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TECHNION — Israel Institute of Technology, Faculty of Mechanical Engineering

Linear Systems (034032)
tutorial 9

1 Topics

Frequency response of an LTI system, Bode and polar diagrams, filters.

2 Background

2.1 Frequency Response

Theorem 1. Let G W u 7! y be a stable continuous-time LTI system. Its response to the sinusoidal test
input u such that

u.t/ D a sin.!t C �/1.t/
in steady state is also sinusoidal. Specifically

yss.t/ D ajG.j!/j sin.!t C � C argG.j!//;

where jG.j!/j and arg.G.j!// are the gain (magnitude) and phase of the frequency response G.j!/ of G,
respectively, which can be calculated as

jG.j!/j D
p
x2 C y2 and arg.G.j!// D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

arctan.y
x
/ x > 0

arctan.y
x
/C � x < 0; y � 0

arctan.y
x
/ � � x < 0; y < 0

C�
2

x D 0; y > 0
��
2

x D 0; y < 0
undefined x D 0; y D 0

where x´ ReG.j!/ and y ´ ImG.j!/.

2.2 Bode Diagram

The Bode diagram is a way of visualizing jG.j!/j and arg.G.j!//. In order to draw the Bode diagram by
hand we actually draw the asymptotic diagram.

For example, Fig. 1 shows the Bode diagram of the transfer function:

G.s/ D 1

s C 1
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Fig. 1: Real and Asymptotic Bode Diagram

2.2.1 Bode Scales

The Bode diagram’s horizontal axis is the frequency ! in logarithmic scale. The magnitude part is repre-
sented in dB and the phase part in deg. dB is the unit decibel and is defined as:

k.dB/ D 20 log k
k D 10k.dB/=20

We also define dec, decade, which is the distance of 10 units (10 scales on the horizontal axis).

2.2.2 Steps to Create an Asymptotic Diagram

1. Decomposing the system into the product of sub-systems.

G.s/ D G1.s/ �G2.s/ � : : : �Gm.s/

where each one of these subsystems i 2 f1;mg are first and second order systems of the form:

Gi .s/ D 1

s
; s;

1

as C b ; as C b;
1

as2 C bs C c ; as
2 C bs C c

2. Every first order system of the form 1
asCb we convert to

kst
�s C 2 (1)

and every first order system of the form as C b we convert to

kst.�s C 1/
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In the same way, we convert second order systems of the form 1
as2CbsCc to

kst!
2
n

s2 C 2�!ns C !2n
D kst
.s=!n/2 C 2�.s=!n/C 1

and second order systems of the form as2 C bs C c to

kst.s
2 C 2�!ns C !2n /

!2n
D .s=!n/

2 C 2�.s=!n/C 1

3. We unite all the static gains by multiplying all kst elements, getting:

G.s/ D k � G1.s/ � G2.s/ � : : : � Gm.s/

where Gi .s/ are the standard transfer functions.

4. Using the table below, we draw the asymptotic Bode diagram of the system as a combination of the
Bodes of the standard systems.

Function Bode Graph Asymptotic Behaviour

k

The magnitude is a straight horizontal
line with a constant gain of k.dB/ D
20 log k.

The phase is 0ı.

1

s

The magnitude is a straight line that
crosses the horizontal axis at 1Œ rad

sec
�

and has a slope of �20 � dB
dec
�
.

The phase is constant at �90ı.
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Function Bode Graph Comment

s

The magnitude is a straight line that
crosses the horizontal axis at 1Œ rad

sec
�

and has a slope of 20
� dB

dec
�
.

The phase is constant at 90ı.

1

�s C 1

The magnitude is constant at 0 [dB]
until the corner frequency of !p D 1

�
,

after which it is a straight line with
slope �20 � dB

dec
�
.

The phase is constant at 0ı until 0:1!p
after which it is a straight line that
crosses �45ı at frequency !p, and at
10!p again constant at �90ı.

�s C 1

The magnitude is constant at 0ŒdB�
until the corner frequency of !p D 1

�
,

after which it is a straight line with
slope 20

� dB
dec
�
.

The phase is constant at 0ı until 0:1!p
after which it is a straight line that
crosses 45ı at frequency !p, and at
10!p again constant at 90ı.
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Function Bode Graph Comment

1

.�s C 1/n

The magnitude is constant at 0 [dB]
until the corner frequency of !p D 1

�
,

after which it is a straight line with
slope �20 � n � dB

dec
�
.

The phase is constant at 0ı until 0:1!p
after which it is a straight line that
crosses �45nı at frequency !p, and at
10!p again constant at �90nı.

.�s C 1/n

The magnitude is constant at 0ŒdB�
until the corner frequency of !p D 1

�
,

after which it is a straight line with
slope 20 � n � dB

dec
�
.

The phase is constant at 0ı until 0:1!p
after which it is a straight line that
crosses 45nı at frequency !p, and at
10!p again constant at 90nı.

!2n
s2 C 2�!ns C !2n
� � 1p

2

The magnitude is constant at 0ŒdB�
until the natural frequency of !n, af-
ter which it is a straight line with slope
�40 � dB

dec
�
.

