeneous DE we try

Upart(x) = c sin(2πx)+d cos(2πx).

Substitution in the DE (5.24) results in d = 0 (verify this yourself) and

−4π2c sin(2πx)− sc sin(2πx) =−3sin(2πx),

so

c = 3

s +4π2 .

The general solution of the inhomogeneous DE hence is

U (x, s) = A(s)ex
p

s +B(s)e−x
p

s + 3

s +4π2 sin(2πx). (5.25)
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We will now transform the boundary conditions, which are in principle functions of t as well,

U (0, s) =L{u(0, t )} =L {0} = 0,

U (1, s) =L{u(1, t )} =L {0} = 0.

Using the general form (5.25) this gives

A(s)+B(s) = 0,

A(s)e
p

s +B(s)e−
p

s = 0.

This results in the rather special solution A(s) = B(s) = 0, so (5.25) reduces to

U (x, s) = 3

s +4π2 sin(2πx).

This function is rational in s. Its inverse Laplace transform brings us back to the time domain,

u(x, t ) = 3e−4π2t sin(2πx).

Done. See Fig. 5.4. The amplitude of the sinusoid decays exponentially fast. �

5.8 Exercises

5.1 Determine the Laplace transform and its domain of convergence for the following sig-
nals. (Some, but not all, can be solved by consulting the tables.)

(a) t sin(πt )

(b) t 2 sin(πt )

(c) et 1(a − t ), for arbitrary a ∈R.

(d) d
dt cos(t )

(e) d
dt (cos(t )1(t ))

(f)
∑∞

k=−∞δ(t −k)

5.2 Define Euler’s constant γ :=−∫ ∞
0 ln(t )e−t dt ≈ 0.5772156649, and consider the function

f (t ) = ln(t ).

(a) Show that for every real s > 0 we have

F (s) =− ln(s)+γ
s

[Hint: do the substitution x = st .]

(b) Determine the abscissa of convergence of this function.

5.3 Determine f (t ), (t > 0−), whose Laplace transform equals

(a)
1

s −2

(b)
s

s −2

(c)
s

(s −2)2
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(d)
s3

(s −2)3

(e)
1

s2 +2s +2

(f)
s

s2 +2s +2

(g)
2

s2 + s

(h)
3s +4

s2 + s

(i)
s

s2 +2s −2

5.4 Let f (t ) = (1+ 1(t −1))cos(t ). Verify that

L{ f ′(t )} = sL{ f (t )}− f (0−).

5.5 Determine the inverse Laplace transform of the signals

(a)
1

(s2 +1)2 ,

(b)
s2 −3s +2

s2 −7s +12
,

(c)
1+ e−sπ

s2 +1
,

(d)
e−(s+a)t0

s +a
.

5.6 Suppose f (t ) is a periodic signal with period T and let F (s) be the Laplace transform
of f (t ). Now periodic signals do not have a final value f (∞) unless f (t ) is constant.
Express lims↓0 sF (s) in terms of the Fourier coefficients of f (t ).

5.7 Use the Laplace transform to determine ( f ∗ g )(t ) for the cases

(a) f (t ) = t n 1(t ) and g (t ) = t m 1(t ),

(b) f (t ) = g (t ) = e−t 1(t ),

(c) f (t ) = e−t 1(t ) and g (t ) = sin(t )1(t ).

5.8 Use the Laplace transform to solve the differential equation

y (2)(t )+3y (1)(t )+2y(t ) = u(t )

for t > 0. The input equals u(t ) = 1(t ) and the initial conditions are y(0−) = y (1)(0−) = 0.

5.9 Solve the differential equation of Exercise 5.8 for t > 0 if the input equals u(t ) = e−t and
the initial conditions are y(0−) =−1 and y (1)(0−) = 6.

5.10 Solve the differential equation of Exercise 5.8 for t > 1 if the input equals u(t ) = e−t and
the initial conditions are y(1−) =−1 and y (1)(1−) = 6.

5.11 The following differential equation is given

y (2)(t )+2y (1)(t )+5y(t ) = u(2)(t )−9u(t )

Furthermore, the input is given by u(t ) = e3t 1(t ).

Show that there exist initial conditions y(0−) and y (1)(0−) such that the solution y of the
differential equation is zero for t > 0.
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5.12 Determine all differentiable functions f : [0,∞) →R that satisfy

f (0) = 0,
∫ t

0
f (1)(t ) f (t −τ) dτ= t 4 ∀t > 0.

More involved problems:

5.13 Determine the Laplace transform of the following signals

(a) f (t ) = |sin(ω0t )|,
(b) f (t ) = btc.

Here btc denotes the floor of t defined as

btc = max
n∈Z

{n : n ≤ t }.

5.14 Let β > 0. Determine all s ∈ C for which the Laplace transform of the signal f (t ) =
1/(1+ tβ) exists. (Hint: distinguish various cases of β.)

5.15 Show that the Laplace transform of

f (t ) = 1p
t

is

F (s) =
p
πp
s

whenever Re(s) > 0. [Hint: you may want to know that
∫ ∞

0 e−t 2
dt = 1

2

p
π.]
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Appendix A

Appendices

A.1 Proofs

This appendix collects proofs that are either too complicated for the course or not insightful
enough to warrant inclusion in the main body of the lecture notes.

A.1.1 Chapter 2

Proof of Theorem 2.2.2. The modulus of a non-constant polynomial p(s) grows without
bound as |s|→∞ so there is an R > 0 such that

inf
s∈C

|p(s)| = inf
|s|≤R

|p(s)|.

The disc {s ∈ C : |s| ≤ R} is a compact set and |p(s)| is continuous, hence the above infimum
over this disc is in fact a minimum,

min
s

|p(s)| = min
|s|≤R

|p(s)|. (A.1)

Let s0 be a minimizer. If p(s0) = 0 then we are done. Now, to obtain a contradiction, assume
that p(s0) 6= 0. Consider the (finite) Taylor series expansion of p around s0,

p(s0 +h) = p(s0)+hp ′(s0)+·· ·+hk p(k)(s0)

k !
+·· · .

At least one of the derivatives in this expansion is nonzero because p is non-constant. Let
p(k)(s0) be the first nonzero derivative, that is,

p(s0 +h) = p(s0)+hk p(k)(s0)

k !
+o(hk ). (A.2)

Every h ∈C can be expressed as

hk =−εk k !p(s0)

p(k)(s0)

for some ε ∈C. Then (A.2) takes the form

p(s0 +h) = p(s0)
(
1−εk +o(εk )

)
.

For ε > 0 but small enough the term
(
1 − εk + o(εk )

)
is less than 1 (in magnitude) so then

|p(s0 +h)| < |p(s0)|. This is a contraction, hence p(s0) = 0.
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A consequence of this result is that every nonzero polynomial p(s) of degree n ≥ 0 has
exactly n zeros over the complex numbers in the sense that numbers c, s1, . . . , sn ∈C exist (with
c 6= 0) such that

p(s) = c
n∏

i=1
(s − si ).

This can be nicely proved with induction: clearly the nonzero constant polynomial of degree
n = 0 is of this form. Now let n ∈ N (in particular n > 0). The induction hypothesis is to
assume that the result holds true for all nonzero polynomials of degree less than n, and then
to consider an arbitrary polynomial p(s) degree n:

p(s) = pn sn +pn−1sn−1 +·· ·+p1s +p0, pn 6= 0.

Being non-constant it has at least one zero, say sn . Using this zero define q(s) as

q(s) = p(s)−pn sn−1(s − sn) = (
pn sn +pn−1sn−1 +·· ·+p0

)− (
pn sn −pn sn−1sn

)
. (A.3)

This polynomial also has a zero at sn because q(sn) = p(sn)− pn0 = 0. The polynomial q(s)
has degree less than n so by the induction hypothesis has a factor (s − sn), i.e., is of the form

q(s) = r (s)(s − sn)

for some polynomial r (s). (The q(s) could also be the zero polynomial in which case it is also
of the form q(s) = r (s)(s − sn).) From (A.3) it follows that

p(s) = q(s)+pn sn−1(s − sn) = (r (s)+pn sn−1)(s − sn).

This shows that p(s) has a factor (s − sn). Also, the term r (s)+ pn sn−1 has degree n − 1 and
it is not the zero polynomial (because p(s) is not the zero polynomial). Hence by the induc-
tion hypothesis r (s)+pn sn−1 has a factorization c

∏n−1
i=1 (s− si ). Consequently p(s) has as well:

p(s) = c
∏n

i=1(s − si ). This completes the proof.

A.1.2 Chapter 3

Proof of Theorem 3.2.3. Let f (t ) denote the Fourier series f (t ) = ∑∞
k=−∞ fk eikω0t . We show

that f (t ) is continuous for every time a ∈ R, that is, we show that for every ε > 0 there is a
δ> 0 such that |t −a| < δ implies that | f (t )− f (a)| < ε.

Define the partial sums

sN (t ) =
N∑

k=−N
fk eikω0t .

There holds that

| f (t )− sN (t )| = |
∑

|k|>N
fk eikω0t | ≤

∑
|k|>N

| fk |. (A.4)

By assumption
∑∞

k=−∞ | fk | <∞, so that

∑
|k|>N

| fk | =
∞∑

k=−∞
| fk |−

N∑
k=−N

| fk |→ 0 as N →∞.
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Consequently there is a large enough positive integer N1 such that for every N > N1 we get∑
|k|>N | fk | < ε/3. Considering Equation (A.4) we conclude that | f (t )− sN1 (t )| ≤ ∑

|k|>N1
| fk | <

ε/3 for every t .
For every t the partial sum sN1 (t ) is a finite sum of continuous functions, hence is itself

continuous. For the given ε> 0, therefore, a δ> 0 can be found such that |sN1 (t )−sN1 (a)| < ε/3
whenever |t −a| < δ. Finally then for all such t ,

| f (t )− f (a)| = | f (t )− sN1 (t )+ sN1 (t )− sN1 (a)− ( f (a)− sN1 (a))|
≤ | f (t )− sN1 (t )|+ | f (a)− sN1 (a)|+ |sN1 (t )− sN1 (a)|
< ε/3+ε/3+ε/3 = ε.

This completes the proof.

Lemma A.1.1. If f (t ) is piecewise smooth on [−T /2,T /2], then

lim
a→∞

∫ T /2

−T /2
f (t )

sin(at )

t
dt =π f (0+)+ f (0−)

2
.

Proof. It suffices to prove that

lim
a→∞

∫ T /2

0
f (t )

sin(at )

t
dt = π

2
f (0+),

Indeed, if the above holds then replacing t with −t readily gives

lim
a→∞

∫ 0

−T /2
f (t )

sin(at )

t
dt = lim

a→∞

∫ T /2

0
f (−t )

sin(at )

t
dt = π

2
f (0−).

Define I (a) = ∫ T /2
0 f (t ) sin(at )

t dt and express I (a) as a sum I (a) = I1(a)+ f (0+)I2(a) with

I1(a) =
∫ T /2

0

f (t )− f (0+)

t
sin(at ) dt ,

I2(a) =
∫ T /2

0

sin(at )

t
dt .

We will show that lima→∞ I1(a) = 0 and that lima→∞ I2(a) =π/2.
To calculate the limit of I2(a) we make use of the standard integral (see Example 5.4.4)∫ ∞

0

sin(t )

t
dt = π

2
.

This gives

lim
a→∞ I2(a) = lim

a→∞

∫ T /2

0

sin(at )

t
dt = {τ= at } = lim

a→∞

∫ aT /2

0

sin(τ)

τ
dτ= π

2
.

Now take an ε> 0. We show that |I1(a)| < ε for large enough a. Since f ′(0+) = limt↓0( f (t )−
f (0+))/t exists, the function ( f (t )− f (0+))/t is bounded on (0,T /2], that is,

| f (t )− f (0+)| ≤ M t ∀t ∈ (0,T /2]

for some M > 0. Choose δ> 0 such that δ< ε/(2M) and δ< T /2. Then∣∣∣∣∫ δ

0

f (t )− f (0+)

t
sin(at ) dt

∣∣∣∣≤ M
∫ δ

0
|sin(at )|dt ≤ Mδ< ε

2
.
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We have found that

|I1(a)| =
∣∣∣∣∫ δ

0

f (t )− f (0+)

t
sin(at ) dt +

∫ T /2

δ

f (t )− f (0+)

t
sin(at ) dt

∣∣∣∣
< ε

2
+

∣∣∣∣∫ T /2

δ

f (t )− f (0+)

t
sin(at ) dt

∣∣∣∣ .

On the interval [δ,T /2] the function ( f (t )− f (0+))/t is piecewise smooth since the only pos-
sible singularity is at t = 0 and this is not in the interval. The Riemann–Lebesgue lemma
therefore applies, which gives

lim
a→∞

∫ T /2

δ

f (t )− f (0+)

t
sin(at ) dt = 0.

So for sufficiently large a we have that∣∣∣∣∫ T /2

δ

f (t )− f (0+)

t
sin(at ) dt

∣∣∣∣< ε

2
,

Then, finally, |I1(a)| < ε/2+ε/2 = ε, implying that lima→∞ I1(a) = 0.

Theorem A.1.2 (Theorem 3.2.4). Let f (t ) be a T -periodic signal and suppose it is piecewise
smooth on [−T /2,T /2]. Then for every t ∈R there holds that

f (t+)+ f (t−)

2
=

∞∑
k=−∞

fk eikω0t ,

where fk are the Fourier coefficients of f (t ) defined as

fk = 1

T

∫ T /2

−T /2
f (t )e−ikω0t dt . (A.5)

Proof. We need to show that ( f (t+)+ f (t−))/2 = limN→∞ sN (t ) for every t , where

sN (t ) =
N∑

k=−N
fk eikω0t . (A.6)

First we derive an integral representation for sN (t ) by substituting the defining integral (A.5)
for fk in (A.6). This gives

sN (t ) =
N∑

k=−N
fk eikω0t

=
N∑

k=−N

1

T

∫ T /2

−T /2
f (τ)eikω0(t−τ) dτ

= 1

T

∫ T /2

−T /2
f (τ)

N∑
k=−N

eikω0(t−τ) dτ,

using Problem 2.31 this becomes

= 1

T

∫ T /2

−T /2
f (τ)(2N +1)

sinc((N +1/2)ω0(t −τ))

sinc(ω0(t −τ)/2)
dτ,
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and now substitute x = t −τ,

= 1

T

∫ t+T /2

t−T /2
f (t −x)(2N +1)

sinc((N +1/2)ω0x)

sinc(ω0x/2)
dx

= 1

T

∫ T /2

−T /2
f (t −x)(2N +1)

sinc((N +1/2)ω0x)

sinc(ω0x/2)
dx.

