
1����������	
���������������������������������������

TECHNION — Israel Institute of Technology, Faculty of Mechanical Engineering

Linear Systems (034032)
tutorial 9

1 Topics

Frequency response of an LTI system, Bode and polar diagrams, filters.

2 Background

2.1 Frequency Response

Theorem 1. Let G W u 7! y be a stable continuous-time LTI system. Its response to the sinusoidal test
input u such that

u.t/ D a sin.!t C �/1.t/
in steady state is also sinusoidal. Specifically

yss.t/ D ajG.j!/j sin.!t C � C argG.j!//;

where jG.j!/j and arg.G.j!// are the gain (magnitude) and phase of the frequency response G.j!/ of G,
respectively, which can be calculated as

jG.j!/j D
p
x2 C y2 and arg.G.j!// D
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x D 0; y > 0
��
2

x D 0; y < 0
undefined x D 0; y D 0

where x´ ReG.j!/ and y ´ ImG.j!/.

2.2 Bode Diagram

The Bode diagram is a way of visualizing jG.j!/j and arg.G.j!//. In order to draw the Bode diagram by
hand we actually draw the asymptotic diagram.

For example, Fig. 1 shows the Bode diagram of the transfer function:

G.s/ D 1

s C 1
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Fig. 1: Real and Asymptotic Bode Diagram

2.2.1 Bode Scales

The Bode diagram’s horizontal axis is the frequency ! in logarithmic scale. The magnitude part is repre-
sented in dB and the phase part in deg. dB is the unit decibel and is defined as:

k.dB/ D 20 log k
k D 10k.dB/=20

We also define dec, decade, which is the distance of 10 units (10 scales on the horizontal axis).

2.2.2 Steps to Create an Asymptotic Diagram

1. Decomposing the system into the product of sub-systems.

G.s/ D G1.s/ �G2.s/ � : : : �Gm.s/

where each one of these subsystems i 2 f1;mg are first and second order systems of the form:

Gi .s/ D 1

s
; s;

1

as C b ; as C b;
1

as2 C bs C c ; as
2 C bs C c

2. Every first order system of the form 1
asCb

we convert to

kst
�s C 2 (1)

and every first order system of the form as C b we convert to

kst.�s C 1/
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In the same way, we convert second order systems of the form 1
as2CbsCc

to

kst!
2
n

s2 C 2�!ns C !2n
D kst
.s=!n/2 C 2�.s=!n/C 1

and second order systems of the form as2 C bs C c to

kst.s
2 C 2�!ns C !2n /

!2n
D .s=!n/

2 C 2�.s=!n/C 1

3. We unite all the static gains by multiplying all kst elements, getting:

G.s/ D k � G1.s/ � G2.s/ � : : : � Gm.s/

where Gi .s/ are the standard transfer functions.

4. Using the table below, we draw the asymptotic Bode diagram of the system as a combination of the
Bodes of the standard systems.

Function Bode Graph Asymptotic Behaviour

k

The magnitude is a straight horizontal
line with a constant gain of k.dB/ D
20 log k.

The phase is 0ı.

1

s

The magnitude is a straight line that
crosses the horizontal axis at 1Œ rad

sec
�

and has a slope of �20 � dB
dec
�
.

The phase is constant at �90ı.
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Function Bode Graph Comment

s

The magnitude is a straight line that
crosses the horizontal axis at 1Œ rad

sec
�

and has a slope of 20
� dB

dec
�
.

The phase is constant at 90ı.

1

�s C 1

The magnitude is constant at 0 [dB]
until the corner frequency of !p D 1

�
,

after which it is a straight line with
slope �20 � dB

dec
�
.

The phase is constant at 0ı until 0:1!p
after which it is a straight line that
crosses �45ı at frequency !p, and at
10!p again constant at �90ı.

�s C 1

The magnitude is constant at 0ŒdB�
until the corner frequency of !p D 1

�
,

after which it is a straight line with
slope 20

� dB
dec
�
.