The phase is constant at 0ı until 0:1!n
after which it is a straight line that
crosses �90ı at frequency !n, and at
10!n again constant at �180ı.
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Function Bode Graph Comment

s2 C 2�!ns C !2n
!2n

� � 1p
2

The magnitude is constant at 0ŒdB�
until the natural frequency of !n, af-
ter which it is a straight line with slope
40
� dB

dec
�
.

The phase is constant at 0ı until 0:1!n
after which it is a straight line that
crosses 90ı at frequency !n, and at
10!n again constant at 180ı.

!2n
s2 C 2�!ns C !2n
� < 1p

2

The magnitude is constant at 0ŒdB�
until the natural frequency of !n, af-
ter which it is a straight line with slope
�40 � dB

dec
�
.

The real system has a resonance peak
at frequency !r D !n

p
1 � 2�2

The phase is constant at 0ı until 0:1!n
after which it is a straight line that
crosses �90ı at frequency !n, and at
10!n again constant at �180ı.

s2 C 2�!ns C !2n
!2n

� < 1p
2

The magnitude is constant at 0ŒdB�
until the natural frequency of !n, af-
ter which it is a straight line with slope
40
� dB

dec
�
.

The real system has a resonance dip at
frequency !r D !n

p
1 � 2�2

The phase is constant at 0ı until 0:1!n
after which it is a straight line that
crosses 90ı at frequency !n, and at
10!n again constant at 180ı.
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Function Bode Graph Comment

�
!2n

s2 C 2�!ns C !2n

�n

� < 1p
2

The magnitude is constant at 0ŒdB�
until the natural frequency of !n, af-
ter which it is a straight line with slope
�40 � n � dB

dec
�
.

The real system has a resonance peak
at frequency !r D !n

p
1 � 2�2

The phase is constant at 0ı until 0:1!n
after which it is a straight line that
crosses �90nı at frequency !n, and at
10!n again constant at �180nı.

�
s2 C 2�!ns C !2n

!2n

�n

� < 1p
2

The magnitude is constant at 0ŒdB�
until the natural frequency of !n, af-
ter which it is a straight line with slope
40 � n � dB

dec
�
.

The real system has a resonance dip at
frequency !r D !n

p
1 � 2�2

The phase is constant at 0ı until 0:1!n
after which it is a straight line that
crosses 90nı at frequency !n, and at
10!n again constant at 180nı.

For more examples see the lecture slides.

2.2.3 General Guidelines for Asymptotic Bode

� Each pole adds �20 � dB
dec
�

to the magnitude’s slope.

� Each zero adds C20 � dB
dec
�

to the magnitude’s slope.

� Every pole in CnC0 D fs 2 C j Re s � 0g adds a phase lag of �90ı.
� Every pole in C0 D fs 2 C j Re s > 0g adds a phase lead of C90ı.
� Every zero in CnC0 D fs 2 C j Re s � 0g adds a phase lead of C90ı.
� Every zero in C0 D fs 2 C j Re s > 0g adds a phase lag of �90ı.
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2.3 Polar Diagram

The polar diagram is another way to represemt the frequency response of the system. Similarly to the Bode
diagram, the polar diagram shows G.j!/. But, unlike the Bode diagram which is comprised of two parts:
the magnitude as a function of frequency jG.j!/j and the phase as a function of frequncy arg.G.j!//, the
polar diagram is comprised of only one graph where we can see the real and imaginary parts <fG.j!/g,
=fG.j!/g as a function of the frequency which isn’t shown directly on the graph.

For example, Fig. 2 shows the polar diagram of the transfer function:

G.s/ D 1

s C 1

Fig. 2: Polar Diagram

The blue arrow denotes the direction in which the frequency increases. The red points denote the
frequency response at chosen frequencies.

2.3.1 The Magnitude and Phase in the Polar Diagram

Similarly to the Bode diagram, we can extract the magnitude and phase of the system for a given frequency
from the polar diagram. But, here we do not know the actual frequency. The magnitude at a given point
jG.j!/j is the distance of that point from the origin. The phase arg.G.j!// is the angle between the line
connecting that point to the origin, and the positive direction of the real axis.

When looking back at the Bode diagram of the same system in Fig. 1, we can see that the magnitude de-
creases monotonically. This can also be seen in the polar diagram as the distance from the origin decreases
until it reaches 0. The system’s phase also decreases which can again be seen in the polar diagram.
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2.4 Filters

Using the frequency response we can design filters to shape the spectra of signals. 4 categories of filters
are generally used:

1. Low-pass Filters:
jG.j!/j � 1=

p
2 ” ! � !b

2. High-pass Filter:
jG.j!/j � 1=

p
2 ” ! � !c

3. Band-pass Filter:
jG.j!/j � 1=

p
2 ” ! 2 Œ!1; !2�

4. Band-stop Filter:
jG.j!/j � 1=

p
2 ” ! … .!1; !2/

2.4.1 Butterworth Filter

A filter based on the Butterwoth polynomials:

Bn.s/ D
(Qn=2

iD1.s
2 C 2�is C 1/ if n is even

.s C 1/Q.n�1/=2
iD1 .s2 C 2�is C 1/ if n is odd

where,
�i ´ sin

�
2i � 1
2n

�

�
2 .0; 1/

The low-pass Butterworth filter is:

F.s/ D 1

Bn.s=!b/
H) jF.j!/j D 1p

1C .!=!b/2n

The high-pass Butterworth filter is:

F.s/ D s=!c
Bn.s=!c/

H) jF.j!/j D .!=!c/
n

p
1C .!=!c/2n

Their Bode diagrams are shown in figures 3(a) and 3(b).