To apply Lemma A.1.1 we rearrange this as

sN (t ) =
∫ T /2

−T /2
g (x)× (N +1/2)ω0 sinc((N +1/2)ω0x) dx,

where

g (x) = 2 f (t −x)

Tω0 sinc(ω0x/2)
= f (t −x)

πsinc(ω0x/2)
.

Therefore by Lemma A.1.1 we have

lim
N→∞

sN (t ) =πg (0+)+ g (0−)

2
=π f (t−)/π+ f (t+)/π

2
= f (t+)+ f (t−)

2
.

This completes the proof.

A.2 Bounded Linear Operators and Contractions

Definition A.2.1 (Bounded operator). Let X and Y be normed vector spaces (either both real
or both complex). A linear operator F :X→Y is bounded if a c ≥ 0 exists such that

‖F (x)‖Y ≤ c‖x‖X ∀x ∈X. (A.7)

�

If c for instance ≤ 1 then the norm of the image F (x) never exceeds that of x, irrespective
of the choice of x. Likewise if (A.7) holds for c = 2 then the norm of F (x) will never be more
than twice the norm of x, et cetera. The smallest possible c is what is called the operator
norm1:

Definition A.2.2 (Operator norm). Let X,Y be normed vector spaces and F : X → Y a
bounded linear operator. The operator norm ‖F‖ of F is defined as2

‖F‖ = sup
x 6=0

‖F (x)‖Y
‖x‖X

.

If X= {0} then we define ‖F‖ = 0. �

By definition of operator norm we have for every nontrivial vector space X and every x ∈X
that

‖F (x)‖Y ≤ ‖F‖‖x‖X. (A.8)

1The attentive reader will wonder why we call it operator norm. Doesn’t this require that some set of operators
F is a vector space and that on this vector space the operator norm has the property of norm? The answers are
yes and yes, but we will not deal with such matters in this course, even though we are close to settling it.

2supremum means least upperbound.
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Example A.2.3 (Bounded operator). We determine the operator norm of the linear mapping
A : C ([a,b];R) →R defined as

A( f ) =
∫ b

a
f (t ) dt .

On the domain C ([a,b];R) we take the max-norm, on the codomain R we take as norm the
absolute value. We have

‖A( f )‖ = |A( f )| =
∣∣∣∣∫ b

a
f (t ) dt

∣∣∣∣≤ ∫ b

a
| f (t )|dt ≤

∫ b

a
‖ f ‖∞ dt = (b −a)‖ f ‖∞.

Therefore, for every f there holds

‖A( f )‖
‖ f ‖∞

≤ b −a.

The operator A thus is bounded and its operator norm is at most b − a. For the constant
function f (t ) = 1, the above is an equality,

|A(1)|
‖1‖∞

=

∣∣∣∫ b
a 1 dt

∣∣∣
1

= b −a.

So the upperbound b −a is achieved for some functions f . The operator norm hence equals
b −a. �

Example A.2.4 (Unbounded operator). Consider C ([0,1];R) with the 1-norm. On this space
the operator ∆ : C ([0,1];R) →R defined as

∆( f ) = f (0)

is unbounded. To see this take for instance the sequence of functions

fn(t ) =
{

n(1−nt ) 0 ≤ t ≤ 1
n

0 elsewhere
.

1/n

n

The 1-norm of each fn is 1/2 while |∆( f )| = n. The ratio |∆( f )|/‖ f ‖1 = 2n is unbounded. This
shows that ∆ is an unbounded operator. �

Given normed vector spaces X,Y we say that a mapping A :X→Y (not necessarily linear)
is continuous at x0 ∈X if for every ε> 0 there is a δ> 0 such that

‖x −x0‖X < δ =⇒ ‖A(x)− A(x0)‖Y < ε. (A.9)

If the mapping is continuous at x0 for every x0 ∈X, then A is said to be continuous.

Lemma A.2.5 (Norms are continuous). Every norm ‖ ·‖ :X→R is continuous.

Proof. Let A = ‖ · ‖ and on R use the standard norm (absolute value). The reverse triangle
inequality says that |A(x)− A(x0)| = |‖x‖−‖x0‖| ≤ ‖x −x0‖. Hence (A.9) holds for δ= ε.

Notice that norms are not linear mappings. For linear mappings there is a very neat char-
acterization of continuity:
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Theorem A.2.6 (Bounded = continuous for linear maps). Let X and Y be two normed vector
spaces (either both real, or both complex). For a linear operator A :X→Y the following three
statements are equivalent.

1. A is continuous,

2. A is continuous at x0 = 0,

3. A is bounded.

Proof. (1. =⇒ 2.) is trivial.
Now (2. =⇒ 3.): If A is continuous at x0 = 0 then ∀ε > 0 there exists δ > 0 such that

‖x‖X < δ implies ‖A(x)‖Y < ε. Every vector z ∈X can be written as a scaled vector z =αx such
that ‖x‖X < δ. Just take α big enough, for instance α = 2‖z‖Y/δ. Then by linearity we have
‖A(z)‖Y = ‖αA(x)‖Y ≤ |α|ε= ε2‖z‖X/δ. Hence ‖A‖ ≤ 2ε/δ<∞.

Remains to prove (3. =⇒ 1.): If A is bounded then ‖A(x)−A(x0)‖Y = ‖A(x−x0)‖X ≤ ‖A‖‖x−
x0‖X for some finite ‖A‖. Take δ= ε/‖A‖.

Now something special. Suppose we have to determine a solution x of the equation

x = A(x)+ v,

with v a given vector and A some mapping, possibly some horribly complicated mapping. In
general this is daunting problem because the inverse of I − A in the solution

x = (I − A)−1v

(assuming this inverse exists at all) may be very difficult to get a handle on. However there
is a very important set of operators — still including really tricky ones — for which we can
solve the problem and solve it constructively. To get an idea of the problem we start with
real numbers x and v and with A(x) = αx a scalar multiplication. Then the point x where
x =αx + v , is the intersection of the two lines as indicated in this figure,

x∗

y =αx +v

y = x

Instead of solving the intersection point x∗ directly we propose to iteratively determine x∗.
Just start wherever you like, x0, and from that compute x1 :=αx0 + v ,

y =αx +v

y = x

x0 x1

x1
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and repeat this process. So now that you have x1, compute x2 := αx1 + v and then compute
x3 :=αx2 + v , et cetera,

y =αx +v

y = x

x0 x1

x1

x2

x2

As the figure suggests, the xk converges to x∗ which is the solution we are after. For this
procedure to work we need the slope α of the line to satisfy |α| < 1 (we challenge you to see
what happens if |α| > 1).

And now the big leap: this idea works for every linear mapping A :X→X, provided that X
is a Banach space and A is a contraction. This we shall prove.

Definition A.2.7 (Contraction). A linear operator A :X→X is a contraction if ‖A‖ < 1. �

For every contraction A on Banach space the inverse of I − A exists and we have efficient
ways of approximating it:

Theorem A.2.8 (Neumann series). Suppose A is a contraction on a Banach space X. Then
I − A is invertible and bounded on X and we have

(I − A)−1 =
∞∑

k=0
Ak

and its operator norm is bounded from above as

‖(I − A)−1‖ ≤ 1

1−‖A‖ .

Proof. The operator norm satisfies the submultiplicative property ‖Ak‖ ≤ ‖A‖k (Exer-
cise A.2.4). For every x ∈ X the (I + A + ·· · + An)(x) is a Cauchy sequence, because for every
m ≥ n ≥ N we have

‖(I +·· ·+ Am)(x)− (I +·· ·+ An)(x)‖
= ‖(An+1 +·· ·+ Am)(x)‖
≤ ‖An+1(x)‖+·· ·+‖Am(x)‖
≤ (‖An+1‖+·· ·+‖Am‖)‖x‖

≤
( ∞∑

k=N+1
‖A‖k

)
‖x‖

= ‖A‖N+1

1−‖A‖ ‖x‖→ 0 as N →∞, because ‖A‖ < 1.

Since X is a Banach space, the above Cauchy property implies that limn→∞(I + ·· · + An)(x)
exists for every x. Denote the limit by B(x). The so defined B is in fact bounded because,
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using continuity of norm, the norm of the limit is the limit of the norm:

‖B(x)‖ = lim
n→∞‖(I + A+·· ·+ An)(x)‖

≤ lim
n→∞‖x‖+‖A(x)‖+·· ·+‖An(x)‖

≤ lim
n→∞(1+‖A‖+·· ·+‖A‖n)‖x‖

= 1

1−‖A‖‖x‖.

Remains the show that B = (I − A)−1, i.e. that it satisfies (I − A)B = I = B(I − A). It does:

(I − A)B(x) = (I − A) lim
n→∞(I +·· ·+ An)(x)

= lim
n→∞(I − A)(I +·· ·+ An)(x)

= lim
n→∞(I − An+1)(x) = x.

Here we used continuity of (I −A) (because it is bounded), and that ‖An+1(x)‖ ≤ ‖A‖n+1‖x‖→
0 as n →∞. Entirely similarly it can be shown that also B(I − A)(x) = x.

The above theorem is just one rendition of the famous and exceptionally useful set of
contraction mapping theorems. The notion of “contraction” exists for nonlinear mappings
as well and the contraction theorems are then possibly even more spectacular. Contraction
arguments are used to prove existence and construct solutions of many differential equations,
and it is at the heart of a great many numerical routines.

Example A.2.9 (Fredholm integral operator). Consider the integral equation in f ∈
L 2([−1,1];R),

f (x) = x4 +
∫ 1

−1
K (x, y) f (y) dy, (A.10)

with K (x, y) = x3 y2. The integral in this equation is linear in f . Now denote this integral as
A( f ). Then the problem becomes finding an f in Banach space L 2([−1,1];R) for which

f = g + A( f ) with g (x) = x4.

The previous theorem guarantees a unique solution if A is a contraction (i.e. ‖A‖ < 1). Using
inner products, it can be shown that

‖A‖ ≤
√∫ 1

−1

∫ 1

−1
|K (x, y)|2 dxdy .

For our function K (x, y) = x3 y2 we have that∫ 1

−1

∫ 1

−1
K (x, y)2 dy dx =

∫ 1

−1

∫ 1

−1
x6 y4 dy dx = 2

7

2

5
= 4

35
.

So ‖A‖ ≤
p

4/35 < 1 and hence A is a contraction. The Neumann series now says that there is
a unique solution f∗ ∈L 2([−1,1]R) of the integral equation and that it equals

f∗ =
∞∑

k=0
Ak (g ) = g + A(g )+ A2(g )+·· · .
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We are lucky in this example because it turns out that

(Ag )(x) =
∫ 1

−1
x3 y2 y4 dy = 2

7 x3,

(A2g )(x) = A( 2
7 x3) =

∫ 1

−1
x3 y2 2

7 y3 dy = 0

and consequently (Ak g )(x) = 0 for every k ≥ 2. The unique solution f∗ ∈ L 2([−1,1];R)
of (A.10) hence is

f∗(x) = g (x)+ (Ag )(x) = x4 + 2
7 x3.

�

A.2.1 Exercises

A.2.1 Consider the linear mapping A :C2 →C2 defined as

A(x) =
[

2 0
0 −3

]
x.

Take the standard 2-norm on C2. Determine ‖A‖.

A.2.2 Suppose A :V→V has eigenvalues {λ1, . . . ,λk }. Show that ‖A‖ ≥ maxi |λi |.

A.2.3 We consider three linear mappings from `2 to `2,

K (u1,u2, . . .) = (0,u1,u2, . . .)

L(u1,u2, . . .) = (u2,u3, . . .)

M(u1,u2, . . .) = ((2− 1
1 )u1, (2− 1

2 )u2, . . .)

On `2 we take the standard 2-norm.

(a) Determine ‖K ‖
(b) Determine ‖L‖
(c) Determine ‖M‖

A.2.4 Prove the submultiplicative property of operator norm: ‖AB‖ ≤ ‖A‖‖B‖.

A.2.5 Consider the linear mapping A : `2 → `2,

A(u1,u2, . . .) = (u1, 1
2 u2, 1

3 u3, . . .)

On `2 we take the standard 2-norm.

(a) Show that A is bounded

(b) Determine ‖A‖
(c) Determine ker(A)

A.2.6 Consider the mapping A : L 2(R;R) →L 2(R;R) defined as

(A f )(x) = f (x)+ f (−x).

On L 2(R;R) we take the standard 2-norm.

Determine ‖A‖
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A.2.7 Consider L 2([2,3];R) with standard 2-norm. Let A : L 2([2,3];R) → L 2([2,3];R) be the
linear mapping

(A f )(x) = x f (x).

(a) Show that ‖A‖ ≤ 3

(b) Let

fn(x) =
{p

n 3−1/n ≤ x ≤ 3

0 2 ≤ x < 3−1/n

Determine ‖ fn‖2 and show that ‖A( fn)‖2 ≥ 3−1/n

(c) Determine ‖A‖

A.2.8 Suppose A : X→ X is a contraction and that X is Banach. Let f0, g ∈ X. Does the se-
quence { fn}n∈N defined as fn+1 = g + A( fn) converge?

A.2.9 Let A :X→Y be a linear operator. Show that ‖A‖ = sup‖x‖≤1 ‖A(x)‖.