The phase is constant at 0ı until 0:1!p
after which it is a straight line that
crosses 45ı at frequency !p, and at
10!p again constant at 90ı.
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Function Bode Graph Comment

1

.�s C 1/n

The magnitude is constant at 0 [dB]
until the corner frequency of !p D 1

�
,

after which it is a straight line with
slope �20 � n � dB

dec
�
.

The phase is constant at 0ı until 0:1!p
after which it is a straight line that
crosses �45nı at frequency !p, and at
10!p again constant at �90nı.

.�s C 1/n

The magnitude is constant at 0ŒdB�
until the corner frequency of !p D 1

�
,

after which it is a straight line with
slope 20 � n � dB

dec
�
.

The phase is constant at 0ı until 0:1!p
after which it is a straight line that
crosses 45nı at frequency !p, and at
10!p again constant at 90nı.

!2n
s2 C 2�!ns C !2n
� � 1

p
2

The magnitude is constant at 0ŒdB�
until the natural frequency of !n, af-
ter which it is a straight line with slope
�40 � dB

dec
�
.

The phase is constant at 0ı until 0:1!n
after which it is a straight line that
crosses �90ı at frequency !n, and at
10!n again constant at �180ı.
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Function Bode Graph Comment

s2 C 2�!ns C !2n
!2n

� � 1
p
2

The magnitude is constant at 0ŒdB�
until the natural frequency of !n, af-
ter which it is a straight line with slope
40
� dB

dec
�
.

The phase is constant at 0ı until 0:1!n
after which it is a straight line that
crosses 90ı at frequency !n, and at
10!n again constant at 180ı.

!2n
s2 C 2�!ns C !2n
� < 1

p
2

The magnitude is constant at 0ŒdB�
until the natural frequency of !n, af-
ter which it is a straight line with slope
�40 � dB

dec
�
.

The real system has a resonance peak
at frequency !r D !n

p
1 � 2�2

The phase is constant at 0ı until 0:1!n
after which it is a straight line that
crosses �90ı at frequency !n, and at
10!n again constant at �180ı.

s2 C 2�!ns C !2n
!2n

� < 1
p
2

The magnitude is constant at 0ŒdB�
until the natural frequency of !n, af-
ter which it is a straight line with slope
40
� dB

dec
�
.

The real system has a resonance dip at
frequency !r D !n

p
1 � 2�2

The phase is constant at 0ı until 0:1!n
after which it is a straight line that
crosses 90ı at frequency !n, and at
10!n again constant at 180ı.
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Function Bode Graph Comment

�
!2n

s2 C 2�!ns C !2n

�n

� < 1
p
2

The magnitude is constant at 0ŒdB�
until the natural frequency of !n, af-
ter which it is a straight line with slope
�40 � n � dB

dec
�
.

The real system has a resonance peak
at frequency !r D !n

p
1 � 2�2

The phase is constant at 0ı until 0:1!n
after which it is a straight line that
crosses �90nı at frequency !n, and at
10!n again constant at �180nı.

�
s2 C 2�!ns C !2n

!2n

�n

� < 1
p
2

The magnitude is constant at 0ŒdB�
until the natural frequency of !n, af-
ter which it is a straight line with slope
40 � n � dB

dec
�
.

The real system has a resonance dip at
frequency !r D !n

p
1 � 2�2

The phase is constant at 0ı until 0:1!n
after which it is a straight line that
crosses 90nı at frequency !n, and at
10!n again constant at 180nı.

For more examples see the lecture slides.

2.2.3 General Guidelines for Asymptotic Bode

� Each pole adds �20 � dB
dec
�

to the magnitude’s slope.

� Each zero adds C20 � dB
dec
�

to the magnitude’s slope.