(a) Low-pass Butterworth Filter, !b D 1 (b) High-pass Butterworth Filter, !c D 1

Fig. 3: Butterworth Filters Bode Diagrams
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2.4.2 Notch Filter

A narrow stopband filter of the form:

F.s/ D s2 C !20
s2 C 2�!0s C !20

H) jF.s/j D
s

.!2 � !20/2
.!2 � !20/2 C 4�2!20!2

It has a stopband of .!1; !2/ with:

!1´
�p

1C �2 � �
�
!0

!2´
�p

1C �2 C �
�
!0 D 1=!1

The Bode diagram is shown in Fig. 4

Fig. 4: Notch Filter Bode Diagram

2.5 Matlab Commands

Some useful Matlab functions:

1. mag2db and db2mag convert the magnitude to and from dB.

2. bode(G) and bodeplot(G) plot the bode diagram of the system G. bodeplot(G) has more plot
options.

3. nyquist(G) and nyquistplot(G) plot a diagram of the system G in polar coordinates (called a
Nyquist diagram). To create a plain polar plot (! > 0), use:
setoptions(nyquistplot(G),’ShowFullContour’,’off’).

4. [num,den] = butter(n,wb,’s’); generates the numerator and denominator of the low-pass But-
terworth filter of order n with the bandwidth wn.
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3 Problems

Question 1. Draw the asymptotic Bode magnitude plots of the transfer function

G.s/ D k

.�1s C 1/.�2s C 1/
;

where �1 > 0 and �2 > 0.

Solution. Let us factor G.s/ as

G.s/ D k � 1

�1s C 1
� 1

�2s C 1
µ G0.s/G1.s/G2.s/;

The transfer function G0.s/ D k is static, whose magnitude bode diagram is the straight horizontal line at
the level 20 log k (remember, the Bode plot is in dB), see Fig. 5(a). The two other transfer functions are

(a) G.s/ D k (b) G.s/ D 1=.�s C 1/ (c) G.s/ D G0.s/G1.s/G2.s/

Fig. 5: Asymptotic Bode magnitude diagrams (here k > 1); dotted lines correspond to actual Bode plots

first-order transfer functions with the unit static gain of the form 1=.�s C 1/. The asymptotic magnitude
Bode plot of these kinds of transfer functions comprises two straight lines: a horizontal one at 0 dB in the
low-frequency range, up to the cutoff frequency !c D 1=� , and a straight line starting at !c and decaying
with the slope of�20 deg/dec (sometimes referred to as having a rolloff of 1), see Fig. 5(b). Now, we know
(see lecture 9) that the Bode magnitude plot of the cascade of systems is the superposition of their individual
Bode magnitude plots. We then end up with the diagram presented by the solid line in Fig. 5(c). O

Question 2. Draw the Bode and polar plots for the following transfer functions:

1. G1.s/ D 1

.�s C 1/2 for � > 0;

2. G2.s/ D k

s.�s C 1/ for � > 0 and k > 0;

3. G3.s/ D �2s C 1
�1s C 1

for �1 D 1
3

and �2 D 5
3

and then for �1 D 5
3

and �2 D 1
3
.

Solution. We shall follow the following procedure: first, draw asymptotic Bode plots, then actual Bode
plots (via “rounding corners”), then present frequency responses at several frequencies on the polar plot
plane (from Bode), and then actual polar plots via connecting those points. The magnitude and the phase at
the chosen points can be evaluated via the analytic expressions for the corresponding frequency responses.
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1. ThisG1.s/ can be presented as the cascade of two identical systems with the transfer function 1=.�sC
1/. The asymptotic plots forG.j!/ can be presented, following the steps of Question 1, as in Fig. 6(a).
The actual Bode plots are then shown by the solid lines in Fig. 6(b). Analytic expression for the
frequency response is

G1.j!/ D 1

.j!� C 1/2 D
�

1p
�2!2 C 1

�2
ej2 arg.1=.j!�C1// D 1

�2!2 C 1e�j2 arctan.�!/:

Let us pick the following frequency points:

! 0 !1 D 0:1=� !2 D 1=� !3 D 3=� 1
jG1.j!/j 1 � 0:99 0:5 0:1 0

arg.G1.j!// 0ı � �11ı �90ı � �143ı �180ı

The frequency responses at the frequencies !i , i D 1; 2; 3, are marked by large dots in Fig. 6(b).
The corresponding points at the complex plane, which is the plane of the polar plot, are presented in
Fig. 6(c). Connecting these dots we end up with the polar plot in Fig. 6(d), where the arrow shows
the direction of the plot as ! increases. Note that as ! " 1, the plot approaches the origin along the
negative real axis, because the argument of G1.j!/ approaches �180ı then.