A.3 Ordinary Differential Equations (ODEs)

In this appendix we demonstrate how to obtain solutions y(t ) for ordinary linear differential
equations with constant coefficients,

y (n)(t )+pn−1 y (n−1)(t )+·· ·+p1 y (1)(t )+p0 y(t ) = f (t ) (A.11)

for a given function f (t ). It is customary to associate with such differential equations (A.11)
a homogeneous equation and a characteristic equation. The homogeneous equation is (A.11)
in which f (t ) is taken equal to zero,

y (n)(t )+pn−1 y (n−1)(t )+·· ·+p1 y (1)(t )+p0 y(t ) = 0,

and the associated characteristic equation is the polynomial equation

λn +pn−1λ
n−1 +·· ·+p1λ+p0 = 0, (λ ∈C). (A.12)

The fundamental theorem of algebra states that a polynomial equation of degree n has exactly
n roots in C, counting multiplicities. Now if λ1 is a root of the characteristic equation (A.12),
then y(t ) = eλ1t is a solution of the homogeneous equation. Indeed, if y(t ) = eλ1t , then

y (n)(t ) + pn−1 y (n−1)(t ) + ·· · + p1 y (1)(t ) + p0 y(t )

= λn
1 eλ1t + pn−1λ

n−1
1 eλ1t + ·· · + p1λ1eλ1t + p0eλ1t

= (
λn

1 + pn−1λ
n−1
1 + ·· · + p1λ1 + p0

)
eλ1t

= 0.

Example A.3.1.

1. The characteristic equation of

y (2)(t )−10y(t ) = 0
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is λ2 −10 = 0. Its roots are λ1 =
p

10 and λ2 = −
p

10. Hence y1(t ) = e
p

10t and y2(t ) =
e−

p
10t are solutions of y (2)(t )−10y(t ) = 0. By linearity, then,

y(t ) =α1e
p

10t +α2e−
p

10t ,

is a solution of y (2)(t )−10y(t ) = 0 for any α1,α2 ∈C.

2. The characteristic equation of

y (3)(t )−3y (2)(t )+2y (1)(t ) = 0

is λ3 −3λ2 +2λ= 0. Since

λ3 −3λ2 +2λ=λ(λ−1)(λ−2)

we see that λ1 = 0, λ2 = 1 and λ3 = 2 are the characteristic roots. Then e0t = 1, and et

and e2t are three solutions of the homogeneous equation, and then by linearity every
y(t ) of the form

y(t ) =α1 +α2et +α3e2t , α1,α2,α3 ∈C,

is a solution of the homogeneous equation.

3. The characteristic equation of

y (3)(t ) = 0

is λ3 = 0. This has one root λ1 = 0 with multiplicity 3. Now y1(t ) = eλ1t = e0t = 1 is
obviously a solution of the homogeneous equation, but so are y(t ) = t and y(t ) = t 2.
Apparently not every solution is a linear combination of exponential functions.

�

In the last of the three examples we saw that not every solution of the homogeneous equa-
tion is a sum of exponential functions. This has something to do with the fact that the multi-
plicity of the characteristic root λ1 in that example is more than 1. The general result we state
without proof:

Theorem A.3.2. To each characteristic root λi of multiplicity mi , the mi functions

yi ,k (t ) = t k−1eλi t , (k = 1, . . . ,mi )

are solutions of the homogeneous equation. These solutions yi ,k (t ) are sometimes called the
basis solutions.

Furthermore, y(t ) is a solution of the homogeneous equation if and only if it is a linear
combination of the basis solutions,

y(t ) =
∑
i ,k
αi ,k yi ,k (t ), αi ,k ∈C. (A.13)

Example A.3.3.

1. The characteristic equation of

y (n)(t ) = 0

is λn = 0. It has one root λ1 = 0 with multiplicity n. The basis solutions hence are

y1,1(t ) = 1, y1,2(t ) = t , y1,3(t ) = t 2, . . . , y1,n(t ) = t n−1.

The general solution of y (n)(t ) = 0 is therefore y(t ) =α1,1 +α1,2t +·· ·+α1,n t n−1, that is,
the solutions are the polynomials in t of degree n −1 or less.
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2. The characteristic equation of

y (3)(t )−4y (2)(t )+5y (1)(t )−2y(t ) = 0 (A.14)

is λ3 −4λ2 +5λ−2 = 0. Since

λ3 −4λ2 +5λ−2 = (λ−1)2(λ−2)

we obtain as basis solutions

y1,1(t ) = et , y1,2(t ) = t et , y2,1(t ) = e2t .

The general solution of (A.14) then is

y(t ) =α1,1et +α1,2t et +α2,1e2t , α1,1,α1,2,α2,1 ∈C.

�

A.3.1 Particular solutions

Up to now we considered only homogeneous equations, that is, the case that f (t ) in (A.11) is
zero. In this section we consider ODE (A.11) for the case that f (t ) is non-zero.

Suppose that for a given f (t ) we found one solution ypart(t ) of the ODE (A.11). How does
the general solution then look like?

Lemma A.3.4. Suppose f (t ) is given and let ypart(t ) be one solution of the ODE (A.11). Then
the general solution y(t ) of (A.11) is

y(t ) = ypart(t )+ yhom(t )

where yhom(t ) is any solution of the associated homogeneous equation.

Proof (sketch). If yp1(t ) and yp2(t ) are two solutions then by linearity the difference yh(t ) :=
yp1(t ) − yp2(t ) satisfies the homogenous equation. Conversely if yh(t ) satisfies the homo-
geneous equation then for any solution yp1(t ) of the ODE also yp1(t )+ yh(t ) is a solution.
Therefore given any solution yp1(t ) the function yp2(t ) is also a solution if and only if yp2(t ) =
yp1(t )+ yh(t ) for some homogenous solution yh(t ).

In our quest for the general solution it therefore suffices to find one solution of the ODE.
All others then follow by adding the general solution of the homogeneous equation. One so-
lution ypart(t ) of the ODE is commonly called a particular solution. Generally it is difficult to
find a particular solution. For certain signals f (t ) it is however possible to make an educated
guess. The following three examples demonstrate three such cases.

Example A.3.5 (Constant right-hand side). If the right-hand side of the ODE is constant

f (t ) = c,

then we may contemplate a constant particular solution ypart(t ). As all derivatives of a con-
stant signal are zero, the ODE (A.11) for constant f (t ) and y(t ) reduce to

p0 y(t ) = c.

If p0 6= 0 then clearly

ypart(t ) = c

p0
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is a constant particular solution.
Often we are only concerned with solutions for positive time. Consider the ODE

y (2)(t )−4y(t ) = f (t )

and suppose that f (t ) = 1(t ). Since we are interested in the signals for positive time, we may
consider the f (t ) = 1(t ) to be a constant 1. A particular solution follows as ypart(t ) = 1/(−4) =
−1/4. Hence for positive time the general solution y(t ) is

y(t ) =−1

4
+α1,1e2t +α2,1e−2t , α1,1,α2,1 ∈C.

�

Example A.3.6 (Exponential right-hand side). The constant signal f (t ) of the previous ex-
ample is a degenerate case of an exponential signal f (t ) = es0t . For an exponential signal
f (t ) = es0t we contemplate a particular solution of the similar form

ypart(t ) = Aes0t , for some A ∈C.

The left-hand side of the ODE (A.11) then becomes

y (n)
part(t )+pn−1 y (n−1)

part (t )+·· ·+p0 ypart(t ) = A
(
sn

0 +pn−1sn−1
0 +·· ·+p0)es0t

Equating this with f (t ) = es0t yields A,

A = 1

sn
0 +pn−1sn−1

0 +·· ·+p0
.

For A to exist we will need to assume that s0 is not a characteristic root, otherwise the above
denominator is zero. For s0 = 0 we recover that case of constant f (t ).

Consider the ODE

y (2)(t )−4y(t ) = f (t )

with f (t ) = es0t . Then as long as s0 is not a characteristic root, we obtain as particular solution

ypart(t ) = 1

s2
0 −4

es0t .

Like in the previous example, the general solution then is

y(t ) = 1

s2
0 −4

es0t +α1,1e2t +α2,1e−2t , α1,1,α2,1 ∈C.

If s0 is a characteristic root, i.e. s0 = 2 or s0 =−2 then it can be shown that

ypart(t ) = t

2s0
es0t .

is a particular solution and the general solution then is:

y(t ) = t

2s0
es0t +α1,1e2t +α2,1e−2t , α1,1,α2,1 ∈C.

�
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Example A.3.7 (Polynomial solutions). Consider the case that the right-hand side f (t ) of the
ODE (A.11) is polynomial,

y (n)(t )+pn−1 y (n−1)(t )+·· ·+p0 y(t ) =
M∑

k=0
βk t k , (βk ∈C).

The claim is then that there is a particular solution y(t ) that is polynomial in t as well. The
method is best demonstrated on an example. Consider the ODE

y (2)(t )+ y (1)(t )+2y(t ) = t 2 +2t . (A.15)

Differentiate both sides as often as needed up to the point where the right-hand side becomes
constant.

Original equation: y (2)(t )+ y (1)(t )+2y(t ) = 2t + t 2 (A.16)

differentiate once: y (3)(t )+ y (2)(t )+2y (1)(t ) = 2+2t (A.17)

differentiate once again: y (4)(t )+ y (3)(t )+2y (2)(t ) = 2. (A.18)

The last equation (A.18) has a solution y (2)(t ) = 1. Now we use that in the preceding equation
(A.17) to solve for y (1)(t ). Since y (3)(t ) = 0 we obtain from (A.17) that

y (1)(t ) = 1

2

(
(2+2t )− y (3)(t )− y (2)(t )

)= t + 1

2
.

Now that y (1)(t ) is determined we return to Eqn. (A.16) and solve that for y(t ),

y(t ) = 1

2

(
(2t + t 2)− y (2)(t )− y (1)(t )

)= 1

2
(2t + t 2 −1− (t + 1

2
)) = 1

2
t 2 + 1

2
t − 3

4
.

This is a particular solution.
The characteristic equation of (A.15) is λ2 +λ+2 = 0 and its roots are complex, λ1 =−1

2 +
i 1

2

p
7 and λ2 =−1

2 − i 1
2

p
7. The general solution of (A.15) hence is

y(t ) = 1

2
t 2 + 1

2
t − 3

4
+α1,1e(− 1

2+i 1
2

p
7)t +α2,1e(− 1

2−i 1
2

p
7)t (α1,1,α2,1 ∈C).

�

A.3.2 Exercises

A.3.1 Suppose that yk (t ) is a particular solution of (A.11) for f (t ) = fk (t ). Determine a partic-
ular solution y(t ) for f (t ) =α f1(t )+β f2(t ), α,β ∈R.

A.3.2 Determine the general solution of the homogeneous equation associated with the fol-
lowing ODEs:

(a) y (2)(t )+2y (1)(t )+2y(t ) = 0,

(b) y (2)(t )−4y (1)(t )+4y(t ) = t 2,

(c) y (2)(t )+7y (1)(t )+12y(t ) = 1− t ,

(d) y (4)(t ) = 1(t ),

(e) y (1)(t )+βy(t ) = 2,

(f) y (1)(t )+βy(t ) = e4t + e−t .

A.3.3 Determine a particular solution y(t ) for the ODEs of the previous problem.
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A.4 Partial Fraction Expansion

The topic of this appendix is partial fraction expansion. As an example, consider the identity

1

(s +1)(s +2)(s +3)
=

1
2

s +1
+ −1

s +2
+

1
2

s +3
. (A.19)

It is easy to verify that the above identity is indeed correct: multiply both left and right-hand
side by (s +1)(s +2)(s +3), and the identity reduces to the polynomial identity

1 = 1

2
(s +2)(s +3)− (s +1)(s +3)+ 1

2
(s +1)(s +2),

whose validity is subsequently readily verified.
In this section we discuss a procedure for obtaining partial fraction expansions. A partial

fraction expansion of a rational function is an expansion of that function as a sum of elemen-
tary rational terms of the form

α

(s −β)k
, α,β ∈C

such as in the right-hand side of (A.19). More generally, the partial fraction expansion of a
rational function

Q(s)

P (s)
= qm sm +qm−1sm−1 +·· ·+q1s +q0

pn sn +pn−1sn−1 +·· ·+p1s +p0

is an expansion of the form

Q(s)

P (s)
= A0 +

M∑
k=1

( Ak,1

s − sk
+ Ak,2

(s − sk )2 +·· ·+ Ak,mk

(s − sk )mk

)
(A.20)

with A0, Ak,l , sk ∈ C and mk , M ∈ N. Two properties are immediate. Firstly, the right-hand
side of (A.20) is not defined for s = sk , so the left-hand side, Q(sk )/P (sk ) is not defined either.
Therefore the sk are necessarily zeros of the polynomial P (s). Secondly, the limit as |s| →∞
of the right-hand side of (A.20) is finite,

lim
|s|→∞

A0 +
M∑

k=1

( Ak,1

s − sk
+ Ak,2

(s − sk )2 +·· ·+ Ak,mk

(s − sk )mk

)= A0, (A.21)

so the left-hand side Q(s)/P (s) is also finite in the limit |s| →∞. This is the case if and only
if the degree of Q(s) is less than or equal to the degree of P (s). Rational functions Q(s)/P (s)
with degQ(s) ≤ degP (s) are called proper rational functions.

Theorem A.4.1. Every proper rational function Q(s)/P (s) has a partial fraction expansion.
More concretely, let sk , (k = 1,2, . . . , M) denote the zeros of P (s). Then Q(s)/P (s) has a

partial fraction expansion of the form

Q(s)

P (s)
= A0 +

M∑
k=1

( Ak,1

s − sk
+ Ak,2

(s − sk )2 +·· ·+ Ak,mk

(s − sk )mk

)
where M is the number of different zeros of P (s), mk is the multiplicity of zero sk of P (s), and
A0 and the Ak,l are (complex) constants. �
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If you want a partial fraction expansion with real coefficients then we can identify real
zeros s1, . . . sM and the complex zeros can be characterized as the zeros of the second order
polynomial s2 + ai s +bi with a2

i < 4bi while ai and bi are real-valued for i = 1, . . . N . In that
case we obtain:

Q(s)

P (s)
= A0 +

M∑
k=1

( Ak,1

s − sk
+ Ak,2

(s − sk )2 +·· ·+ Ak,mk

(s − sk )mk

)
+

N∑
k=1

( Bk,1 +Ck,1s

s2 +ak s +bk
+ Bk,2 +Ck,2s

(s2 +ak s +bk )2 +·· ·+ Bk,ni +Ck,ni s

(s2 +ak s +bk )ni

)
.