� Every pole in CnC0 D fs 2 C j Re s � 0g adds a phase lag of �90ı.
� Every pole in C0 D fs 2 C j Re s > 0g adds a phase lead of C90ı.
� Every zero in CnC0 D fs 2 C j Re s � 0g adds a phase lead of C90ı.
� Every zero in C0 D fs 2 C j Re s > 0g adds a phase lag of �90ı.
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2.3 Polar Diagram

The polar diagram is another way to represemt the frequency response of the system. Similarly to the Bode
diagram, the polar diagram shows G.j!/. But, unlike the Bode diagram which is comprised of two parts:
the magnitude as a function of frequency jG.j!/j and the phase as a function of frequncy arg.G.j!//, the
polar diagram is comprised of only one graph where we can see the real and imaginary parts <fG.j!/g,
=fG.j!/g as a function of the frequency which isn’t shown directly on the graph.

For example, Fig. 2 shows the polar diagram of the transfer function:

G.s/ D 1

s C 1

Fig. 2: Polar Diagram

The blue arrow denotes the direction in which the frequency increases. The red points denote the
frequency response at chosen frequencies.

2.3.1 The Magnitude and Phase in the Polar Diagram

Similarly to the Bode diagram, we can extract the magnitude and phase of the system for a given frequency
from the polar diagram. But, here we do not know the actual frequency. The magnitude at a given point
jG.j!/j is the distance of that point from the origin. The phase arg.G.j!// is the angle between the line
connecting that point to the origin, and the positive direction of the real axis.

When looking back at the Bode diagram of the same system in Fig. 1, we can see that the magnitude de-
creases monotonically. This can also be seen in the polar diagram as the distance from the origin decreases
until it reaches 0. The system’s phase also decreases which can again be seen in the polar diagram.
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2.4 Filters

Using the frequency response we can design filters to shape the spectra of signals. 4 categories of filters
are generally used:

1. Low-pass Filters:
jG.j!/j � 1=

p
2 ” ! � !b

2. High-pass Filter:
jG.j!/j � 1=

p
2 ” ! � !c

3. Band-pass Filter:
jG.j!/j � 1=

p
2 ” ! 2 Œ!1; !2�

4. Band-stop Filter:
jG.j!/j � 1=

p
2 ” ! … .!1; !2/

2.4.1 Butterworth Filter

A filter based on the Butterwoth polynomials:

Bn.s/ D
(Qn=2

iD1.s
2 C 2�is C 1/ if n is even

.s C 1/Q.n�1/=2
iD1 .s2 C 2�is C 1/ if n is odd

where,
�i ´ sin

�
2i � 1
2n

�

�
2 .0; 1/

The low-pass Butterworth filter is:

F.s/ D 1

Bn.s=!b/
H) jF.j!/j D 1p

1C .!=!b/2n

The high-pass Butterworth filter is:

F.s/ D s=!c
Bn.s=!c/

H) jF.j!/j D .!=!c/
n

p
1C .!=!c/2n

Their Bode diagrams are shown in figures 3(a) and 3(b).

(a) Low-pass Butterworth Filter, !b D 1 (b) High-pass Butterworth Filter, !c D 1

Fig. 3: Butterworth Filters Bode Diagrams
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2.4.2 Notch Filter

A narrow stopband filter of the form:

F.s/ D s2 C !20
s2 C 2�!0s C !20

H) jF.s/j D
s

.!2 � !20/2
.!2 � !20/2 C 4�2!20!2

It has a stopband of .!1; !2/ with:

!1´
�p

1C �2 � �
�
!0

!2´
�p

1C �2 C �
�
!0 D 1=!1

The Bode diagram is shown in Fig. 4

Fig. 4: Notch Filter Bode Diagram

2.5 Matlab Commands

Some useful Matlab functions:

1. mag2db and db2mag convert the magnitude to and from dB.

2. bode(G) and bodeplot(G) plot the bode diagram of the system G. bodeplot(G) has more plot
options.

3. nyquist(G) and nyquistplot(G) plot a diagram of the system G in polar coordinates (called a
Nyquist diagram). To create a plain polar plot (! > 0), use:
setoptions(nyquistplot(G),’ShowFullContour’,’off’).

