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TECHNION — Israel Institute of Technology, Faculty of Mechanical Engineering

Linear Systems (034032)
tutorial 12

1 Topics

Response to initial conditions, Modal response, Lyapunov stability.

2 Background

2.1 State-Space solution with initial conditions

Consider the system (
Px.t/ D Ax.t/C Bu.t/; x.0/ D x0

y.t/ D Cx.t/CDu.t/

Its the solution in t > 0 is
x.t/ D eAtx0 C

Z t

0

eA.t�s/Bu.s/ds

In the unforced (autonomous) case, e.g. under u � 0, the state evolves according to

x.t/ D eAtx0

2.2 Lyapunov stability: nonlinear case

An equilibrium xeq 2 Rn of autonomous dynamics Px D f .x/ is said to be

� stable if for every � > 0 there is ı D ı.�/ > 0 such that

kx.0/ � xeqk < ı H) kx.t/ � xeqk < �; 8t 2 RC

� asymptotically stable if it is stable and there is ı > 0 such that

kx.0/ � xeqk < ı H) lim
t!1
kx.t/ � xeqk D 0

The region of attraction of an asymptotically stable equilibrium is the set of initial conditions x.0/ that
generate states x converging to xeq. If the region of attraction is the whole Rn, then the equilibrium is said
to be globally asymptotically stable.

2.3 Lyapunov stability: linear case

Theorem 1. An equilibrium of the autonomous dynamics Px D Ax is

� stable iff spec.A/ 2 fs 2 C j Re s � 0g and every imaginary eigenvalue is simple.

� asymptotically stable iff spec.A/ 2 fs 2 C j Re s < 0g and those properties are global.
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2.4 Lyapunov’s indirect method

Theorem 2. Let Px D f .x/ for a continuously differentiable f W Rn ! Rn; xeq 2 Rn be its equilibrium,
and

A D
@f .x/

@x

ˇ̌̌̌
xDxeq

be the corresponding Jacobian matrix.

� If spec.A/ 2 C n NC0, then xeq is asymptotically stable.

� If A has at least one eigenvalue in C0, then xeq is unstable.

If the rightmost eigenvalue of the Jacobian matrix is on the imaginary axis, then the stability conclusion
is ambiguous.

2.5 Modal decomposition

IfA is diagonalizable and all its eigenvalues are real, then the initial condition response can be decomposed
as

x.t/ D

nX
iD1

�ie�i t�i .x0/; �i .x0/ WD �
0
ix0 2 R

where �i 2 R is an eigenvalue of A, �i 2 Rn is the corresponding right eigenvector, and �i 2 Rn is the
transpose of the i th row of

�
�1 � � � �n

��1 such that � 0i�j D ıij (the Dirac delta). The signals �i exp�i

are known as modes of the system and scalars �i .x0/ are their degrees of excitation.

2.6 Matlab commands

Some Matlab commands to diagonalize matrices.

� [T,Lambda] = eig(A); diagonalizes a square matrix A, returning a diagonal matrix Lambda com-
prising the eigenvalues of A and the corresponding square similarity transformation matrix T.

� [TR,LambdaR] = cdf2rdf([T,Lambda]); converts complex diagonal form (the output of eig)
to a real block diagonal form.

3 Problems

Question 1. Consider the following state space equations.

Px.t/ D

�
0 1

3 2

�
„ ƒ‚ …

A

x.t/

1. Is the system Lyapunov stable?

2. Find a transformation diagonalizing the matrix A.

3. Carry out the modal decomposition of the system with respect to any initial condition x.0/.

4. Find the response for the following two initial conditions. Draw the responses in a phase portrait.
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� x.0/ D

�
1:05

�1

�
� x.0/ D

�
�2

2

�
Solution.

1. To check stability x A, we must find the eigenvalues.

det.�I � A/ D det
�
� �1

�3 � � 2

�
D �2 � 2� � 3 D 0

Thus, the eigenvalues are �1 D 3 and �2 D �1. One of the eigenvalues is in C0 therefore the system
is unstable.