2. The steps here are similar to those taken in the previous system. The asymptotic and actual Bode
diagrams are then presented in Figs. 7(a) and 7(c), respectively. The frequency response

G2.j!/ D k

j!.j�! C 1/ D
k

!
p
�2!2 C 1e�j.�=2Carctan.�!//;

from which the frequency responses at the chosen points are

(a) Asymptotic Bode diagram

 

(b) Actual Bode diagram

Re

Im

1 D G.0/

�1

2
D �jG.j!2/j

! D 0

! D !1

jG.j!1/j
arg.G.j!1//

! D !2

! D !3 arg
.G

.j!
3 //

! D 1

(c) Several points of polar plot

 
Re

Im

1

�1

2

G1.j!/

! D 0

! D !1

! D !2

! D !3

! D 1

(d) Actual polar plot

Fig. 6: Frequency response plots of G1.s/
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! 0 !1 D 0:6=� !2 D 1=� !3 D 3=� 1
jG2.j!/j 1 � 1:43k� k�=

p
2 � 0:11k� 0

arg.G2.j!// �90ı � �121ı �135ı � �153ı �180ı

The only nontrivial difference is that due to the presence of an integrator in G2.s/, jG2.0/j D 1. To
understand the behavior of the polar graph at small frequencies, rewrite

G2.j!/ D k

j!.j�! C 1/ D �
k�

�2!2 C 1 � j
k

!.�2!2 C 1/ :

It is now seen that while the imaginary part goes to �1, the real part approaches a finite value, �k�
(in fact, the real part belongs to .�k�; 0/ for all !). This yields the polar plot in Figs. 7(d).

3. This transfer function can be presented as

G3.s/ D �2s C 1
�1s C 1

D .�2s C 1/ � 1

�1s C 1
;

which is the cascade of a first-order system and the inverse of another first-order system. The asymp-
totic plots of the former are as the dashed lines in Fig. 6(a) and those of the latter—are the same plots
modulo the opposite signs (inversion of a transfer function means sign inversion on Bode). The form
of the convolution of such plots depends on the relation between �1 and �2.

(a) Asymptotic Bode diagram

 

(b) Actual Bode diagram

Re

Im
�k� D lim!!0 Re G.j!/

! D !1

jG
.j!

1
/j

arg.G
.j!

1 //

! D !2

! D !3

! D 1

(c) Several points of polar plot

 Re

Im
�k�

G2.j!/

! D !1

! D !2

! D !3

! D 1

(d) Actual polar plot

Fig. 7: Frequency response plots of G2.s/ (here k D 1=p2 and � D 1)
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� If 1
3
D �1 < �2 D 5

3
, the effect of the zero precedes that of the pole (as ! increases). Hence,

the magnitude starts at 0 bB (this is the static gain), then gets up at !c2´ 1=�2 D 0:6 and then
becomes flat again at !c1 ´ 1=�1 D 3. This is what we can see in Fig. 8(a). The actual Bode
diagram is presented in Fig. 8(b). To construct the polar plot, pick the following frequencies:

! 0 !1 D 0:1342 !2 D 1:342 !3 D 13:42 1
jG3.j!/j 1 � 1:02 � 2:2361 � 4:88 5

arg.G3.j!// 0ı � 10:04ı � 41:81 � 10:04 0ı

where the values can be obtained from the frequency response

G3.j!/ D j�2! C 1
j�1! C 1

D
s
�22! C 1
�21! C 1

ej.arctan.�2!/�arctan.�1!//

(with 1
3
D �1 > �2 D 5

3
, although it is also true for �1 > �2). The polar plot is then as shown in

Fig. 8(d). Note that arg.G3.j!1// D arg.G3.j!3//, so the corresponding points lie on the same
radial line in the complex plane.
� If 5

3
D �1 > �2 D 1

3
, the effect of the pole precedes that of the zero (as ! increases). Hence,

the magnitude starts at 0 bB (this is the static gain), then gets down at !c1 ´ 1=�1 D 0:6 and
then becomes flat again at !c2 ´ 1=�2 D 3. This is what we can see in Fig. 9(a). The actual
Bode diagram is presented in Fig. 9(b). To construct the polar plot, pick the same frequencies
as in the previous case. We then have:

! 0 !1 D 0:1342 !2 D 1:342 !3 D 13:42 1
jG3.j!/j 1 � 0:98 � 0:45 � 0:2 0:2

arg.G3.j!// 0ı � �10:04ı � �41:81 � �10:04 0ı

The polar plot is then as shown in Fig. 9(d).

(a) Asymptotic Bode diagram

 

(b) Actual Bode diagram

Re

Im

1 D G.0/ �2

�1
D G.j1/

! D !1

! D !2

jG.j!
2
/j ! D !3

arg.G.j!1// D arg.G.j!3//

! D 1

(c) Several points of polar plot

 
Re

Im

1 5

G3.j!/

! D !1

! D !2

! D !3

! D 1

(d) Actual polar plot

Fig. 8: Frequency response plots of G3.s/ for 1
3
D �1 < �2 D 5

3
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As a matter of fact, it can be verified that for all �1 and �2, the real and imaginary parts of G3.j!/,

ReG3.j!/ D �1�2!
2 C 1

�21!
2 C 1 and ImG3.j!/ D .�2 � �1/!