4. [num,den] = butter(n,wb,’s’); generates the numerator and denominator of the low-pass But-
terworth filter of order n with the bandwidth wn.
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3 Problems

Question 1. Draw the asymptotic Bode magnitude plots of the transfer function

G.s/ D k

.�1s C 1/.�2s C 1/
;

where �1 > 0 and �2 > 0.

Question 2. Draw the Bode and polar plots for the following transfer functions:

1. G1.s/ D 1

.�s C 1/2 for � > 0;

2. G2.s/ D k

s.�s C 1/ for � > 0 and k > 0;

3. G3.s/ D �2s C 1
�1s C 1

for �1 D 1
3

and �2 D 5
3

and then for �1 D 5
3

and �2 D 1
3
.

Re

Im

1

0:9901

�0:356

! D 0:1

0:
69

23

�
2
:223

! D 0:667

0:5! D 1 0:
2

! D 2

F.j!/

Fig. 5: Polar plot of F.j!/ in Question 3

Question 3. A signal u passes a stable systemF.s/, whose frequency response is presented by its polar plot
in Fig. 5. The magnitude jF.j!/j is a monotonically decreasing function of !. Denote by y the resulting
output signal, i.e. y D F.s/u.

1. Find y.t/ for u.t/ D 2 sin.t/.

2. Find y.t/ for u.t/ D sin.2
3
t C 2/C 3 sin. 1

10
t C 0:356/.

3. In what frequency range harmonic u’s are attenuated by at least a factor of 5?

4. What information about the bandwidth of F.s/ can be extracted from Fig. 5?

Question 4. Three sensors, H1.s/, H2.s/, and H3.s/, were tested on the same signal:

y.t/ D �
5 C 2 cos.t/ C 3 sin.5t/

�
1.t/

ym;1.t/

ym;2.t/

ym;3.t/

H1.s/

H2.s/

H3.s/
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(a) Measurements (b) Sensor frequency responses

Fig. 6: Plots for Question 4

The results (measurements) were saved, see parts of them, in the time interval t 2 Œ20; 30�, in Fig. 6(a).
Unfortunately, the information about what sensor each measurement belongs to got lost. Fortunately, we
still have frequency response plots of each sensor, see Fig. 6(b). Use it to reconstruct the lost information.

Question 5. During an experiment we measured the below signal.

y.t/ D �5C 3 cos.2� � t /C 0:1 cos.2� � 60t/�1.t/

But, this signal has some noise due to the electrical line (a sinusoidal noise at 50Hz) and some noise due
to the environment as a sinusoidal signal with frequency 600Hz. The signal with the noise is as described
below and is shown in the time domain in Fig. 7.

y.t/ D �5C 3 cos.2� � t /C 0:1 cos.2� � 60t/C sin.2� � 50t/C sin.2� � 600t/�1.t/

We wish to filter out the noise by using notch filters and Butterworth filters. The noise must have an
attenuation to at most 1%. The signal itself is allowed to have an attenuation to at least 89%. Design the
notch filters with the largest stop-band possible and the Butterworth filters with the smallest order that meet
the requirements.

4 Homework Problems

Question 6. Given is a system represented by an ODE:

Ry.t/C 2 Py.t/C y.t/ D Pu.t/C 2u.t/

and the input:
u.t/ D .ı.t/C .t � 4/C 2 sin 2t/1

Find the system response in steady state to the input u.

Question 7. Given is the below transfer function:

G.s/ D 256s

.s C 2/.s C 8/2
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Fig. 7: The Noisy Signal in Question 5

1. Plot the asymptotic magnitude Bode diagram.

2. What is the deviation of the asymptotic diagram from the real frequency response at ! D 8
� rad

sec
�
,

and what is the phase delay at that frequency?

Fig. 8: Asymptotic Bode plot of the system in question 8

Question 8. Given in Fig. 8 is the asymptotic Bode diagram of a system.

1. Find the order of the system.

2. Find !1; !2 and the transfer function of the system.