2. Not to find diagonalization we must also find the eigenvectors, we have

�1 D 3 W

�
3 �1

�3 1

� �
�11
�12

�
D

�
0

0

�
H) �1 D

�
1

3

�
�2 D �1 W

�
�1 �1

�3 �3

� �
�21
�22

�
D

�
0

0

�
H) �2 D

�
1

�1

�
:

Thus, the transformation matrix is

T D
�
�1 �2

�
D

�
1 1

3 �1

�
and the matrix A can be diagonalized as

A D T

�
3 0

0 �1

�
„ ƒ‚ …

�A

T �1

3. The response to any initial condition x.0/ is given by

x.t/ D eAtx.0/

where eAt is the matrix exponential. We can compute the matrix exponential as follows.

eAt D T e�AtT �1

D T

�
e3t 0

0 e�t

�
T �1

Therefore,

x.t/ D T

�
e3t 0

0 e�t

�
T �1x.0/ D T

�
e3t 0

0 e�t

�
� D T

�
�1e3t
�2e�t

�
;

with � D T �1x.0/. Given that T D
�
�1 �2

�
, we can write

x.t/ D �1e3t�1 C �2e�t�2:
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4. We can now find the response for the two initial conditions. First, we must invert the matrix T .

T �1 D
1

4

�
1 1

3 �1

�
This gives us the ability to calculate �.

� D
1

4

�
1 1

3 �1

� �
x1.0/

x2.0/

�
D
1

4

�
x1.0/C x2.0/

3x1.0/ � x2.0/

�

� x.0/ D

�
1:05

�1

�
. This initial condition gives

� D
1

4

�
1:05 � 1

3:15C 1

�
D

�
0:0125

1:0375

�
:

Therefore, the response is

x.t/ D 0:0125e3t
�
1

3

�
C 1:0375e�t

�
1

�1

�
D

�
0:0125e3t C 1:0375e�t
0:0375e3t � 1:0375e�t

�
:

� x.0/ D

�
�2

2

�
. This initial condition gives

� D
1

4

�
�2C 2

�6 � 2

�
D

�
0

�2

�
:

Therefore, the response is

x.t/ D �2e�t
�
1

�1

�
D

�
�2e�t
2e�t

�
:

The phase portrait for both initial conditions is shown in Fig. 1.
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Fig. 1: Phase portrait for both initial conditions.

O
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Question 2. Given the autonomous dynamics

Px.t/ D

�
�1 0

1 �2

�
x.t/

Is their equilibria Lyapunov stable? Carry out the modal decompositions of the responses.

Solution. These are linear dynamics, so the stability of their equilibria is completely determined by the
eigenvalues ofA. Because the matrixA is triangular, its eigenvalues are on the main diagonal and therefore

�1 D �1 and �2 D �2:

The eigenvalues are in the open left half plane, therefore every equilibrium of this unforced dynamics is
asymptotically stable. Note that the eigenvalues are simple, so that the matrix is diagonalizable.

To carry out the modal decomposition we need the corresponding right eigenvectors. They must satisfy
.�iI � A/�i D 0. If � D �1, then this equality reads�
�1

�
1 0

0 1

�
�

�
�1 0

1 �2

���
�11
�12

�
D

�
0 0

�1 1

� �
�11
�12

�
D

�
0

�12 � �11

�
D 0 H) �1 D

�
1

1

�
as a possible choice. If � D �2, then this equality reads�

�2

�
1 0

0 1

�
�

�
�1 0

1 �2

���
�21
�22

�
D

�
�1 0

�1 0

� �
�21
�22

�
D �

�
�21
�21

�
D 0 H) �2 D

�
0

1

�
The similarity transform diagonalizing the A matrix is then

T D

�
1 0

1 1

�
H) T �1 D

�
1 0

�1 1

�
D

�
� 01
� 02

�
Hence, the response to initial conditions x0 D

�
x01
x02

�
is

x.t/ D �1e�1t� 01x0 C �2e
�2t� 02x0 D

�
1

1

�
e�t

�
1 0

� � x01
x02

�
C

�
0

1

�
e�2t

�
�1 1

� � x01
x02

�
D

�
1

1

�
e�tx01 C

�
0

1

�
e�2t .x02 � x01/ D

�
e�tx10

.e�t � e�2t /x10 C e�2tx20

�
Graphically, that can be seen in Fig. 2 for various x0.

Fig. 2: Phase portrait for initial conditions.
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There are 2 modes in this system, �1 and �2, with �2 faster than �1. Therefore, the exponent e�2t D e�2t
tends to 0 faster than the exponent e�1t D e�t . In general, we say that a mode corresponding to �i is faster
than that corresponding to �j if

jRe�i j > jRe�j j:

The geometric meaning of this condition is that given a system in which all modes are asymptotically stable
and an initial condition x0 ¤ 0 and x0 ¤ ˛�i for some ˛ 2 R, the trajectory of the state vector will be
a combination of each of the convergent modes, initially parallel to the eigenvector belonging to the fast
mode, then the trajectory will align towards the slow mode and in the end will move towards the origin
parallel to the eigenvector which corresponds to the slow mode. As t ! 1, the state vector tends to the
origin, which is the only equilibrium point of every asymptotically stable system. The trajectory of the
state vector can never cross its eigenvectors. O

Question 3. Consider the following systems:

1. Px.t/ D
�
2 8

�8 2

�
x.t/

2. Px.t/ D
�
0 8

�8 0

�
x.t/

3. Px.t/ D
�
�2 8

�8 �2

�
x.t/

For each of them determine whether it is stable and carry out the modal decompositions of the responses.