�21!
2 C 1 ;

verify �
ReG3.j!/ � �1 C �2

2�1

�2
C �ImG3.j!/

�2 D
��1 � �2

2�1

�2
:

This implies that whenever �1 ¤ �2, the polar plot of G3.j!/ is a semi-circle centered at 1
2
.1C �2

�1
/

and having the radius 1
2
j1 � �2

�1
j. This is also true for the particular case when �2 D 0, which is the

standard first-order transfer function.

O

Question 3. A signal u passes a stable system F.s/, whose frequency response is presented by its polar
plot in Fig. 10. The magnitude jF.j!/j is a monotonically decreasing function of !. Denote by y the
resulting output signal, i.e. y D F.s/u.

1. Find y.t/ for u.t/ D 2 sin.t/.

2. Find y.t/ for u.t/ D sin.2
3
t C 2/C 3 sin. 1

10
t C 0:356/.

3. In what frequency range harmonic u’s are attenuated by at least a factor of 5?

4. What information about the bandwidth of F.s/ can be extracted from Fig. 10?

Solution. All reasonings below are based on the Frequency Response Theorem.

1. With this input, y.t/ D 2jF.j/j sin.t C arg.F.j/// D 2 � 0:5 sin.t � �/ D � sin.t/.

(a) Asymptotic Bode diagram

 

(b) Actual Bode diagram

Re
Im 1 D G.0/�2

�1
D G.j1/

! D !1

arg.G.j!1// D arg.G.j!3//

! D !2

jG
.j!

2 /j

! D !3

(c) Several points of polar plot

 
Re

Im 10:2

G3.j!/

! D !1

! D !2

! D !3

(d) Actual polar plot

Fig. 9: Frequency response plots of G3.s/ for 5
3
D �1 > �2 D 1

3
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Re

Im

1

0:9901

�0:356

! D 0:1

0:
69

23

�
2
:223

! D 0:667

0:5! D 1 0:
2

! D 2

F.j!/

Fig. 10: Polar plot of F.j!/ in Question 3

2. In this case,

y.t/ D jF.j2
3
/j sin.2

3
t C 2C arg.F.j2

3
///C 3jF.j 1

10
/j sin. 1

10
t C 0:356C arg.F.j 1

10
///

D 0:6923 sin.2
3
t C 2 � 2:223/C 3 � 0:9901 sin. 1

10
t C 0:356 � 0:356/

D 0:6923 sin.2
3
t � 0:223/C 2:9703 sin. 1

10
t /:

3. A harmonic u.t/ D cej!t is attenuated by F.s/ by at least a factor of 5 iff jF.j!/j � 1
5
. From the

plot in Fig. 10 and the fact that the frequency response gain is monotonically decreasing, we have
that the required range is ! 2 Œ2;1/.

4. Because jF.j!/j is monotonically decreasing and F.0/ D 1 > 1=
p
2, this F.s/ is a low-pass filter.

Its bandwidth is the smallest frequency where jF.j!b/j D 1=
p
2 � 0:7071. But the polar plot does

not contain frequency information (apart from what is marked). All we can say is that !b 2 . 110 ; 23 /,
as jF.j 1

10
/j D 0:9901 > 1=

p
2 and jF.j2

3
/j D 0:6923 < 1=

p
2 and there are no frequency points in

between. Because jF.j2
3
/j is very close to 1=

p
2, we may be tempted to say that !b is very close to

2
3
. But this statement might be risky, as we cannot see the slope of jF.j!/j at the polar plot.

O

Question 4. Three sensors, H1.s/, H2.s/, and H3.s/, were tested on the same signal:

y.t/ D �
5 C 2 cos.t/ C 3 sin.5t/

�
1.t/

ym;1.t/

ym;2.t/

ym;3.t/

H1.s/

H2.s/

H3.s/

The results (measurements) were saved, see parts of them, in the time interval t 2 Œ20; 30�, in Fig. 11(a).
Unfortunately, the information about what sensor each measurement belongs to got lost. Fortunately, we
still have frequency response plots of each sensor, see Fig. 11(b). Use it to reconstruct the lost information.

Solution. All measurements are already in steady state. By the Frequency Response Theorem, the steady-
state response of the nth measurement is

ym;n.t/ D 5Hn.0/C 2jHn.j/j cos
�
t C arg.Hn.j//

�C 3jHn.j5/j sin
�
5t C arg.Hn.j5//

�
:
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(a) Measurements (b) Sensor frequency responses

Fig. 11: Plots for Question 4

The magenta plot in Fig. 11(a) contains 2 harmonics: an offset (i.e. ! D 0) and ! D 5 (its period is
� 1:25 sec). In other words, the harmonic at ! D 1 is filtered out by the sensor. The only frequency
response in Fig. 11(b) having zero gain at that frequency is drawn with the green line, which belongs to
H2.s/. Hence,

ym;k D ym;2 (i.e. k D 2):
As a matter of fact, the match between ym;k andH2.s/ can also be seen via the highest offset of the former,
which corresponds to the highest static gain of H2.s/ among the sensors.

