Linear Systems (034032)
 TUTORIAL 11

1 Topics

Solving state equations, canonical realizations, and linearization.

2 Background

2.1 State space representation

Given $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n}, C \in \mathbb{R}^{1 \times n}$, and $D \in \mathbb{R}$, the state space representation of a system of a continuoustime system $G: u \mapsto y$ is given by

$$
G:\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)+D u(t)
\end{array}\right.
$$

One can show that the impulse response (i.e. $u=\delta$) of this system is given by

$$
g(t)=C e^{A t} B \mathbb{1}(t)+D \delta(t)
$$

With the impulse response known, we can get the response for any input by using the convolution property of LTI systems.

$$
y=g * u
$$

2.2 State space to transfer function

Going from a state space representation to a transfer function representation is very simple.

$$
G(s)=C(s I-A)^{-1} B+D
$$

One can show that $G(s)$ is a rational function of s. Moreover, the poles of $G(s)$ are among the eigenvalues of A.

2.3 Similar realizations

Let $T \in \mathbb{R}^{n \times n}$ be an invertible matrix. Define $\tilde{x}:=T x$, where x is the state of the system. Then, the following realizations are called similar.

$$
\left(T A T^{-1}, T B, C T^{-1}, D\right) \text { and }(A, B, C, D)
$$

These similar realizations have the same I/O relations (impulse response and transfer function).

2.4 Transfer function to state space

2.4.1 "Physical" realization

If

$$
G(s)=\frac{b}{s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}},
$$

then its possible state-space realization is

$$
\left[\begin{array}{c:c}
A & B \\
\hdashline C & D
\end{array}\right]=\left[\begin{array}{cccc:c}
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0 \\
-a_{0} & -a_{1} \ldots & -a_{n-1} & b \\
\hdashline 1 & 0 & \ldots & 0 & 0
\end{array}\right] .
$$

2.4.2 Canonical realization: companion form

Let $G(s)$ be strictly proper, i.e.

$$
G(s)=\frac{b_{n-1} s^{n-1}+\cdots+b_{1} s+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}} .
$$

The state-space realization discussed above, known as the companion form, is

$$
\left[\begin{array}{c:c}
A & B \\
\hdashline C & D
\end{array}\right]=\left[\begin{array}{c:c}
A_{\mathrm{cf}} & B_{\mathrm{cf}} \\
\hdashline \mathcal{C}_{\mathrm{cf}} & D_{\mathrm{cf}}
\end{array}\right]:=\left[\begin{array}{cccc:c}
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0 \\
-a_{0} & -a_{1} & \ldots & -a_{n-1} & 1 \\
\hdashline b_{0} & b_{1} & \ldots & b_{n-1} & 0
\end{array}\right]
$$

Note that this is very similar to the "physical" realization in that the matrix A is the same.

2.4.3 Canonical realization: observer form

Let $G(s)$ be strictly proper, i.e.

$$
G(s)=\frac{b_{n-1} s^{n-1}+\cdots+b_{1} s+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}} .
$$

Its state-space realization in observer form has

$$
\left[\begin{array}{c:c}
A & B \\
\hdashline C & D
\end{array}\right]=\left[\begin{array}{c:c}
A_{\mathrm{of}} & B_{\mathrm{of}} \\
\hdashline C_{\mathrm{of}} & D_{\mathrm{of}}
\end{array}\right]:=\left[\begin{array}{ccc:c}
-a_{n-1} & 1 & \ldots & 0 \\
\vdots & \vdots & b_{n-1} \\
-a_{1} & 0 & \ldots & \vdots \\
-a_{0} & 0 & \ldots & b_{1} \\
\hdashline 1 & 0 & \ldots & b_{0} \\
\hdashline 1 & 0
\end{array}\right] .
$$

2.4.4 Canonical realization: bi-proper case

Let

$$
G(s)=\frac{b_{n} s^{n}+b_{n-1} s^{n-1}+\cdots+b_{1} s+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}}
$$

for $b_{n} \neq 0$. The trick is to rewrite it as

$$
\frac{b_{n} s^{n}+b_{n-1} s^{n-1}+\cdots+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}}=b_{n}+\underbrace{\frac{\left(b_{n-1}-b_{n} a_{n-1}\right) s^{n-1}+\cdots+b_{0}-b_{n} a_{0}}{s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}}}_{\tilde{G}(s)} .
$$

Hence, canonical realizations of $G(s)$ are those of the (strictly proper) $\tilde{G}(s)$ complemented by $D=b_{n}$.