Solution. In our problem all “A” matrices are in the form

A D

�
� !

�! �

�
:

Therefore, their matrix exponents are in the form

eAt D exp
��
�

�
1 0

0 1

�
C

�
0 !

�! 0

��
t

�
D exp.�I t/ exp

��
0 !

�! 0

�
t

�
D e�t

�
cos.!t/ sin.!t/
� sin.!t/ cos.!t/

�
and we get “spirals” in the state plane, where

� if � > 0, then the spiral is diverging,

� if � D 0, then the “spiral” is the unit circle,

� if � < 0, then the spiral is converging.

Consider now each case separately.

� In the first case � D 2 and ! D 8 and the eigenvalues of A are

�1;2 D 2˙ 8j:

They are in the open right-half plane, so the system is unstable. Therefore, we get the response shown
in Fig. 3(a), which indeed shows a diverging spiral. This is because the value of e�t D e2t diverges.
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(a) (b) (c)

Fig. 3: Phase portraits for unforced motions.

� In the second case � D 0 and ! D 8 and the eigenvalues of A are

�1;2 D ˙8j:

These are simple eigenvalues on the imaginary axis, so the system is stable (but not asymptotically
stable). Because e�t D 1, the response keeps kx.t/k constant for all t and we have circles, see
Fig. 3(b). You can find the direction of movement by selecting some point, for example: x0 D

�
1
0

�
then calculating the derivative

Px.0C/ D Ax0 D

�
0 8

�8 0

� �
1

0

�
D

�
0

�8

�
Hence, the derivative of the state vector at x1 faces downwards and the direction of movement will
be clockwise.

� In the third case � D �2 and ! D 8 and the eigenvalues of A are

�1;2 D �2˙ 8j:

Therefore, the system is asymptotically stable and we get a converging spiral shown in Fig. 3(c).

That’s all . . . O

Question 4. Given the free system in figure 4,

Fig. 4: Mass damper system.

The system is a mass damper system without a spring. The parameter values are m D 1; c D 2. Also,
the state variables are defined �

x1.t/

x2.t/

�
D

�
´.t/

Ṕ.t/

�
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Is the system stable? Find the response of the system to the initial conditions x0 D
�
1

2

�
via the modes.

Solution.

1. It can be seen that the equation of motion of the system is

m Ŕ.t/C c Ṕ.t/ D 0

We will substitute the numerical values and get

Ŕ.t/C 2 Ṕ.t/ D 0

Defining the state variables

x1.t/ D ´.t/

x2.t/ D Ṕ.t/

We take the derivative of the state variables and get

Px1.t/ D x2.t/

Px2.t/ D �2x2.t/

and therefore the realization of the equation of state will be�
Px1.t/

Px2.t/

�
D

�
0 1

0 �2

� �
x1.t/

x2.t/

�
;

�
x1 .0/

x2 .0/

�
D

�
1

2

�
2. The eigenvalues of A can be found,

�1 D 0 ; �2 D �2

The system is stable, but not asymptotically stable.

3. Also, the eigenvectors are,

�1 D

�
1

0

�
; �2 D

�
�1=2

1

�
Also, the right eigenvectors (rows of the matrix T �1) are

� 01 D
�
1 1=2

�
; � 02 D

�
0 1

�
4. The model solution is,

x.t/ D

2X
iD1

e�i t�i�
0
ix0 D e0t

�
1

0

� �
1 1=2

�
x0„ ƒ‚ …

�1

C e�2t
�
�1=2

1

� �
0 1

�
x0„ ƒ‚ …

�2

D e0t
�
1

0

� �
1 1=2

� �1
2

�
C e�2t

�
�1=2

1

� �
0 1

� �1
2

�
D

�
2

0

�
C e�2t

�
�1

2

�

It can be seen that the stable mode, � D �2, decays along the vector
�
�1=2

1

�
but the mode � D 0

does not decay.
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In general, when the system has modes with a real part 0, whose algebraic multiplicity is equal to
the multiplicity geometrically, we will get a stable (non-asymptotic) system, i.e. a system that does
not diverge from some initial condition but also does not converge.
It is important to understand that a system of this type is “stable” only for the reaction of initial
conditions, and when the system will receive any input (even if it is bounded), it can diverge.