Now, both lime and cyan plots in Fig. 11(a) have the harmonic at! D 5 filtered out in them, consistently
with the zero gains of H1.j!/ and H3.j!/ at ! D 5 in Fig. 11(b). Measurements ym;i and ym;j have
identical offsets (consistently with the identical static gains of H1.s/ and H3.s/), but different amplitudes
of harmonics with ! D 1 in them. This difference must be manifested in different gains of the frequency
responses of the remaining sensors at ! D 1. That is indeed what we can see in Fig. 11(b) (compare the
blue and red lines there). Because jH1.j/j < jH3.j/j, we end up with

ym;i D ym;1 (i.e. i D 1) and ym;j D ym;3 (i.e. j D 3):

O

Question 5. During an experiment we measured the below signal.

y.t/ D �5C 3 cos.2� � t /C 0:1 cos.2� � 60t/�1.t/

But, this signal has some noise due to the electrical line (a sinusoidal noise at 50Hz) and some noise due
to the environment as a sinusoidal signal with frequency 600Hz. The signal with the noise is as described
below and is shown in the time domain in Fig. 12.

y.t/ D �5C 3 cos.2� � t /C 0:1 cos.2� � 60t/C sin.2� � 50t/C sin.2� � 600t/�1.t/

We wish to filter out the noise by using notch filters and Butterworth filters. The noise must have an
attenuation to at most 1%. The signal itself is allowed to have an attenuation to at least 89%. Design the
notch filters with the largest stop-band possible and the Butterworth filters with the smallest order that meet
the requirements.



18

Fig. 12: The Noisy Signal in Question 5

Solution. For the 50Hz noise, since it’s close and to the left of the 60Hz signal, we’ll design a notch filter.
To do so we use the notch filter’s transfer function:

Fnotch.s/ D s2 C !20
s2 C 2�!0s C !20

Demanding:
!0 D 2� � 50 D 100�

We do not want to attenuate the original signal at 60Hz more than 89%. To do so and since we need to
design 2 filters, we require an attenuation of the signal of each filter of at most

p
0:89 D 0:94. We need to

design the right edge frequency so that the filter’s magnitude at 60Hz is 0:94 � �0:54ŒdB�. So we demand
that at 60Hz D 120� � rad

sec
�

frequency the filter magnitude is 0:94 which determines the � parameter:

jFnotch.j!/j D
s

.!2 � !20/2
.!2 � !20/2 C 4�2!20!2

jFnotch.j120�/j D
s

..120�/2 � .100�/2/2
..120�/2 � .100�/2/2 C 4�2.100�/2.120�/2 D 0:94 H) � D 0:0645

We therefor design the notch filter as:

Fnotch.s/ D s2 C .100�/2
s2 C 2 � 0:0645 � 100� � s C .100�/2

The filter’s Bode diagram is shown in Fig. 13 (with the frequency in Hz for convenience). We can see that
the magnitude at 60Hz is �0:51ŒdB� � 0:94. So at 60Hz the signal passes. (While our standard does
define a magnitude of �3ŒdB� as passing, since at that magnitude the signal’s power is halved we actually
want a higher magnitude at the interested frequencies which is why the question demands 89% attenuation
total instead). Also, at this frequency there is a phase lead of � 20ı.



19

Fig. 13: Bode of the Notch Filter Designed in Question 5

For the noise at 600Hz, since here we know there is no signal above it we can design a low pass
Butterworth filter.

Fbutter.s/ D 1

Bn.s=!b/

For an attenuation of 1%, this means that the filter’s magnitude should be at most jFbutter.j!/j D 0:01 D
�40ŒdB� at frequency ! D 2� �600 D 1200� � rad

sec
�
. Again, we do not want attenuation of more than 0:89 at

our signal frequency of 60Hz total, which means an attenuation of no more than 0:94 for this filter. To find
the proper bandwidth frequency and order, we do some trial and error. We first demand that the bandwidth
frequency will be !b D 120�

� rad
sec
�
.60Hz/. To find the order of the Butterworth polynomial, we first find

the slope needed for the line of the asymptotic Bode. Since we are looking at the asymptotic graph this
is the slope of the line that runs from 0ŒdB� to �40ŒdB�. Remember, since the Bode’s horizontal axis is in
logarithmic scale the equation for the slope is:

a D M0;dB �Mb;dB
log!0 � log!b

D M0;dB �Mb;dB
log.!0=!b/

D �40 � 0
log..1200�/=.120�//

D �40 � dB
dec
�

For an nth order Butterworth filter the slope is �20 � n � dB
dec
�
, thus we need an order of:

n D d a

�20e D 2

Thus, we have a Butterworth low-pass filter of:

Fbutter.s/ D 1

B2.s=.120�//
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where,

B2.s/ D
1Y

iD1
.s2 C 2�is C 1/

and �i is calculated as explained in the background section. The Bode diagram of the filter is shown in
Fig. 14 (with the frequency in Hz for convenience). Notice here that the magnitude at frequency 60Hz is
�3ŒdB�.