A.4.1 If Q(s)/P (s) is strictly proper

A rational function Q(s)/P (s) is strictly proper if the degree of Q(s) is less than the degree of
P (s),

Q(s)

P (s)
= qn−1sn−1 +·· ·+q1s +q0

pn sn +pn−1sn−1 +·· ·+p1s +p0
, (pn 6= 0).

Strictly proper rational functions tend to zero as |s|→∞, so in view of (A.21), we have that

A0 = 0.

In this subsection we demonstrate partial fraction expansion techniques for strictly proper
rational functions.

Example A.4.2. Let Q(s)/P (s) = 1/((s+1)(s+2)). The zeros of P (s) are s1 =−1 and s2 =−2 and
they both have multiplicity one. Therefore by the above theorem there are constants A = A1,1

and B = A2,1 such that

1

(s +1)(s +2)
= A

s +1
+ B

s +2
.

To determine the values of A and B we may multiply left and right-hand side by (s +1)(s +2)
to obtain,

1 = (s +2)A+ (s +1)B = s(A+B)+ (2A+B).

Subtracting 1 from both sides gives

0 = (s +2)A+ (s +1)B = s(A+B)+ (2A+B −1).

As this has to hold for every s ∈C we must have that the polynomial on the right-hand side is
identically zero:

0 = A+B

0 = 2A+B −1.

These are two equations in two unknowns, and its solution is

A = 1, B =−1.

We found the partial fraction expansion 1
(s+1)(s+2) = 1

s+1 − 1
s+2 . �
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The method of the previous example is generally applicable, but if P (s) has many zeros,
then the method becomes unwieldy. In such cases it is often easier to work with a direct
method, such as the one demonstrated on the following example. The method assumes that
the zeros of P (s) have multiplicity 1.

Example A.4.3. Suppose

F (s) = s +4

(s +1)(s +2)(s +3)
.

We see that F (s) is strictly proper, so F (s) has the partial fraction expansion,

s +4

(s +1)(s +2)(s +3)
= A

s +1
+ B

s +2
+ C

s +3

for some constants A, B and C . Note that A is the coefficient of 1
s+1 which has a pole at s =−1.

Now to find A we simply evaluate at this pole s = −1 the function F (s) with the term (s +1)
removed:

A = s +4

(s +1)(s +2)(s +3)

∣∣∣
s=−1

= −1+4

(−1+2)(−1+3)
= 3

2
.

Likewise the coefficients B and C of 1
s+2 and 1

s+3 may be directly determined as

B = s +4

(s +1)(s +2)(s +3)

∣∣∣
s=−2

= −2+4

(−2+1)(−2+3)
=−2,

and

C = s +4

(s +1)(s +2)(s +3)

∣∣∣
s=−3

= −3+4

(−3+1)(−3+2)
= 1

2
.

So the partial fraction expansion is

s +4

(s +1)(s +2)(s +3)
= 3/2

s +1
+ −2

s +2
+ 1/2

s +3
.

This method works for rational functions F (s) =Q(s)/P (s) whose denominator P (s) has zeros
of multiplicity 1 only. �

The exposition in the previous example was deliberately taken rather graphical as this
makes the method easier to perform by hand. Mathematically, we did nothing but compute

A = lim
s→−1

(s +1)F (s) = 3

2
,

B = lim
s→−2

(s +2)F (s) =−2,

C = lim
s→−3

(s +3)F (s) = 1

2
.

If F (s) has a multiple pole then a similar result holds.

Lemma A.4.4. Suppose sk is a zero of a polynomial P (s) with multiplicity mk . Then the co-
efficient Ak,mk of the term of highest order

Ak,mk

(s − sk )mk

in the partial fraction expansion of F (s) =Q(s)/P (s) equals

Ak,mk = lim
s→sk

(s − sk )mk F (s).

�
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The interested reader may want to prove for herself why this is the case, and then with
help of the next example a proof of Theorem A.4.1 should be within reach, well to the inter-
ested reader at least.

Example A.4.5. Suppose

F (s) = s +4

(s +1)2(s +2)
.

The multiplicity of the zero s1 = −1 is m1 = 2. So the partial fraction expansion of F (s) is of
the form

F (s) = A

s +1
+ B

(s +1)2 + C

s +2
. (A.22)

Since the multiplicity of the zero s1 =−1 is 2, the coefficient B of the highest order term 1
(s+1)2

equals

B = lim
s→−1

(s +1)2F (s) = s +4

(s +1)2 (s +2)

∣∣∣
s=−1

= −1+4

−1+2
= 3.

Now that B is known we may bring it to the left-hand side of (A.22),

F (s)−3
1

(s +1)2 = A

s +1
+ C

s +2
.

The left-hand side may be simplified to

F (s)−3
1

(s +1)2 = (s +4) −3(s +2)

(s +1)2(s +2)
= −2s −2

(s +1)2(s +2)
=− 2

(s +1)(s +2)
.

We have reduced the problem to one of lower order. We leave it to the reader to verify that

− 2

(s +1)(s +2)
= A

s +1
+ C

s +2

for A =−2 and C = 2. The partial fraction expansion of F (s) is now determined,

s +4

(s +1)2(s +2)
= −2

s +1
+ 3

(s +1)2 + 2

s +2
.

�

A.4.2 If Q(s)/P (s) is proper

A rational function Q(s)/P (s) is proper if the degree of Q(s) is less than or equal to the degree
of P (s). So proper rational functions are of the form

Q(s)

P (s)
= qn sn +qn−1sn−1 +·· ·+q1s +q0

pn sn +pn−1sn−1 +·· ·+p1s +p0
, (pn 6= 0). (A.23)

Partial fraction expansion of a proper rational function can easily be reduced to that of a
strictly proper rational function. Again the general procedure should be clear from an ex-
ample.
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Example A.4.6. Suppose

Q(s)

P (s)
= s2

s2 +3s +2
.

The degree of the numerator Q(s) is the same as the degree of the denominator P (s). Adding
and subtracting A0 does not change the result, so

Q(s)

P (s)
= A0 +

s2 − A0(s2 +3s +2)

s2 +3s +2
.

For A0 = 1 the numerator polynomial s2 − A0(s2 +3s +2) drops degree,

Q(s)

P (s)
= 1+ s2 − (s2 +3s +2)

s2 +3s +2
= 1+ −3s −2

s2 +3s +2
.

Now −3s−2
s2+3s+2 is strictly proper and it has partial fraction expansion 1

s+1 −4 1
s+2 (verify this your-

self). Then the partial fraction expansion of Q(s)/P (s) follows as

s2

s2 +3s +2
= 1+ 1

s +1
−4

1

s +2
.

�

A.4.3 Complex poles

The function

1

s2 +4s +5

has poles −2+ i and −2− i. The poles form a complex conjugate pair. The standard PFE thus
takes the form

A1

s − (−2+ i)
+ A2

s − (−2− i)
,

but in case of a complex pole pair we prefer to combine the two terms into a single second
order term of the form

B s +C

(s +a)2 +b2

with, now, A,B , a,b real numbers. In our example this is

1

s2 +4s +5
= 1

(s +2)2 +1
.

That is sufficient if we need to determine the inverse Laplace transform. In general, rational
functions can be decomposed into a sum of functions of the form

A

(s +a)k
and

B s +C

((s +a)2 +b2)k
.

Example A.4.7. We determine the PFE of 1
s(s2+1) . The form of the PFE is

1

s(s2 +1)
= A

s
+ B s +C

s2 +1
= As2 + A+B s2 +C s

s(s2 +1)
.

So A+B = 0,C = 0, A = 1 and hence B =−1. This gives

1

s(s2 +1)
= 1

s
− s

s2 +1
.

�
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A.4.4 Exercises

A.4.1 Construct the partial fraction expansion of

(a)
3s +4

s2 + s

(b)
1

s2 +5s +6

(c)
s

s2 +5s +6

(d)
s2

s2 +5s +6

(e)
s2 +3s −100

s2 +5s +6

(f)
s

(s −2)2

(g)
s2

(s −2)2

(h)
s

s2 +2s −2

(i)
1

s
+ s −2

s(s +2)

(j)
s −β

(s −1)(s +2)2 . Check your answer for β= 1 and β=−2.

A.4.2 Construct the partial fraction expansion of

(a)
1

s2 +2s +2

(b)
5

s(s2 −2s +5)

(c)
4s2 +2s +4

(s +0.5)(s2 − s +1.25)

A.5 Complex Integration

Integration as we know it for real-valued functions is easily extended to complex-valued func-
tions. The integral of a complex function f (t ) = f1(t )+ i f2(t ) on an interval (a,b) is defined as

∫ b

a
f (t ) dt =

∫ b

a
f1(t ) dt + i

∫ b

a
f2(t ) dt . (A.24)

In effect this says that for complex-valued functions the integral exists if and only if both its
real and imaginary part can be integrated. In the above, a =−∞ and b =∞ are allowed. From
Equation (A.24) it follows that

(∫ b

a
f (t ) dt

)∗
=

∫ b

a
f ∗(t ) dt .
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A.5.1 Three examples

Like in the real case it is often possible to obtain an explicit function description of the
primitive of f (t ), also called the antiderivative of f (t ). Also the rules of integration by parts
and substitution remain valid for complex-valued functions. This is illustrated in the follow-
ing three examples.

Example A.5.1 (Integration). Let n be a positive integer and let T > 0 and ω0 = 2π/T . Then

1

T

∫ T /2

−T /2
einω0t dt =

{
0 if n 6= 0,

1 if n = 0.
(A.25)

This may be seen as follows. For n = 0 we have that einω0t = 1 which immediately establishes
the case for n = 0. If n 6= 0 then∫ T /2

−T /2
einω0t dt = einω0t

inω0

]T /2

−T /2
= 1

inω0
(einπ− e−inπ) = 1

inω0
((−1)n − (−1)n) = 0.

That the answer is zero is not that strange, it simply says that the average of a harmonic signal
over a period is zero. �

Example A.5.2 (Indefinite integration). Let a ∈C and suppose that Re a > 0. Then∫ ∞

0
e−at dt = 1/a. (A.26)

This is because∫ ∞

0
e−at dt = lim

M→∞

∫ M

0
e−at dt = lim

M→∞
−e−at

a

]M

0
=

(
lim

M→∞
−e−aM

a

)
+ 1

a
= 1

a
.

�

And then there is the rule of integration by parts which is that

∫ b

a
h(t )g (t ) dt = h(t )G(t )|ba −

∫ b

a
h(1)(t )G(t ) dt .

Here h(1)(t ) is the derivative of h(t ) and G(t ) is any function whose derivative is g (t ). The
rule is valid if all functions involved exist and are piecewise smooth.

Example A.5.3 (Integration by parts). Suppose T > 0, and let ω0 = 2π/T and n ∈Z, n 6= 0. We
shall establish that∫ T

0
t einω0t dt = T 2

2πin
. (A.27)

Integration by parts yields∫ T

0
t einω0t dt = t

einω0t

inω0

∣∣∣T

0
− 1

inω0

∫ T

0
einω0t dt

= T

inω0
einω0T − 1

(inω0)2 (einω0T −1).

Since ω0T = 2π and e2πin = 1 we find (A.27). �
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The following inequalities are often used when only existence of integrals or bounds on
integrals are needed and not so much their precise value.∣∣∣∣∫ b

a
f (t ) dt

∣∣∣∣≤ ∫ b

a
| f (t )|dt .

That is, the absolute value of an integral is at most the integral of the absolute value. This is
readily verified. A straightforward applications is this: If | f (t )| ≤ M on the interval of integra-
tion [a,b], then∣∣∣∣∫ b

a
f (t ) dt

∣∣∣∣≤ ∫ b

a
| f (t )|dt ≤

∫ b

a
M dt = M(b −a).

In particular it then follows that the integral exists.

A.6 Matlab & Python

One interesting byproduct of Shannon’s sampling theorem is that it provides a way to deter-
mine Fourier transforms f̂ (ω) of signals f (t ) on the basis of samples f [n] alone. Shannon
says that f (t ) follows uniquely from its samples as

f (t ) =
∞∑

n=−∞
f [n]sinc(π( t

Ts
−n)).

provided the bandwidth ωb of f (t ) is less than the Nyquist frequency ωnyq :=ωs/2. In the
proof of Shannon’s sampling theorem we actually derived an explicit expression of the Fourier
transform, which we copy here:

f̂ (ω) = Ts

∞∑
n=−∞

f [n]e−inωTs , f ∈ [0,ωs/2].

Example A.6.1 (Magnitude of Fourier transform via FFT). The MATLAB script below com-
putes | f̂ (ω)| of

f (t ) = cos(2π×5t )+ 1

2
cos(2π×10t ).

Its bandwidth is ωb = 2π× 10. Then Shannon says we need 2π/Ts > 2ωb = 2π× 20, that is,
Ts < 1/20, i.e we should take more than 20 samples per time unit.