The response of our system to the given initial conditions in figure 5 will be,

Fig. 5: Phase portrait for a single initial condition.

Also, the response of the system to different initial starting conditions in figure 6 will be,

Fig. 6: Phase portrait for both many initial conditions.

As mentioned, the stable mode fades to zero but the neutral mode does not change its value.

O

Question 5. Consider the system shown in Fig. 7.



10

Fig. 7: Pendulum system.

It consists of a pendulum with a point mass m at the end of a massless rod of length L. On the axis
of the pendulum, there is a torque due to viscous friction proportional to the speed of rotation with the
friction coefficient D.

� Use the state vector
x D

�
�
P�

�
to derive the physical realization of this system.

� Find the equilibrium points and linearize the system around these points.

� Take numerical values of the system parameters as

m D 1 Œkg� ; L D 5 Œm� ; and g D 10
hm

s2
i

and determine if the nonlinear system is stable at the respective equilibrium points via Lyapunov’s
indirect method for two cases:

– D D 50 [N m s] (damped system)
– D D 0 [N m s] (undamped system)

Solution.

� The dynamic equation of the system is

mL2 R� D �mgL sin � �D P� H) R� D �
g

L
sin � �

D

mL2
P�

With the chosen state vector this equation can be rewritten in the state-space form as�
Px1
Px2

�
D

�
x2

�
g
L

sin x1 � D
mL2x2

�
D f .x/

This is clearly a nonlinear system. To linearize it, find its equilibrium points via the relation

0 D f .x/ D

�
x2

�
g
L

sin x1 � D
mL2x2

�
The first row yields x2 D 0. Substituting this value to the second row we end up with the condition
sin x1 D 0. Hence, there are infinitely many equilibria, ar

xeq D

�
k�

0

�
; k 2 Z
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The deviation variable is
xı ´ x � xeq D x �

�
k�

0

�
:

To calculate the Jacobian matrix, note that

@f

@x
D

�
0 1

�
g
L

cos.x1/ � D
mL2

�
:

When evaluating the Jacobian at the equilibrium points, there are two possible cases. If k is even, then
cos.xeq/ D 1 (this corresponds to the down position of the pendulum). If k is odd, then cos.xeq/ D

�1 (this corresponds to the up position of the pendulum). Therefore it suffices to consider one
instance of each of these cases in the analysis. Specifically, we consider two equilibrium points,

xeq1 D

�
0

0

�
and xeq2 D

�
�

0

�
:

These cases result in the linearized “A” matrices of the form

A D

�
0 1

�
g
L
�

D
mL2

�
and A D

�
0 1
g
L
�

D
mL2

�
respectively, which are the basis for further analysis.

1. First considering the equilibrium xeq1 and the parameter D D 50. Substituting numerical
values to the first A above we end up with the linearized dynamics

Pxı D

�
0 1

�2 �2

�
xı

The eigenvalues of this A are calculated viaˇ̌̌̌
� �1

2 �C 2

ˇ̌̌̌
D �2 C 2�C 2 D 0 H) �1;2 D �1˙ j

The real part of these eigenvalues is negative. Hence, Theorem 2 yields that the equilibrium
xeq1 is asymptotically stable in the nonlinear system.

2. Still around the equilibrium xeq1, select now D D 0. In this case, the linearized dynamics in
terms of deviation variables are

Pxı D

�
0 1

�2 0

�
xı

The eigenvalues of this A are calculated viaˇ̌̌̌
� �1

2 �

ˇ̌̌̌
D �2 C 2 D 0 H) �1;2 D ˙

p
2j

These eigenvalues are purely imaginary. Hence, Lyapunov’s indirect method cannot be used
to conclude anything about the stability of the equilibrium xeq1.

3. Now consider the equilibrium xeq2 with D D 50. The dynamics here are

Pxı D

�
0 1

2 �2

�
xı



12

The eigenvalues of this A are calculated viaˇ̌̌̌
� �1

�2 �C 2

ˇ̌̌̌
D �2 C 2� � 2 D 0 H) �1;2 D �1˙

p
3

One of these eigenvalues has a positive real part, so Theorem 2 can be used to conclude that
the equilibrium xeq2 is unstable.

4. Still around the equilibrium xeq2, select now D D 0. In this case, the linearized dynamics in
terms of deviation variables are

Pxı D

�
0 1

2 0

�
xı

The eigenvalues of this A are calculated viaˇ̌̌̌
� �1

�2 �

ˇ̌̌̌
D �2 � 2 D 0 H) �1;2 D ˙

p
2

Like in the previous case, one of these eigenvalues had a positive real part, so the equilibrium
xeq2 is unstable in the undamped case as well.

That’s all . . . O