Fig. 14: Bode of the First Butterworth Filter Designed in Question 5

We need a higher gain at this frequency so through some trial and error we choose a bandwidth fre-
quency of !b D 200�

� rad
sec
�
.100Hz/. We now do the same calculation of the slope and order:

a D �40 � 0
log..1200�/=.200�//

D �51:5730 � dB
dec
�

n D d a

�20e D 3

Recalculating the Butterworth filter we get:

Fbutter.s/ D 1

B3.s=.200�//

With the 3rd order Butterworth polynomial:

B3.s/ D .s C 1/
1Y

iD1
.s2 C 2�is C 1/

The Bode diagram of the filter is shown in Fig. 15 (again with Hz for convenience). Here, the �3ŒdB� fre-
quency (the bandwidth frequency) is 100Hz, while the signal frequency of 60Hz has a gain of �0:2ŒdB� �
0:98 as required. The noise frequency of 600Hz is attenuated with a gain of �46:7ŒdB� again as required.
Also, we can see that there is a phase lag of �74ı at the signal frequency of 60Hz.
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Fig. 15: Bode of the Second Butterworth Filter Designed in Question 5

In summary, taking into account both the Butterworth and notch filters, the 60Hz signal has an atten-
uation of 0:94 � 0:98 D 0:92 as required. The total phase lag is �74ı C 20ı D �54ı.

Using the notch and Butterworth filters, we can denoise the signal as shown in figures 16. While for the
frequency of 1

� rad
sec
�

as well as the static gain, there is no change in amplitude nor phase, for the frequency
of 60Hz we see a phase lag of �54ı, shown in Fig. 16(b), as well as a small change in magnitude. The
phase will need to be fixed through some other means. O

(a) Denoised Signal v.s. Original Signal (b) Close up of Denoised Signal v.s. Original Signal

Fig. 16: Plots for Question 5

4 Homework Problems

Question 6. Given is a system represented by an ODE:

Ry.t/C 2 Py.t/C y.t/ D Pu.t/C 2u.t/
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and the input:
u.t/ D .ı.t/C .t � 4/C 2 sin 2t/1

Find the system response in steady state to the input u.

Solution. We perform the Laplace transform on the ODE:

s2Y.s/C 2sY.s/C Y.s/ D sU.s/C 2U.s/

thus, the transfer function of the system is:

G1.s/ D s C 2
s2 C 2s C 1

Notice that the system is stable because its poles are both in s D �1. Since the system is linear the
output will be a superposition of the 3 responses: the impulse response, the step response and the sinusoidal
response.

y.t/ D yı.t/C ystep.t/C ysin.t/

� The system is stable so in steady state the impulse response decays to zero:

yı;ss.t/ D 0

� For the same reason, the step response converges to the static gain:

ystep,ss.t/ D G1.0/ D kst D 2

� Due to the frequency response theorem, the response to a sinusoidal input will converge to a sinu-
soidal signal, where:

G1.j!/ D 2C j!
j2!2 C 2j! C 1 D

2C j!
1 � !2 C 2! j

jG1.j!/j D j2C j!j
j1 � !2 C 2! jj D

p
4C !2p

.1 � !2/2 C 4!2
D
s

4C !2
.1 � !2/2 C 4!2

argG1.j!/ D arctan
�!
2

�
� arctan

�
2!

1 � !2
�

In our case, ! D 2. Substituting into G1 we get:

jG1.j2/j D 2
p
2

5

argG1.j2/ D �1:429 [rad]

So the sinusoidal response in steady state is:

ysin;ss.t/ D 2 � 2
p
2

5
sin.2t � 1:429/

The superposition of all these responses gives the steady state response of the system:

yss.t/ D 2C 2 � 2
p
2

5
sin.2t � 1:429/

We show the solution graphically in Fig. 17 O
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Fig. 17: Plots for Question 6

Question 7. Given is the below transfer function:

G.s/ D 256s

.s C 2/.s C 8/2
1. Plot the asymptotic magnitude Bode diagram.

2. What is the deviation of the asymptotic diagram from the real frequency response at ! D 8
� rad

sec
�
,

and what is the phase delay at that frequency?

Solution.

1. We first unpack the system into its basic 1- and 2-order subsystems:

G.s/ D 256 � s � 1

s C 2 �
1

.s C 8/2
We now transform each of the subsystems into their standard form:

G.s/ D 256 � s � 1=2

s=2C 1 �
1=64

.s=8C 1/2
Combining the static gains:

G.s/ D 2 � s � 1

s=2C 1 �
1

.s=8C 1/2
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We have 4 subsystems:

G1.s/ D 2
G2.s/ D s
G3.s/ D 1

s=2C 1
G4.s/ D 1

.s=8C 1/2

We can now analyze each of the subsystems separately:

� The first system G1.s/ is a static gain:

jG1.j!/j D 2

with magnitude M1;dB D 20 log 2 � 6. The asymptotic Bode diagram is shown in Fig. 18(a).
� The second system G2.s/ D s is a differentiator:

jG2.j!/j D !

thus the magnitude in dB is M2;dB D 20 log! and we get a straight line with slope 20
� dB

dec
�
.

The asymptotic Bode diagram is shown in Fig. 18(b).
� The third system G3.s/ is a Low Pass Filter (LPF):

jG3.j!/j D 1p
�2!2 C 1 D

1p
0:25!2 C 1

so the magnitude in dB will be

M3;dB D 20 log
1

0:25!2 C 1 D 20 log.0:25!2 C 1/�0:5 D �10 log.0:25!2 C 1/

It has a slope of �20 � dB
dec
�

after the corner frequency of !p D 2
� dB

dec
�
. The asymptotic Bode

diagram is shown in Fig. 18(c).
� The fourth system G4.s/ is also a LPF but of order 2. Similarly we get a gain of:

M4;dB D �20 log.0:015!2 C 1/

The slope of the system after the corner frequency of!p D 8
� rad

sec
�
, is�40 � dB

dec
�
. The asymptotic

Bode diagram is shown in Fig. 18(d).