2.5 Linearization

A class of continuous-time nonlinear systems $G: u \mapsto y$ can be described by

$$
G:\left\{\begin{array}{l}
\dot{x}(t)=f(x(t), u(t)) \\
y(t)=h(x(t), u(t))
\end{array}\right.
$$

for some functions $f: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n}$ and $h: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$, such that

- both they (i.e. f and h) and their derivatives in x and u are continuous.

An equilibrium of the system is any pair $\left(x_{\mathrm{eq}}, u_{\mathrm{eq}}\right) \in \mathbb{R}^{n} \times \mathbb{R}$ for which the system is at rest, i.e. for which $\dot{x}=f(x, u)$ can be solved for

$$
\dot{x}=0
$$

Hence, an equilibrium should satisfy the algebraic equation

$$
f\left(x_{\mathrm{eq}}, u_{\mathrm{eq}}\right)=0
$$

We can then define deviations from equilibrium as

$$
\begin{aligned}
x_{\delta}(t) & :=x(t)-x_{\mathrm{eq}} \\
u_{\delta}(t) & :=u(t)-u_{\mathrm{eq}} \\
y_{\delta}(t) & :=y(t)-h\left(x_{\mathrm{eq}}, u_{\mathrm{eq}}\right)
\end{aligned}
$$

The linearization of G around an equilibrium ($x_{\mathrm{eq}}, u_{\mathrm{eq}}$) is then given by the linear system

$$
G_{\delta}:\left\{\begin{array}{l}
\dot{x}_{\delta}(t)=A x_{\delta}(t)+B u_{\delta}(t) \\
y_{\delta}(t)=C x_{\delta}(t)+D u_{\delta}(t)
\end{array}\right.
$$

where

$$
\begin{aligned}
A & :=\left.\frac{\partial f(x, u)}{\partial x}\right|_{\substack{x=x_{\mathrm{eq}} \\
u=u_{\mathrm{eq}}}} \in \mathbb{R}^{n \times n}, & B:=\left.\frac{\partial f(x, u)}{\partial u}\right|_{\substack{x=x_{\mathrm{eq}} \\
u=u_{\mathrm{eq}}}} \in \mathbb{R}^{n}, \\
C & :=\left.\frac{\partial h(x, u)}{\partial x}\right|_{\substack{x=x_{\mathrm{eq}} \\
u=u_{\mathrm{eq}}}} \in \mathbb{R}^{1 \times n}, & D:=\left.\frac{\partial h(x, u)}{\partial u}\right|_{\substack{x=x_{\mathrm{eq}} \\
u=u_{\mathrm{eq}}}} \in \mathbb{R} .
\end{aligned}
$$

2.6 Matlab commands

Some Matlab commands to create transfer functions and their step response:

- $G=\operatorname{ss}(A, B, C, D)$; generates a system object in a state-space form from realization parameters.
- Gss $=\operatorname{ss}(G)$; generates a ss form of a system G
e.g., Gss $=\operatorname{ss}\left(\operatorname{tf}\left([1],\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\right)\right)$; generates a state-space realization of $G(s)=\frac{1}{s^{2}+2 s+3}$.
- Gtilde $=\operatorname{ss2ss}(\mathrm{G}, \mathrm{T})$; performs the similarity transformation $\tilde{x}=T x$ on the state vector x of a state-space model G.

3 Problems

Question 1. Given the following second-order differential equation.

$$
\ddot{y}(t)+y(t)=u(t)
$$

1. Find a "physical" state space realization.
2. Use this state space model to calculate the impulse response of the system.

Question 2. Consider the strictly proper transfer function

$$
G(z)=\frac{z^{2}+2 z+1}{z^{3}+6 z^{2}+11 z+6}
$$

(yes, this is the transfer function of a discrete system).

1. Find the state space realization in companion form.
2. Find the state space realization in observer form.

Question 3. Consider the following bi-proper transfer function.

$$
G(s)=\frac{s^{2}+2 s+1}{s^{2}+5 s+6}
$$

1. Find the state space realization in companion form.
2. Use the following transformation matrix to get a similar realization.

$$
T=\left[\begin{array}{ll}
-5 & -3 \\
-7 & -5
\end{array}\right]
$$

What does this similar realization correspond to?
3. Check that $G(s)$ calculated from the similar realization is the same as the given transfer function.