Tepoch=1; % some epoch length

Ts=0.01; % sampling period < 1/20

t=0:Ts:Tepoch;

f=cos(2*pi*5*t)+cos(2*pi*10*t)/2;

N=length(f);

M=2^11; % take M = 2? ≥ N
w=2*pi*(0:M/2)/Ts/M; % gridded [0,ωnyq]

fhat=fft(f,M)*Ts; %

fhat=fhat(1+(0:M/2)); % only need first half

plot(w/(2*pi),abs(fhat)); % plot of | f̂ (ω))| against ω
2π. See Fig. A.1

grid

The result is shown in Fig. A.1. Notice that we plotted against ω/(2π) and not ω. The ω/(2π)
means “cycles per time unit”. Our signal f (t ) is a sum of sinusoids of period T = 1/5 and
T = 1/10. Not surprisingly, then, the Fourier transform has peaks at ω/(2π) = 5 cycles per
second and at ω/(2π) = 10 cycles per second, see Fig. A.1. �
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FIGURE A.1: Estimate of | f̂ (ω)|, see Example A.6.1. The unit of f̂ (ω) is that of f times
that of t

The same can be done in PYTHON:

import numpy as np

Tepoch = 1

Ts = 0.01

t = np.arange(0,Tepoch+Ts/2,Ts)

f = np.cos(2*np.pi*5*t)+np.cos(2*np.pi*10*t)/2;

N = len(f)

M = 2**11

w = np.arange((M//2)+1)*2*np.pi/M/Ts

fhat = np.fft.fft(f,M)*Ts

fhat = fhat[0:(M//2+1)]

To plot the above Fourier transform and to add labels and save the plot as pdf one can do:

import matplotlib.pyplot as plt

plt.plot(w/(2*np.pi), abs(fhat))

plt.rc('text', usetex=True) # optional

plt.rcParams['text.latex.preamble'] = [r'\usepackage{fourier}'] # optional

plt.rc('font', family='serif', size=18) # optional

plt.xlabel('frequency $\omega/(2\pi)$ [t]$^{-1}$')

plt.ylabel('unit: $[f][t]$')

plt.grid()

plt.savefig('code1p1.pdf') # save it as pdf

#plt.show() # (the plot is similar to Fig. A.1)
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A.7 Generalized functions (UNDER CONSTRUCTION)

, This section is under construction. In this section we indicate how to arrive at a more solid
foundation of delta functions, generalized Fourier transforms and generalized derivatives.

A.7.1 Introduction to generalized functions

Delta functions and derivatives of discontinuous functions can not be properly seen as func-
tions. A proper foundation of such “functions” therefore needs a generalization of the notion
of function. By far the most popular such generalization is that of distributions or generalized
functions. As a motivation we shall take a closer look at the result of Lemma 2.8.1 that∫ ∞

−∞
δ(t )φ(t ) dt =φ(0) (A.28)

for every φ(t ) continuous at t = 0. Thus with the delta function we can associate a map that
sends ontinuous functions φ(t ) to numbers φ(0). Convince yourself of the fact that no other
“function” can have this property. Since (A.28) seems to characterize δ(t ) uniquely, we may
take that as the definition of the delta function! That is, we define the delta function not by
its function values as one would normally do, but by the way it acts on φ(t ):

The delta function is the linear mapping that sends continuous functions φ :R→
C to φ(0).

(We do not want to go into the type of continuity here. It is not trivial.) When, like here,
a function is defined through how it acts on φ(t ) then we say it is a generalized function or
distribution. The delta function defined like this, as a generalized function, is properly de-
fined. To any piecewise continuous function f (t ) there corresponds the generalized function
which maps φ(t ) to

∫ ∞
−∞ f (t )φ(t ) dt — assuming the integral is well defined — but not every

map on φ(t ) corresponds to a function f (t ). Hence the set of generalized functions is richer
than that of regular functions. This leads to the generalization of the concept of function that
we alluded to in the beginning of this section. Formally:

Definition A.7.1 (Test function & generalized function or distribution). A test function φ :
R→ R is a function that is infinitely often continuously differentiable and has finite duration
(meaning: for every φ there exist M , N ∈R such that φ(t ) = 0 for all t < M and all t > N ).

A generalized function or distribution is a linear continuous mapping that sends test func-
tions to complex numbers. �

We shall not go into the type of continuity here. Up to this definition we allowed for gen-
eral continuous φ(t ), but restricting the φ(t ) to test functions has advantages because then
the improper integral (A.29) is well defined for a very large class of functions. The standard
test function is

φ0(t ) =
{

e−
1

1−t2 if |t | < 1,

0 elsewhere

This one is shown in Figure A.2(left). By shifting and scaling it is possible to make many
more test functions (see Figure A.2(right)). Any piecewise smooth function f (t ) gives rise to a
generalized function

φ(t ) 7→
∫ ∞

−∞
f (t )φ(t ) dt . (A.29)
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FIGURE A.2: Some test functions.

Such mappings (A.29) identify f (t ) uniquely for almost all t and this is the reason that one
usually makes no distinction between the function f (t ) and the generalized function (A.29),
even though one is a function and the other is a mapping.

Example A.7.2.

1. The unit step 1(t ) seen as a generalized function, maps test functions φ(t ) to∫ ∞
−∞ 1(t )φ(t ) dt = ∫ ∞

0 φ(t ) dt . This integral is well defined for test functions.

2. The generalized function f (t ) = t 2 maps φ(t ) to
∫ ∞
−∞ t 2φ(t ) dt . Note that this integral is

defined for every test function. (If we would have allowed every continuous φ(t ) then
the integral does not always exist. This is an instance where we see that test functions
are a convenient restriction.)

3. The delta function δ(t ) maps φ(t ) to φ(0).

�

The game is next to generalize the notions like “sum”, “product” and “limit” etcetera avail-
able for regular functions to that of generalized functions. Of course we want the generaliza-
tion to be such that these notions for regular functions are the same as when seen as gen-
eralized functions. A complete list of all generalizations is too much for an introductory ex-
position like ours. We shall confine ourselves to the notion of “limit”—which is an intriguing
one—and later we shall generalize derivatives and Fourier transforms.

Definition A.7.3. Let fn(t ) be a sequence of functions (possibly generalized functions). We
say that fn(t ) has a generalized limit for n → ∞ if for each test function φ(t ) the limit
limn→∞

∫ ∞
−∞ fn(t )φ(t ) dt exists. The generalized limit f (t ) is denoted as f (t ) = "lim"n→∞ fn(t ).

�

If the fn(t ) have a limit in a regular sense to a regular function f (t ), say,

lim
n→∞ max

t∈[a,b]
| fn(t )− f (t )| = 0 ∀a < b

then fn(t ) also has a limit in the generalized sense, with the same limit f (t ) = "lim"n→∞ fn(t ).
But with generalized limits we are able to take limits that hitherto could not be taken.

Example A.7.4.

1. By Lemma 4.1.2 there holds for any absolutely integrable piecewise smooth function
φ(t ) that lima→∞

∫ ∞
−∞ φ(t ) sin(at )

t dt = πφ(0). Now test functions are smooth and abso-
lutely integrable, so we infer that

lim
a→∞

∫ ∞

−∞
sin(at )

πt
φ(t ) dt =φ(0)

for every test function φ(t ). Here we recognize the defining property of the delta func-
tion. We thus have that "lim"a→∞ sin(at )

πt = δ(t ). See Figure A.3.
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10/π

FIGURE A.3: sin(at )/(πt ) for a = 10. It approximates the delta function.

2. "lim"a→∞ ea it = 0. This is a direct consequence of Lemma 4.1.1.

3. "lim"a→∞ recta(t ) = 1. Indeed,
∫ ∞
−∞ recta(t )φ(t ) dt = ∫ a/2

−a/2φ(t ) dt and this converges to∫ ∞
−∞φ(t ) dt as a →∞.

4. Less standard is the generalized limit that "lim"a→∞ cos(at )/t = 0. The function
cos(at )/t has a pole at t = 0. In that case the integral

∫ ∞
−∞ cos(at )/tφ(t ) dt has to be

replaced by its principal value limε↓0
∫
|t |>ε cos(at )/tφ(t ) dt . So

lim
ε↓0

∫
|t |>ε

cos(at )

t
φ(t ) dt = lim

ε↓0

(∫ −ε

−∞
cos(at )

t
φ(t ) dt +

∫ ∞

ε

cos(at )

t
φ(t ) dt

)
= {t =−τ} = lim

ε↓0

(∫ +ε

+∞
cos(−aτ)φ(−τ)

−τ d(−τ)+
∫ ∞

ε

cos(at )φ(t )

t
dt

)
= {t = τ} = lim

ε↓0

(∫ ∞

ε
cos(at )

φ(t )−φ(−t )

t
dt

)
and this limit exists because

lim
ε→0

φ(t )−φ(−t )

t
= 2φ′(0)

exists. We conclude that the principle value of
∫ ∞
−∞φ(t )/t dt exists for every test func-

tion φ(t ). In the limit a →∞ it equals zero:

lim
ε↓0

(∫ ∞

ε
cos(at )

φ(t )−φ(−t )

t
dt

)
= Re

∫ ∞

0
eiat φ(t )−φ(−t )

t
dt

= {Lemma 4.1.1 for f (t ) = (φ(t )−φ(−t )
t )1(t )} = 0, as |a|→∞.

�

A.7.2 Generalized derivatives

Suppose that f (t ) = "lim"n→∞ fn(t ) and that every fn(t ) is a regular differentiable function
with derivative f ′

n(t ). We say that then f (t ) has generalized derivative f ′(t ) defined as

f ′(t ) = "lim"
n→∞ f ′

n(t ).

A definition like this is only then sensible if "lim"n→∞ f ′
n(t ) exists and only depends on f (t )

and not on fn(t ). Every sequence of fn(t ) that converges to f (t ) should give the same result
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TABLE A.1: Some generalized limits

"lim"n→∞ n rect1/n(t ) = δ(t ).

"lim"a→∞ sin(at )
πt = δ(t ).

"lim"σ↓0
1p

2πσ
e−t 2/σ = δ(t ).

"lim"a→∞ eiat = 0.

"lim"a→∞ cos(at )
t = 0.

f ′(t ). This is indeed the case, which can be seen with integration by parts,

lim
n→∞

∫ ∞

−∞
f ′

n(t )φ(t ) dt = lim
n→∞

(
fn(t )φ(t )]∞−∞−

∫ ∞

−∞
fn(t )φ′(t ) dt

)
= lim

n→∞−
∫ ∞

−∞
fn(t )φ′(t ) dt =−

∫ ∞

−∞
f (t )φ′(t ) dt .

This shows that the definition of f ′(t ) only depends on f (t ) as it should, and it also shows
that "lim"n→∞ f ′

n(t ) exists whenever "lim"n→∞ fn(t ) exists!

Example A.7.5. The unit step 1(t ) may be expressed as the generalized limit as n →∞ of

fn(t ) = 1

2
+ arctan(nt )

π 0

(Convince yourself of this.) The derivative of fn(t ) is

f ′
n(t ) = 1

π

n

1+ (nt )2

which may be shown to converge (in the generalized sense) to the delta function. We found
once again that 1′(t ) equals "lim"n→∞ 1

π
n

1+(nt )2 = δ(t ). �

A.7.3 Generalized Fourier transforms

Like with generalized derivatives we define generalized Fourier transforms through limits.
Suppose that f (t ) = "lim"n→∞ fn(t ) and that every fn(t ) is piecewise smooth and absolutely
integrable so that it has a Fourier transform Fn(ω). The limit f (t ) need not be absolutely in-
tegrable and as such the Fourier theory of Chapter 4 generally does not apply to f (t ). We say
that f (t ) := "lim"n→∞ fn(t ) has a generalized Fourier transform F (ω) defined as

F (ω) = "lim"
n→∞ Fn(ω).

A definition like this is only then sensible if "lim"n→∞ Fn(ω) exists and only depends on
f (t ) and not on fn(t ). Every sequence of fn(t ) that converges to f (t ) should give the same
"lim"n→∞ Fn(ω) and this limit should exist. As it stands this is not the case. The remedy is
to replace the test functions with what are called the tempered test functions φ(t ) which are
the infinitely often differentiable functions that are polynomially bounded in that t nφ(m)(t ) is
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bounded for every n,m ∈N. It may be shown that the Fourier transform is a bijection on the
set of tempered test functions, and that is a property that we shall need. Consider∫ ∞

−∞
Fn(ω)φ(ω) dω=

∫ ∞

−∞

(∫ ∞

−∞
fn(t )e−iωt dt

)
φ(ω) dω

= {change order of integration}

=
∫ ∞

−∞
fn(t )

(∫ ∞

−∞
φ(ω)e−iωt dω

)
dt =

∫ ∞

−∞
fn(t )ψ(t ) dt

where ψ(−t ) := 2πF−1{φ(ω)}. In the limit, therefore,∫ ∞

−∞
F (ω)φ(ω) dω= lim

n→∞

∫ ∞

−∞
fn(t )ψ(t ) dt .

Since the Fourier transform is a bijection on the set of tempered test functions it follows that
ψ(t ) is a tempered test function as well, so that the above generalized limit exists,∫ ∞

−∞
F (ω)φ(ω) dω=

∫ ∞

−∞
f (t )ψ(t ) dt .

This expression for F (ω) only depends on f (t ) as it should, and moreover is well defined
whenever f (t ) = "lim"n→∞ fn(t ) exists.

Example A.7.6.

1. F{δ(t )} = "lim"n→∞F{n rect1/n(t )} = "lim"n→∞ sin(ω/(2n))
ω/(2n) = 1.

2. Since lima→∞
∫ ∞
−∞ recta(t )φ(t ) dt = lima→∞

∫ a/2
−a/2φ(t )dt = ∫ ∞

−∞φ(t ) dt , holds for every
test function φ(t ), we get that

"lim"
a→∞ recta(t ) = 1.

Then because of Table A.1 we arrive at

F{1} = "lim"
a→∞ F{recta(t )} = "lim"

a→∞
2sin( a

2ω)

ω
= 2πδ(ω).

�

The two pairs δ(t )
F←→ 1,1

F←→ 2πδ(ω) = 2πδ(−ω) suggest that the duality rule remains
valid for generalized Fourier transforms. That is indeed the case (proof is omitted).

Example A.7.7.

1. To determine the Fourier transform of the unit step 1(t ) we shall make use of the fact
that

"lim"
a→∞ recta(t −a/2) = 1(t ).

0 a

The Fourier transform of recta(t −a/2) is easily obtained,

F{recta(t −a/2)} = (1− e−iaω)/(iω).

Since 1(t ) is the generalized limit of recta(t−a/2) as a →∞, we get, using Table A.1, that

F{1(t )} = "lim"
a→∞

1− e−iaω

iω
= "lim"

a→∞
1−cos(aω)+ i sin(aω)

iω

= 1

iω
−"lim"

a→∞
cos(aω)

iω
+"lim"

a→∞
sin(aω)

ω
= 1

iω
+0+πδ(ω).

We found the (generalized) Fourier transform pair

1(t )
F←→ 1

iω
+πδ(ω).
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2. The Fourier transform of the signal f (t ) = sgn(t ) subsequently follows readily on noting
that

sgn(t ) = 21(t )−1.

This directly gives the Fourier transform pair

sgn(t )
F←→ 2

iω
+2πδ(ω)−2πδ(ω) = 2

iω
.

�

For absolutely integrable functions the generalized Fourier transform and the normal
Fourier transform are the same. For this reason the adjective “generalized” is often omitted.
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Appendix B

Answers to some exercises

B.1 Chapter 1

1.3 Existence: since f is continuous we are guaranteed that ‖ f ‖1 exists.

positive homogeneous: for every scalar α and function f we have ‖α f ‖1 =
∫ b

a |α f (t )|dt =
|α|∫ b

a | f (t )|dt = |α|‖ f ‖1.

triangle inequality: for every two functions f , g we have ‖ f + g‖1 = ∫ b
a | f (t )+ g (t )|dt ≤∫ b

a | f (t )|+ |g (t )|dt = ‖ f ‖1 +‖g‖1.

positive definite: if f is not the zero function, then, f (t0) 6= 0 for some t0 ∈ [a,b]. Then
because of continuity | f (t )| > | f (t0)|/2 for all t in some small enough neighborhood of
t0. Hence ‖ f ‖1 > 0.

1.4 Yes because:

Existence: ‖x‖a +‖x‖b is well defined because both ‖x‖a and ‖x‖b are defined (because
they are norms).

Positive homogeneous: ‖αx‖ := ‖αx‖a +‖αx‖b = |α|‖x‖a + |α|‖x‖b = |α‖(‖x‖a +‖x‖b) =
|α|‖x‖. So it is positive homogeneous.

Triangle inequality: ‖x+y‖ := ‖x+y‖a+‖x+y‖b ≤ (‖x‖a+‖y‖a)+(‖x‖b+‖y‖b) = (‖x‖a+
‖x‖b)+ (‖y‖a +‖y‖b) = ‖x‖+‖y‖. So triangle inequality holds.

Positive definite: if x 6= 0 then ‖x‖ := ‖x‖a +‖x‖b > 0 because ‖x‖a > 0 (since ‖ · ‖a is a
norm.) So all axioms of norm hold.

1.7 (By the way: this assumes that the cartesian product is equipped with the natural vec-
tor addition and scalar product: (xa , xb) + (ya , yb) = (xa + ya , xb + yb) and α(xa , xb) =
(αxa ,αxb).)

Existence: since ‖ · ‖A and ‖ · ‖B are norms, they are well defined for all its elememts.
Then max(‖xa‖A ,‖xb‖B ) is also well defined (finite).

Positive homogeneous: ‖α(xa , xb)‖ = ‖(αxa ,αxb)‖ = max(‖αxa‖A ,‖αxb‖B ) which by the
norm properties of ‖ · ‖A ,‖ · ‖B equals |α|max(‖xa‖A ,‖xb‖B ). So it is positive homoge-
neous.

Triangle inequality: ‖(xa , xb)+(ya , yb)‖ = ‖(xa+ya , xb+yb)‖ = max(‖xa+ya‖A ,‖xb+yb‖B ).
Case 1: suppose that ‖xa + ya‖A ≥ ‖xb + yb‖B . Then the above gives ‖(xa , xb)+(ya , yb)‖ =
‖xa + ya‖A ≤ ‖xa‖A + ‖ya‖A ≤ max(‖xa‖A ,‖xb‖B ) + max(‖xb‖B ,‖yb‖B ) = ‖(xa , xb)‖ +
‖(ya , yb)‖. This is the triangle inequality. The other case (so ‖xa + ya‖A ≤ ‖xb + yb‖B )
results in the same triangle inequality.
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Positive definiteness: if (xa , xb) is nonzero then at least one of the two is nonzero, so
then ‖(xa , xb)‖ = max(‖xa‖A ,‖xb‖B ) > 0.

1.8 yes...

1.9 On R we take the absolute value as norm (actually, Exercise 1.5 explains that this is,
essentially, without loss of generality). Suppose xn is Cauchy. Then ∀ε > 0 there is an
N > 0 such that ‖xn − xm‖ < ε for all n,m ≥ N . Then an := ‖xn‖ by the reverse triangle
inequality satisfies |an −am | = |‖xn‖−‖xm‖| < ‖xn − xm‖ < ε for all n,m ≥ N . Hence an

is a Cauchy sequence (in R with absolute value as norm).

1.10 Take an N . For all n,m ≥ N we have that fn(t )− fm(t ) = 0 for all t > 1/N . Hence for all
n,m ≥ N we have

‖ fn − fm‖2
2 ≤

∫ 1/N

0
| fn(t )− fm(t )|2 dt

All functions fn(t ), fm(t ) are nonnegative and bounded from above by t−0.2 so we have
for all n,m ≥ N that

‖ fn − fm‖2
2 ≤

∫ 1/N

0
(t−0.2)2 dt =

[
t 0.6

0.6

]1/N

0
= 1

0.6

1

N 0.6 .

This converges to zero as N →∞ so fn is a Cauchy sequence.

1.11 Suppose fn is Cauchy. Take an ε> 0 and let N be such that ‖ fn− fm‖ < ε for all m,n ≥ N .
This implies that ‖ fn‖ ≤ ‖ fm‖+ε for all n,m ≥ N . For fixed such m and ε this shows that
| fn | for all n ≥ N is bounded by P :=‖ fm‖+ε. Then fn for all n is bounded by

‖ fn‖ ≤ max(‖ f1‖,‖ f2‖, . . . ,‖ fN‖,P ) <∞

This maximum does not depend on n, implying that fn is bounded.

1.13 (a) Suppose f and g are two limits of a convergent fn . Since convergent, for every
ε > 0 there are N f , Ng such that ‖ f − fn‖ < ε∀n ≥ N f and ‖g − fn‖ < ε∀n ≥ Ng .
Then ‖ f −g‖ = ‖( f − fn)−(g − fn)‖ ≤ ‖ f − fn‖+‖g − fn‖ < 2ε for all n ≥ max(N f , Ng ).
Since ε is arbitrary we must have ‖ f − g‖ = 0. By the third axiom norm this means
f = g .

(b) Let f = limn→∞ fn as an element of X. If f ∈ Y then clearly fn converges in Y. If
f 6∈ Y then fn cannot converge in Y because if it would then this limit (call it y)
would mean that fn has two different limits ( f and y) in X. Not possible.

(c) Since L 1([−1,1];R) (with its 1-norm) is Banach, and fn is a Cauchy sequence in
the 1-norm, it follows that f := limn→∞ fn is L 1([−1,1];R) and is unique. Clearly
this is f (t ) = 0 for t < 0 and f (t ) = 1 for all t > 1. This function is (essentially) not
continuous. Apply the previous part (using that C ([−1,1];R) ⊂L 1([−1,1];R)).

1.14 The function f : [a,b] → R defined as f (a) = 1, and f (t ) = 0 for all a < t ≤ b is not the
zero function, yet 〈 f , f 〉 = ∫ b

a f 2(t ) dt = 0.

1.17 (a) 1,1,2,1

(b) No because Parallelogram law fails
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1.23 In Example 1.3.10 we have S = [
1
−1

]
and S⊥ = span{

[
3
1

]
}. Then (S⊥)⊥ = span{

[
1
−1

]
}. So

in this example S(S⊥⊥. Therefore, we do not always have S⊥⊥ ⊆S.

Now we show that S⊆S⊥⊥ holds for every set S. Let V=S⊥, and s ∈S. Then for every
v ∈V we have 〈s, v〉 = 0 by the fact that v ∈V = S⊥. But 〈s, v〉 being zero for all such v
by definiton means that s ⊥V, that is s ∈V⊥ =S⊥⊥. Conclusion: s ∈S =⇒ s ∈S⊥⊥.

1.25 Cauchy-Schwarz says that |∫ π0 f (t )cos(t ) dt | ≤ ‖
√∫ π

0 | f (t )|2 dt
√∫ π

0 |cos(t )|2 dt . So c∗ =√∫ π
0 |cos(t )|2 dt =

p
π/2. In fact CS says that we have equality for f (t ) =αcos(t ).

1.37 (a) Realize that t 6 = 16
231 p6(t ) + q5(t ) for some polynomial q5 of degree 5 or less.

Then q5 is the BA of t 6 in P5 because t 6 − q5 = 16
231 p6(t ) ⊥ P5. We have q5 =

t 6− 16
231 p6(t ) = 1

231 (315t 4−105t 2+5). For fun: below you see t 6 (black) for t ∈ [−1,1],
and its best approximation q5 (red), and the error (t 6 −q5, blue):

(b) ‖t 6 −q5‖ = ‖ 16
231 p6‖ = 16

231

p
2/13 ≈ 0.027

1.44 (a)


1 1/2 1/3 · · · 1/n

1/2 1/3 1/4 · · · 1/(n +1)
1/3 1/4 1/5 · · ·

...
...

...
...

...
1/n . . . . . . . . . 1/(2n −1)




α1

α2

α3
...
αn

=


1/(n +1)
1/(n +2)
1/(n +3)

...
1/(2n)


(b) α1 =−1/6,α2 = 1, so: −1/6+ t .

1.45 -

1.47 Yes: suppose v ∈ `1. Then
∑∞

n=1 |vn | <∞. Hence vn → 0. So an N exists such that |vn | <
1/2 for all n ≥ N . For all such n we have |vn |2 ≤ |vn |. Now

∑∞
n=1 |vn |2 ≤ ∑N−1

n=1 |vn |2 +∑∞
n=N |vn | <∞. Hence v ∈ `2.

1.48 This is a very tricky one (beyond exam level).

(a)

wn :=
n∑

k=1
vk converges ⇐⇒ wn is Cauchy (because of Hilbert)

⇐⇒ ‖wn −wm‖→ 0 as n,m →∞
⇐⇒ ‖wn −wm‖2 → 0 as n,m →∞

⇐⇒
m∑

k=n+1
‖vk‖2 → 0 as n,m →∞
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(In the last equality we use orthogonality of vk ). We also have

βn :=
n∑

k=1
‖vk‖2 converges ⇐⇒ βn is Cauchy (since R is complete)

⇐⇒ |βn −βm |→ 0 as n,m →∞

⇐⇒
m∑

k=n+1
‖vk‖2 → 0 as n,m →∞

So the same

(b) By the previous part:
∑

nαnen converges iff
∑

n ‖αnen‖2 <∞, which, by orthonor-
mality of the {en}, means

∑
n |αn |2 < ∞. This, by definition of `2, is the case iff

α ∈ `2.

(c) First of all, since α,β ∈ `2 we have, by the previous part, that
∑

nαnen and
∑

n βnen

are convergent (i.e. are in X, so have well defined norm and inner product). For
finite sums

〈
N∑

n=1
αnen ,

N∑
n=1

βnen〉

the orthonormality of the en ’s shows that it equals
∑N

n=1αnβn . Using continuity of
inner products we have “inner product of limit = limit of inner product”:

〈
∞∑

n=1
αnen ,

∞∑
n=1

βnen〉X = lim
N→∞

〈
N∑

n=1
αnen ,

N∑
n=1

βnen〉 = lim
N→∞

N∑
n=1

αnβn = 〈α,β〉`2

(d) The v∗ := ∑N
n=1〈x,en〉en is the best approximation of x in the space spanned

by {e1, . . . ,en}. Hence ‖v∗‖2 ≤ ‖x‖2. Pythagoras says ‖v∗‖2 = ∑N
n=1 |〈x,en〉|2. So∑N

n=1 |〈x,en〉|2 ≤ ‖x‖2. This holds for every N so also in the limit as N →∞.

1.50 (a) Suppose x ∈ `2. Then M := ‖x‖2 exists (is finite). So for each index i we have
|xi |2 ≤

∑
k |xk |2 = M 2, so ‖x‖∞ = supi |xi | ≤ M as well. Answer: yes, then x ∈ `∞ as

well.

(b) If x ∈ `1 then
∑∞

i=1 |xi | <∞. By the term test from Calculus we have thus have that
limi→∞ |xi | = 0. Hence for some large enough N we have |xn | < 1 for all n ≥ N .
Clearly then

∑∞
n=N |xn |2 ≤ ∑∞

n=N |xn | ≤ ‖x‖1. So ‖x‖2
2 = ∑∞

i=1 |xi |2 ≤ (
∑N−1

i=1 |xi |2)+
‖x‖1 <∞. Hence x ∈ `2.

(c) No: f (t ) = 1/
p

t ∈L 1([0,1];R) but not in L 2([0,1];R).

(d) Yes: if f ∈L 2([0,1];R) and | f (t )| ≥ 1, then f 2(t ) ≥ | f (t )|. So then ‖ f ‖2
2 =

∫ 1
0 f 2(t ) dt

exists and is ≥ ∫ 1
0 | f (t )|dt = ‖ f ‖1 so ‖ f ‖1∞, that is, f ∈ L 1([0,1];R) as well.

(If some | f (t )| < 1 then argue that g (t ) :=max(| f (t )|,1) is in L 2([0,1];R) iff f ∈
L 2([0,1];R), and then repeat above argument...)

Other solution: we use that for real numbers x we have |x| ≤ x2 + 1. If f ∈
L 2([0,1];R) then

∫ 1
0 f 2(t )+1 dt = ‖ f ‖2

2+1 <∞. Then ‖ f ‖1 =
∫ 1

0 | f (t )|dt ≤ ∫ 1
0 f 2(t )+

1 dt <∞. So f ∈L 1([0,1];R).

(e) No: f (t ) = 1/t for t > 0 and zero elsewhere. Then f ∈L 2 but not L 2

(f) No: f (t ) = 1/
p

t for t ∈ (0,1) and zero elsewhere. Then f ∈L 1 but not in L 2.

1.52 see slides ....
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B.2 Chapter 2

2.3 = limt→0
cos(2t )+i sin(2t )−1

t = limt→ 0
cos(2t )−1

t + i× limt→0
sin2t

t = 0+ i2 = 2i. (The latter two
limits follow from “real” l’Hôpital. (One may also directly apply “complex l’Hôpital”)

2.5 The limit is zero because limt→∞ | eit

t −0| = limt→∞ 1
t = 0.

2.6 f (t ) = A cos(ωt +φ). Amplitude: A = 110
p

5, angular frequency: ω = π

25
, initial phase:

φ=−arctan(2).

2.7

sin(α)cos(β) = eiα− e−iα

2i

eiβ+ e−iβ

2

= ei(α+β) + ei(α−β) + ei(−α+β) + ei(−α−β)

4i

= ei(α+β) − e−i(α+β)

4i
+ ei(α−β) − e−i(α−β)

4i

= 1

2
sin(α+β)+ 1

2
sin(α−β).

2.10 If q = 2 then there is no smallest period. If q is even (and q 6= 2) then the smallest period
is π. If q is odd then the smallest period is 2π.

2.11
10

i
C

. Perhaps nicer would have been eiω0t + 1
5 ei10ω0t :

10

i
C

2.15 (a) (Intuitively this makes perfect sense: the power is “the average of the squared
function” and this does not change if we shift the function. Now math:) Use that
for periodic signals we have

P f =
1

T

∫ T /2

−T /2
| f (t )|2 dt .

Then the power of the shifted signal f (t − t0) (which has the same period) is

P f (t−t0) =
1

T

∫ T /2

−T /2
| f (t − t0)|2 dt

now do substitution τ= t − t0:

= 1

T

∫ T /2+t0

−T /2−t0

| f (τ)|2 dτ= 1

T

∫ T /2

−T /2
| f (τ)|2 dτ= P f .

Here we used Lemma 2.4.3!

(b) (Intuively f (t ) and f (2t ) have the same power because the graph of f (2t ) is that of
f (t ) squeezed with a factor 2, so the average over “all time” of | f (2t )|2 and | f (t )|2
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are probably the same.) Actually we will derive a relation that is also valid for
NON-periodic functions.

P f (2t ) = lim
M→∞

1

M

∫ M/2

−M/2
| f (2t )|2 dt

do substitution τ= 2t :

= lim
M→∞

1

M

∫ M

−M
| f (τ)|2 d

τ

2
= lim

M→∞
1

2M

∫ M

−M
| f (τ)|2 dτ

do substitution N = 2M :

= lim
N→∞

1

N

∫ N /2

−N /2
| f (τ)|2 dτ= P f

2.16 (a) 4a

(b) 7/6

2.19 (a) t →0 2 5

1

−2

(b)
t →−1

2
1
2

1

(c)
t →0 1

1

(d)
t →

0 1

(e)

t →0
π 2π

(f)

t →4

2.20 (a) 0,

(b) δ(t ),

(c) 0,

(d) 35δ(t −5),

(e) 15δ(t +5),

(f) 1(t −5),

(g) 1
5 e5t+5
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2.21 (a) 1
2 f (t +2)

(b) 1
2 f (t −1/2)

2.22 (a) −δ(t +1)−δ(t −1)+ rect2(t )

(b) cos(t )1(t )

(c) rect2(t −1)−2δ(t −2)

(d) −δ(t −π)+ ieit 1(t −π)

(e) ugly: rect1/2(t +1/4)− rect1/2(t −1/4)+ 1
2δ(t +1/2)− 1

2δ(t −1/2)

2.25 c = 10,α= 2

2.26 (a) -

(b) 1
a ea(t−1)

(c)


0 if t <−1

t +1 if t ∈ [−1,1]

2 if t > 1

(Check: the derivative of this function is rect2(t ).)

(d) This is a nasty one (sorry):


0 if t <−2

(t +2)2/2 if t ∈ [−2,0]

2− t 2/2 if t ∈ [0,2]

0 if t > 2
−2 0 2

2.27 (a)

{
−1 if t < 0

1−2e−t if t > 0 0

(b) Nasty: the answer is g (t +1/2) where g (t ) = ∫ t
−∞ e−|τ| dτ= et 1(−t )+ (2− e−t )1(t )

(c) t 1(t )

(d) (t −1)1(t −1)

(e) (t −2)1(t −2)

(f) (−1
2 e−t + 1

2 et )1(t )

(g) If a 6= b, then ( 1
a−b eat − 1

a−b ebt )1(t ). If a = b, then t eat 1(t )

2.28 (a) -

(b)
[−1

2 e−t + 1
2 cos(t )+ 1

2 sin(t )
]
1(t )

B.3 Chapter 3

3.1 (a) ω0 =π
(b)

fk =


1/2 if k = 0

0 if k is even (and nonzero)
1

ikπ if k is odd
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(c) the same iff t is NOT an integer.

3.2 (a) fk =


0 if k = 0
2i
kπ if k even, k 6= 0
−2i
kπ if k odd

(b) for all t ∈R, except for the odd integers t = 1+2k,k ∈Z.

(c) π/4

3.3 (a) t →0 π

(b) fk = −i4k

π(4k2 −1)

3.5 Superposition of complex harmonic signals:

sin2(ω0t +π/3) = f0 + f1ei2ωt + f−1e−i2ωt

and

f0 =
1

2

f1 =
−e2iπ/3

4
= 1− i

p
3

8

f−1 =
−e−2iπ/3

4
= 1+ i

p
3

8

Or as superposition of sinusoids:

sin2(ω0t + 1

3
π) = 1

2
+ 1

4
cos(2ω0t )+ 1

4

p
3sin(2ω0t )

3.8 (a)

0 T 2T−T

(b) f0 is the average of f (t ) which is a half: f0 = 1/2. For all other k:

fk = 1

T

∫ T

0
f (t )e−ikω0t dt

= 1

T

∫ 3T /4

T /4
e−ikω0t dt

= 1

T

[
e−ikω0t

−ikω0

]3T /4

T /4

= 1

T

e−ik2π 3
4 − e−ik2π 1

4

−ikω0
= e−ikπ 3

2 − e−ikπ 1
2

−ik2π
=


0 if k is even (k 6= 0)
−1
kπ if k ∈ (1+4Z)
+1
kπ if k ∈ (−1+4Z)

(c) Amplitude is 0 if k is even, otherwise amplitude is 1/(|k|π). Since the fk ’s are real,
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the phase is either zero (if fk ≥ 0) or ±π (if fk < 0):

k=0

k=0

−π

+π

(d) The function is even so only cosines: 1
2 a0 +

∑∞
k=1 ak cos(kω0t ) with

ak = 2Re( fk ) =


1 if k = 0

0 if k is even, k 6= 0

−2/(kπ) if k = 1,5,9, . . .

+2/(kπ) if k = 3,7,11, . . .

3.10 (a)
∑∞

k=−∞ fk eikt with f0 = π2

3 , and fk = 2(−1)k

k2 for k 6= 0

(b) a0
2 +∑∞

k=1 ak cos(kt ) with a0 = 2π2

3 and ak = 4(−1)k

k2 for k = 1,2, . . ..

(c) −4
9 cos(3t )

(d) π2/12

3.11
∑∞

k=−∞ fk eikt with f0 =
π2

3
and fk = 2e−3ik (−1)k

k2 for k 6= 0

3.12
∑∞

k=−∞ fk eikt with f4 =
π2

3
and fk = 2(−1)k

(k −4)2 for k 6= 4

3.17 (a) 1
4 fk−2 + 1

2 fk + 1
4 fk+2

(b) f (t ) has period T , and ei(ω0/2)t has period 2π/(ω0/2) = 4πω0 = 2T ...

(c) Define ωg = ω0/2 (the fundamental frequency of g (t )). Then g (t ) = f (t )eiωg t =
(
∑

k fk eikω0t )eiωg t =∑
k fk ei(2k+1)ωg t which is the Fourier series

∑
n gn einωg t for

gn =
{

0 if n is even

f(n−1)/2 if n is odd (so of the form n = 2k +1)

Its power is the same as that of f because |g (t )| = | f (t )|.
3.18 (a) g (t+T ) = 1

a

∫ t+T
t+T−a f (u) du. With substitution τ= u−T this becomes = 1

a

∫ t
t−a f (τ+

T ) du = 1
a

∫ t
t−a f (τ) dτ= g (t ).

(b) Intuitively: g0 is the average of g , and since g (t ) is “an” average of f the average of
g equals that of f . Math: for every T -periodic harmonic function we have

1

T

∫ T

0

1
a

∫ t

t−a
eikω0τ dτdt = 0

Hence

g0 =
1

T

∫ T

0

1
a

∫ t

t−a

(∑
k

fk eikω0t ) dτdt = 1

aT

∫ T

0

∫ t

t−a
f0 = f0.
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(c) Use that g (t ) = 1
a [F (t )−F (t −a)]. Then

gk = 1

T

∫ T

0
g (t )e−ikω0t dt

= 1

T

[
g (t )

e−ikω0t

−ikω0

]T

0
− 1

Ta(−ikω)

∫ T

0
( f (t )− f (t −a))e−ikω0t dt

= 0+ 1

a(−ikω0)
( fk − fk e−ikω0a) says table

= 1− e−ikω0a

−ikω0a
fk

(d) If a = T then all gk are zero (except g0 = f0). In fact, g is then the average of f over
one period, so constant indeed.

3.19 (a) 2.5

(b) 0.5

3.20 (a) bk = 0

(b) ak = 0

(c) All ak = 0,bk are zero if k is odd. Proof: f (t ) = 1
2 c0 +

∑∞
m=1 cm cos(m 2π

T /2 t ) +
dm sin(m 2π

T /2 t ), which is of the given form 1
2 a0 +

∑∞
k=1 ak cos(k 2π

T t )+bk sin(k 2π
T t )

iff “k = 2m” meaning: a2m = cm ,b2m = dm and all ak = 0,bk are zero if k is odd.

3.22 P f =
∑∞

k=−∞ | fk |2 =
∑∞

k=−∞ |(a|k|± ib|k|)/2|2 = 1
4

∑∞
k=−∞ a2

|k|+|b2
|k| = 1

4 (a2
0 +2

∑∞
k=1 a2

k +b2
k ).

3.23
∑∞

k=−∞ fk eikω0t with:

(a) ω0 = 1, f1 = 1
2 eiθ, f−1 = 1

2 e−iθ, and fk = 0 for |k| 6= 1, so Fourier series is a finite
sum:

eiθ

2 eiω0t + e−iθ

2 e−iω0t .

(b) ω0 = 2, f1 = 1
2 eθi, f−1 = 1

2 e−θi and fk = 0 for |k| 6= 1, so Fourier series is

eiθ

2 eiω0t + eiθ

2 e−iω0t .

(c) ω0 = 1, f1 = 1
2 − 1

2 i, f−1 = 1
2 + 1

2 i and fk = 0 for |k| 6= 1 so

1−i
2 eiω0t + 1+i

2 e−iω0t .

(d) ω0 = 1, f2 =−1
2 i, f−2 = 1

2 i, f3 = 1
2 , f−3 = 1

2 and fk = 0 for |k| 6= 2 and |k| 6= 3, so

1
2 e−3iω0t + +i

2 e−2iω0t + −i
2 e+2iω0t + 1

2 e+3iω0t .

3.24 (a) u(t ) = 1
2 eiω0t + 1

2 e−iω0t =∑∞
k=−∞ uk eikω0t with u1 = u−1 = 1

2 and uk = 0 for |k| 6= 1

(b) y(t ) =∑∞
k=−∞ yk eikω0t with yk = H(iω0k)uk = 1

2 H(iω0)eiω0t + 1
2 H(−iω0)e−iω0t

3.25 (a) φ(t ) = 0. Interpretation: if the position u(t ) of the hand is constant (u(t ) =
cos(0t ) = 1) then the watch comes to a halt, hanging still below the hand. So the
angle is zero.
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(b) limω0→∞ |H(iω0)| = 1
` , and limω0→∞ arg H(iω0) =−π, so for very large ω we have

y(t ) ≈ 1

`
cos(ωt −π)

Since y is the angle (assumed small) we have y` is the position of the tip of the
pendulum (the watch). The amplitude of the watch hence is the same as that of
the hand: y`= 1.

The phase of the movement of that watch differs π (we say: “is in anti-phase”)
compared to the hand means that they differ half a period. If you mimic the “hyp-
notist” with a pen (instead of pendulum) and shake your hand quickly, then you
will notice this anti-phase property.

(c) |H(iω0)| has a maximum only if k2 < 2g`. The maxima are

ω0 =±
√

2g 2

2g`−k2 ⇒ |H(iω0)| = 2g

k

√
1

4g`−k2

3.26 Yes

3.30
π4

90

B.4 Chapter 4

4.1 f1(t ) ⇔ f̂2(ω). f2(t ) ⇔ f̂1(ω). f3(t ) ⇔ f̂3(ω).

4.2 (a)
e(1−iω)6 − e(1−iω)5

1− iω
t →0 5 6

e6

(b)
i
(
ωcos( 1

2ω)−2sin( 1
2ω)

)
ω2 t →1/2

−1/2

(c)
2i

ω

(
cos( 5

2ω)−cos( 3
2ω)

)
t →

−2
2

4.3 (a)
i

2

(
f̂ (ω+ω0)− f̂ (ω−ω0)

)
(b)

1

|a| f̂
(ω−ω0

a

)
(c)

f̂ (ω)+ f̂ ∗(−ω)

2

(d)
f̂ (ω)− f̂ ∗(−ω)

2i

4.4 (a) πrect8(ω)

(b)
a

2
sinc2

( aω

4

)
(c)

e−(a+iω)t0

a + iω
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(d)
−iω

2a

√
π

a
e−ω

2/(4a)

(e)
i

2

(
1

a + i(ω+ω0)
− 1

a + i(ω−ω0)

)
= ω0

a2 +ω2
0 −ω2 +2a iω

(f) πe−|ω|

(g) πe−|ω|eiω

4.5 (a) 2
3 e−iω/3 f̂ (ω/3)

(b) f̂ (ω+2)e−2i(2+ω)

(c) i f̂ ′(ω)

(d) 2 f̂ (−2ω)

(e) f̂ (−ω)e−iω

(f) 1
4 f̂ (ω+2ω0)+ 1

2 f̂ (ω)+ 1
4 f̂ (ω−2ω0)

4.7 (a)
2a

π
sinc(at )cos(ω0t )

(b) 1
3 (e−t +2e−4t )1(t )

(c) 9((t −1)e−t + e−2t )1(t )

4.9 (a)
eat 1(−t )+ e−bt 1(t )

a +b

(b)
π

β
sinc(αt ) if α<β,

π

α
sinc(βt ) if α≥β

4.10 (a)
1

iω+5b
e−

4
5 iω

(b)
2

(iω+b)3

(c)
1

i(ω−2)+b

(d)
1

2

(
1

i(ω−4)+b
+ 1

i(ω+4)+b

)
= iω+b

b2 +16−ω2 +2b iω

(e)
−ω2

iω+b

(f)
1

(iω+b)2

(g) If b > 0 then
1

iω+2b
. If b < 0 then

−1

iω+2b

(h) ĝ (ω) =−2π f (ω) =
{
−2πe−bω 1(ω) if b > 0

2πe−bω 1(−ω) if b < 0

4.11 (a)
1

π
d

dt sinc2(t ) = 2sin(t )cos(t )

πt 2 − 2sin2(t )

πt 3

(b)
4

π
sinc(4(t − t0))

(c)
1

2
(sinc(π(t +1))+ sinc(π(t −1)))

4.12 (a) αt e−αt 1(t )
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(b) 1
2 e−α|t |

(c) αe−α(t−1) 1(t −1)

(d)
1

2

( α

α+ i

)
eit + 1

2

( α

α− i

)
e−it this equals 1

2 H(i)eit + 1
2 H(−i)e−it , see Exercise 3.24(b)

4.13 (a) ĥ(ω) = ω2

−lω2 +k iω+ g

(b) h(t ) =−δ(t )

`
+ eat

( k

`2 cosbt + ka + g

l 2b
sinbt

)
1(t ) with a =− k

2`
and b =

√
4g`−k2

2`
,

(numerically: a =−1
3 , b ≈ 5.71)

(c) y(t ) = ((A1 cosbt + A2 sinbt )eat +B e−t )1(t ) with

A1 =
g −k

`(`−k + g )
, A2 =

g k −k2 +2g`

`(`−k + g )
√

4g`−k2
, B = −1

`−k + g
.

4.14 (a) -

(b) ĥ(ω) = 1

−mω2 +0.4iω+k
(c) impulse response: y(t ) = h(t ) = 10t e−2t 1(t )

(d) y(t ) = 10(e−t − (t +1)e−2t )1(t )

4.16 a <π

B.5 Chapter 5

5.1 Note that L{sin(πt )} = π

s2 +π2 if Re(s) > 0.

(a)
2πs

(s2 +π2)2 , Re(s) > 0

(b)
2π(3s2 −π2)

(s2 +π2)3 , Re(s) > 0

(c) Let F (s) =L{et 1(a − t )}. If a < 0 then F (s) = 0. If a ≥ 0 then

F (s) =
{

a if s = 1
1

1−s (e(1−s)a −1) if s 6= 1

The region of convergence is C.

(d)
−1

s2 +1
, Re(s) > 0

(e)
s2

s2 +1
, Re(s) > 0

(f)
∑∞

k=0 e−sk = 1
1−e−s , Re(s) > 0.

5.2 (a) -

(b) F (s) converges for every s > 0 while F (0) diverges. So α= 0

5.3 (a) e2t

(b) δ(t )+2e2t
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(c) (2t +1)e2t

(d) δ(t )+ (4t 2 +12t +6)e2t

(e) e−t sin t

(f) e−t (cos t − sin t )

(g) 2−2e−t

(h) 4− e−t

(i) 1
2 e−t

((
1+ 1p

3

)
e−

p
3t +

(
1− 1p

3

)
e
p

3t
)

5.5 (a) 1
2 (sin(t )− t cos(t )). (This one is a bit tricky to derive)

(b) δ(t )−2e3t +6e4t

(c) sin(t )+ sin(t −π)1(t −π). (Notice that this function is zero for all t >π)

(d) e−at 1(t − t0) with t0 > 0

5.7 (a)
n!m!

(m +n +1)!
t m+n+1 1(t )

(b) t e−t 1(t )

(c) 1
2 (e−t + sin(t )−cos(t ))1(t )

5.8 Then (s2+3s+2)Y (s) = 1/s so Y (s) = 1/(s(s+1)(s+2)) = A/s+B/(s+1)+C /(s+2). Then
y(t ) = A+B e−t +C e−2t for t > 0. We have A =C = 1/2 and B =−1

5.9

(s2Y (s)+ s −6)+3(sY (s)+1)+2Y (s) = 1/(s +1)

(s2 +3s +2)Y (s) = 1/(s +1)− s +3

Y (s) = 1+ (−s +3)(s +1)

(s +1)2(s +2)

= A

s +1
+ B

(s +1)2 + C

s +2
(A = 3,B = 1,C =−4)

y(t ) = Ae−t +B t e−t +C e−2t

5.10 This is not standard because the initial conditions are now at time t = 1−. One could
switch to new functions: ỹ(t ) := y(t+1), ũ(t ) :=u(t+1) = e−(t+1) = e−1e−t . Then the ODE
becomes

¨̃y +3 ˙̃y +2ỹ = ũ

(s2Ỹ (s)+ s −6)+3(sỸ (s)+1)+2Ỹ (s) = e−1/(s +1)

(s2 +3s +2)Ỹ (s) = e−1/(s +1)− s +3

Ỹ (s) = e−1 + (−s +3)(s +1)

(s +1)2(s +2)

= A

s +1
+ B

(s +1)2 + C

s +2

ỹ(t ) = Ae−t +B t e−t +C e−2t

y(t ) = Ae−(t−1) +B(t −1)e−(t−1) +C e−2(t−1), t > 0.

(Ugly numbers: A = 4− e−1,B = e−1,C = e−1 −5).

5.12 sF 2(s) =L{t 4} = 4!/s5 = 24/s5 so F (s) =±
p

24/s3. Hence f (t ) =±
p

6t 2
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B.6 Appendix A.3

A.3.1 y(t ) =αy1(t )+βy2(t )

A.3.2 and A.3.3.

(a) General solution of the homogeneous equation:

yhom(t ) = c1e(−1−i )t + c2e(−1+i )t , c1, c2 ∈C

It is real iff c2 = c∗1 . The general solution can also be written as

yhom(t ) = e−t (a1 sin(t )+a2 cos(t )), a1, a2 ∈C

(and now the signal is real iff a1, a2 ∈R)

(b) yhom(t ) = c1e2t + c2t e2t , c1,c2 ∈C
ypart(t ) = 1

4 t 2 + 1
2 t + 3

8

(c) yhom(t ) = c1e−3t + c2e−4t , c1,c2 ∈C
ypart(t ) = 19

144 − 1
12 t

(d) yhom(t ) = c0 + c1t + c2t 2 + c3t 3, c0,c1,c2,c3 ∈C
ypart(t ) = 1

24 t 4 1(t )

(e) yhom(t ) = c e−βt , c ∈C

ypart(t ) =


2

β
if β 6= 0

2t if β= 0

(f) yhom(t ) = c e−βt , c ∈C

ypart(t ) =


e4t

4+β + e−t

−1+β if β 6= 1, β 6= −4

t e4t − 1
5 e−t if β 6= 1, β=−4

1
5 e4t + t e−t if β= 1, β 6= −4

B.7 Appendix A.4

A.4.1 (a)
4

s
+ −1

s +1

(b)
1

s +2
+ −1

s +3

(c)
−2

s +2
+ 3

s +3

(d) 1+ 4

s +2
+ −9

s +3
(e) Answer of (d) plus 3 times the answer of (c) minus 100 times the answer of (b)

(f)
1

s −2
+ 2

(s −2)2

(g) 1+ 4

s −2
+ 4

(s −2)2
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(h)

1
2 + 1

2
p

3

s − (−1−
p

3)
+

1
2 − 1

2
p

3

s − (−1+
p

3)

(i)
2

s +2

(j)
(1−β)/9

s −1
+ (β−1)/9

s +2
+ (2+β)/3

(s +2)2 .

If β= 1 then
1

(s +2)2 .

If β=−2 then
1/3

s −1
+ −1/3

s +2
.

A.4.2 (a)
1

(s +1)2 +1

(b)
1

s
+ −s +2

(s −1)2 +4

(c)
2

s +0.5
+ 2s +3

(s −0.5)2 +1
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Index

1-norm
of function, 6, 12
of sequence, 6
of vector, 4

2-norm
of function, 12
of vector, 4

F, 100
L, 124
`finite, 3
F , 3
∞-norm

of vector, 5
of function, 6

C, 3
Cn , 3
N, 3
N0, 3
R, 3
Rn , 3
Z, 3
ω-domain, 97
⊥, 18
k-th harmonic, 73
T -periodic, 49

abscissa of convergence, 123
absolutely integrable, 96
absolute value, 44
algebra

fundamental theorem, 46
aligned vectors, 20
amplitude, 49

spectrum, 75
amplitude spectrum, 97
angular frequency, 49
antiderivative, 164
aperiodic, 50
autocorrelation, 109

Banach space, 9
bandlimited, 115
bandwidth, 115
basis

orthonormal, 30
Bessel’s inequality, 38

best approximation
on inner product space, 21

bounded operator, 147

Cauchy sequence, 7
Cauchy Schwarz, 20
causal, 54
characteristic equation, 153
Chebyshev, 39
complete

normed set, 9
orthonormal system, 30
sequence in Hilbert space, 30

complex
conjugate, 44
Fourier series, 71
plane, 44

conjugate, 44
conjugate symmetric, 16
continuity

of inner product, 39
of maps, 148
of norms, 5, 148

continuous-time
delta function, 55
signal, 43
unit pulse, 55

contraction, 150
convergence, 7

uniform, 81
convergent sequence, 7
convolution

aperiodic signal, 53
frequency domain, 107
periodic signal, 78

convolution theorem
Fourier-transform, 107
Laplace transform, 132

cross correlation, 108

delta function, 167
continuous-time, 55

differentiation rule
Fourier transform, 101
Laplace transform, 127

Dirichlet kernel, 63
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discrete-time
signal, 43

distance, 34

energy, 52
signal, 52
spectrum, 109

Euclidean norm, 4
Euler

formula-, 47
even signal, 74
exponentially bounded, 122

final value, 131
final value theorem, 131
floor of a number, 141
Fourier

coefficients, 25, 67
series, 30, 67
series (complex), 71
series (real), 73

Fourier transform, 96
Fourier integral theorem, 96
Fourier transform, 97, 100

generalized, 170
inverse, 100

frequency
domain, 75, 97
fundamental-, 66
response, 112
spectrum, 97

frequency response, 84
function

delta, 167
generalized, 167
tempered test, 170
test, 167
transfer, 83

fundamental
frequency, 66

generalized
derivative, 59, 169
Fourier transform, 170
function, 167
limit, 168

Gibbs phenomenon, 81
Gram matrix, 23

harmonic
k-th, 73

harmonic signal, 48
Heaviside symbolic calculus, 113
Hilbert space, 27
homogeneous equation

continuous-time, 153

imaginary part, 44
imaginary unit, 44
impulse

response, 112
unit-, 55

initial value, 130
initial value theorem, 130
inner product, 15

complete space, 27
complex-, 16
real-, 15
space, 16

input, 83
integration by parts, 164

Laplace transform, 122, 124
one-sided, 122
two-sided, 121

last-limit-you-take, 56
Legendre polynomial, 27
limit, 7
line spectrum, 75
linear

inner product, 15
linearity

conjugate, 16

max-norm
of function, 6
of vector, 5

modulation theorem, 101

Neumann series, 150
norm, 4

L 1-, 12
L 2-, 12
∞-, 5, 10
1-, 4, 10
2-, 4, 10
from inner product, 16
max-, 5
operator-, 147

normal equations, 24
normed vector space, 4
Nyquist rate, 115

odd, 28
odd signal, 74
one-sided Laplace transform, 122
operator norm, 147
orthogonal, 18

complement, 18
orthonormal sequence, 25
output, 83

parallelogram law, 17
Parseval identity, 26, 30
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Parseval theorem
T -periodic signal, 80
aperiodic signal, 108

part
imaginary, 44
real, 44

partial fraction expansion, 158
particular solution

continuous-time, 155
periodic signal, 49

convolution, 78
phase, 49
phase spectrum, 75, 97
piecewise smooth, 51
polar form, 44
polynomial

Legendre-, 27
positive definite

complex inner product, 16
inner product, 15
norm, 4, 17

positive homogeneous, 4, 17
power, 52
power signal, 52
primitive, 164
proper, 158, 161

strictly, 106
pulse

rectangular, 51
triangular, 51

rational function, 106
real Fourier series, 73
real harmonic signal, 49
real part, 44
real signal, 44
reciprocity, 100
rectangular pulse, 51
region of convergence

Laplace transform, 123
response, 112

frequency, 84
frequency-, 112
impulse-, 112

reverse triangle inequality, 5
Riemann–Lebesgue lemma, 72

sampling, 43
frequency, 115
period, 43
theorem, 115

sawtooth, 68
scaling

time-, 101
Shannon’s sampling theorem, 115
sifting property, 57

signal, 43
T -periodic, 49
absolutely integrable, 96
aperiodic, 50
bandlimited, 115
causal, 54
continuous-time, 43
discrete-time, 43
energy, 52
even, 74
harmonic, 48
odd, 74
periodic, 49
piecewise smooth, 51
power, 52
real, 44
real harmonic, 49
sinusoidal, 49

sinc, 51
sinusoid, 49
smooth

piecewise-, 51
spectral density, 109
spectrum, 97

amplitude, 75
line, 75
phase, 75

strictly proper, 106, 159
superposition, 66
symmetric, 15

tempered test function, 170
test function, 167

tempered, 170
time domain, 75
total variation, 33
trace, 35
transfer function, 83
transform pair

Fourier transform, 100
triangle inequality, 4, 17
triangular pulse, 51
two-sided Laplace transform, 121

uniform convergence, 81
unit

ball, 18
ball (Euclidean), 4
impulse, 55
step, 51
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