We can now cascade all of the asymptotic Bodes and get the asymptotic Bode of the original system,
as in Fig. 19. In summary we get a slope of:

slope
� dB

dec
� D

8
<̂

:̂

20 if 0 � ! � 2
0 if 2 � ! � 8
�40 if ! � 8
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(a) Asymptotic Bode diagram of G1.s/ (b) Asymptotic Bode diagram of G2.s/

(c) Asymptotic (and real) Bode diagram of G3.s/ (d) Asymptotic (and real) Bode diagram of G3.s/

Fig. 18: Plots for question 7

Fig. 19: Asymptotic (and real) Bode plot of the system in question 7

2. From the asymptotic analysis, we know that the static gain is M1;dB � 6 ŒdB�. Also, the second
subsystem gives a gain of 2 at frequency ! D 2 � rad

sec
�
. So the gain in dB isM2;dB D 20 log 2 � 6 ŒdB�.

Thus, at a frequency of ! D 2
� rad

sec
�

we have a magnitude of 12 ŒdB�. But, we also saw that the
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magnitude stays constant between 2
� rad

sec
�

and 8
� rad

sec
�

so the magnitude at frequency ! D 8
� rad

sec
�

is
also 12 ŒdB�.
We can now calculate the magnitude directly at ! D 8 � rad

sec
�
:

M.dB/.!/ D 6C 20 log! � 10 log.0:25!2 C 1/ � 20log.0:015!2 C 1/
M.dB/.! D 8/ D 5:74ŒdB�

So the error is:
error D 12 � 5:74 D 6:26ŒdB�

and the phase lag is:

G.j!/ D 2 � j! � 1

j!=2C 1 �
1

.j!=8C 1/2

G.j8/ D 2 � j8 � 1

j4C 1 �
1

.jC 1/2
argG.j8/ D arctan.0=2/C arctan.8=0/ � arctan.4=1/ � 2 arctan.1=1/ D 0ı C 90ı � 76ı � 2 � 45ı D 76ı

O

Fig. 20: Asymptotic Bode plot of the system in question 8

Question 8. Given in Fig. 20 is the asymptotic Bode diagram of a system.

1. Find the order of the system.

2. Find !1; !2 and the transfer function of the system.

Solution.

1. We’ll find the general shape of the system. In this system there is a static gain that doesn’t affect its
order. We shall mark it as:

G1.s/ D k
We can see that in the frequency range of 0 � ! � !1 there is an incline with slope 20

� dB
dec
�
. This

means there is a differentiator in the system. We write:

G2.s/ D s
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In the frequency range of !1 � ! � !2 the slope is 0, therefore there is a system with corner
frequency !1 and a slope of �20 � dB

dec
�

after the corner frequency that cancels the previous slope. We
write:

G3.s/ D 1

s=!1 C 1
In the last frequency range of !2 � ! we can see a slope of �40 � dB

dec
�
, so there must be a system

with corner frequency !2 and a slope �40 � dB
dec
�

after that.

G4.s/ D 1

.s=!2 C 1/2
Note: We can’t always definitively recreate the transfer function by analyzing the asymptotic Bode.
For example, we could have assumed for subsystem 4:

G4.s/ D !22
s2 C 2�!2s C !22

and gotten the same asymptotic Bode. For example, for these two systems:

P1.s/ D ks

.s=!1 C 1/.s=!2 C 1/2

P2.s/ D ks!22

.s=!1 C 1/
�
s2 C 2�!2s C !22

�

P1.s/ is actually the system from question 7 and its Bode diagram is shown in Fig. 19, and P2.s/’s
Bode diagram is shown in Fig. 21

Fig. 21: Bode plot of P2.s/ in question 8

Notice that the asymptotic Bode diagram of both systems is the same but the real diagrams are
different.
In this question we’ll assume:

G.s/ D kss

.s=!1 C 1/.s=!2 C 1/2
Either way, we can see that the system is a third order system.
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2. It is known that given a linear function, its slope is:

a D y2 � y1
x2 � x1

For a Bode diagram, there is almost no difference. Given a straight line on the Bode diagram with
slope a

� dB
dec
�
, and keeping in mind that the horizontal axis is logarithmic, we get:

a
� dB

dec
� D M2ŒdB� �M1ŒdB�

log!2 � log!1
D M2ŒdB� �M1ŒdB�

log.!2=!1/

Substituting the magnitudes:

20 D 12 � 0
log.!1=0:5/

log.!1=0:5/ D 0:6
!1 D 0:5 � 100:6 � 2

� rad
sec
�

� 40 D 12 � 0
log.!2=16/

log.!2=16/ D �0:3
!2 D 16 � 10�0:3 � 8

� rad
sec
�

and the transfer function is:
G.s/ D 2s

.s=2C 1/.s=8C 1/2

O