Question 4. Consider the system shown in Fig. 1. We will take the following parameters.

$$
\begin{array}{cl}
a=b=1 \mathrm{~m}, & g=10 \mathrm{~m} \mathrm{~s}^{-2} \\
k_{1}=k_{2}=6 \mathrm{Nm}^{-1} \\
c_{1}=7 \mathrm{Nsm}^{-1}, & c_{2}=8 \mathrm{Ns} \mathrm{~m}^{-1} \\
m_{1}=1 \mathrm{~kg}, & m_{2}=2 \mathrm{~kg}
\end{array}
$$

Fig. 1: Seesaw system.

Assuming that the springs and dampers only elongate vertically, it can be shown that the dynamics are given by the following second order differential equation.

$$
\ddot{\theta}=\frac{1}{6} F \cos \theta-2 \sin 2 \theta-5 \dot{\theta} \cos ^{2} \theta-\frac{10}{3} \cos \theta
$$

1. Rewrite the dynamics in the following form.

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(x(t), u(t)) \\
y(t)=h(x(t), u(t))
\end{array}\right.
$$

$$
\text { with } x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
\theta \\
\dot{\theta}
\end{array}\right], u=F \text {, and } y=\theta \text {. }
$$

2. Find u_{eq} such that $x_{\mathrm{eq}}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is an equilibrium point.
3. Linearize the system around this equilibrium point.

4 Homework problems

Question 5. Consider the following third-order differential equation.

$$
\dddot{y}(t)+4 \ddot{y}(t)+6 \dot{y}(t)+y(t)=\dddot{u}(t)+3 \ddot{u}(t)+3 \dot{u}(t)+u(t)
$$

1. Calculate the transfer function $G(s)$ of the system.
2. Find the state space realization in observer form.
3. Check that $G(s)$ calculated from the realization in observer form is the same as the given transfer function.

Question 6. Consider the tank system shown in Fig. 2.

Fig. 2: Tank system.

The state of the system is given by the height of the liquid level y. The flow rate of the entering liquid is $q_{\text {in }}$ and the flow rate of the exiting liquid is $q_{\text {out }}$. The dynamics are given by the following equation.

$$
\begin{gathered}
q_{\text {out }}(t)=R \sqrt{y(t)} \\
\dot{y}(t)=\frac{1}{S}\left(q_{\text {in }}(t)-q_{\text {out }}(t)\right),
\end{gathered}
$$

with S being the cross-sectional area of the tank and R being the resistance coefficient of the outlet.

1. Rewrite the dynamics in the following form.

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(x(t), u(t)) \\
y(t)=h(x(t), u(t))
\end{array}\right.
$$

with $x=y, u=q_{\text {in }}$.
2. Find all the equilibrium points $\left(x_{\mathrm{eq}}, u_{\mathrm{eq}}\right)$ of the system.
3. Linearize the system around the equilibrium point corresponding to $q_{\text {in }}=1$.
4. Find the transfer function of the linearized system.
5. Given that $q_{\mathrm{in}}(t)=1+a \sin (\omega t)$, approximate $y(t)$ using the linearized system.

Question 7. Consider the magnetic levitation system shown in Fig. 3.

Fig. 3: Magnetic levitation system

The electric current i running through a coil, having resistance R and inductance L, creates a magnetic field, which attracts an iron ball of mass m. The electromagnetic force applied by the magnetic field to the ball is

$$
F_{\mathrm{em}}(t)=\alpha \frac{i^{2}(t)}{y^{2}(t)}
$$

where y given the position of the ball, and $\alpha>0$ is constant. The ball is also subject to gravity, and the force of gravity is given by

$$
F_{\mathrm{g}}(t)=m g .
$$

The dynamics of the electric RL circuit are

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(L i(t))+R i(t)=v(t)
$$

1. Rewrite the dynamics in the form

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(x(t), u(t)) \\
y(t)=h(x(t), u(t))
\end{array}\right.
$$

$$
\text { with } x=\left[\begin{array}{l}
y \\
\dot{y} \\
i
\end{array}\right], u=v, \text { and } y=y \text {. }
$$

2. Find the equilibrium points of the system.
3. Linearize the system around the equilibrium points.
