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TECHNION — Israel Institute of Technology, Faculty of Mechanical Engineering

Linear Systems (034032)
tutorial 8

1 Topics

Stability criteria for LTI systems with rational transfer functions in the Laplace domain and the Z-domain.

2 Background

2.1 Rational functions

A rational function can be written as

G.s/ D
N.s/

D.s/
D
bms

m C bm�1s
m�1 C � � � C b1s C b0

sn C an�1sn�1 C � � � C a1s C a0

:

� G.s/ is proper if the order of the denominator is higher or equal to the order of the numerator, i.e.
n � m.

� If N.s/ and D.s/ have no common roots, then the poles of G.s/ are the roots of D.s/.

2.2 Causality and stability

Theorem 1. A continuous-time LTI system with rational transfer function G.s/ is causal and I/O stable iff

� G.s/ is proper and

� G.s/ has all its poles in the left half plane C n NC0 D fs 2 C j Re s < 0g.

Example
G.s/ D

1

s � a

This system has one pole in s D a. Its impulse response is

g.t/ D eat1.t/:

It can easily be seen that g 2 L1 only if Re a < 0.1

Theorem 2. A discrete-time LTI system with rational transfer function G.´/ is

� causal iff G.´/ is proper

� I/O stable iff G.´/ has all its poles in the open unit disk D1 D f´ 2 C j j´j < 1g.

Example
G.s/ D

´

´ � a

This system has one pole in ´ D a. Its impulse response is

gŒk� D ak1Œk�:

It can easily be seen that g 2 l1 only if jaj < 1.
1See Lecture 6: An LTI system G is BIBO stable iff g 2 L1 in the continous-time case and g 2 l1 in the discrete-time case.
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2.3 Roots of a polynomial

In the case that our LTI system is represented by a rational function, the stability is determined by the
locations of the roots of the denominator. It is not always easy to calculate these, but there are ways to test
whether all the roots lie in the left half plane C n NC0 or in the open unit disk D1.

Terminology A polynomial is said to be

� Hurwitz if all its roots are in C n NC0.

� Schur if all its roots are in D1.

Monic polynomials are polynomials whose leading coefficient an D 1, like

D.s/ D sn
C an�1s

n�1
C � � � C a1s C a0

2.3.1 Continous-time case

Theorem 3 (necessary condition). The polynomialD.s/ D snCan�1s
n�1C� � �Ca1sCa0 is Hurwitz only

if ai > 0 for all i 2 Z0::n�1. In general, for polynomials that are not monic, we require that all coefficients
are nonzero and have the same sign.

Given the polynomial D.s/ D ans
n C an�1s

n�1 C � � � C a1s C a0, the associated Routh table is

0 r0;1 D an r0;2 D an�2 r0;3 D an�4 � � �

1 r1;1 D an�1 r1;2 D an�3 r1;3 D an�5 � � �

2 r2;1 r2;2 r2;3 � � �

:::
:::

:::

n � 2 rn�2;1 rn�2;2 rn�2;2

n � 1 rn�1;1 rn�1;2

n rn;1

where for each i 2 Z2::n�
ri;1 ri;2 � � �

�
D
�
ri�2;2 ri�2;3 � � �

�
�
ri�2;1

ri�1;1

�
ri�1;2 ri�1;3 � � �

�
and if the last required column of an involved row is empty, 0 is taken. We have two cases according to
what happens to the elements in the first column.

� Singular: 9i W ri;1 D 0.

� Regular: 8i W ri;1 ¤ 0.

Theorem 4 (necessary and sufficient condition). Consider a polynomial in s.

D.s/ D ans
n
C an�1s

n�1
C � � � C a1s C a0

� D.s/ is Hurwitz iff the associated Routh table is regular and all the elements of the first column have
the same sign.

� If the Routh table is regular, then D.s/ has no roots jR and the number of poles in C0 equals the
number of sign changes in the first column of the table.

� If the Routh table is singular, then D.s/ is not Hurwitz. Is this case, we cannot say anything about
the location of the poles, except that there is at least one pole on jR or in C0.2

2There are tricks to deal with singularities, but these are not part of the course material.
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Second order polynomial (memorize!) The Routh table for a second order polynomial D.s/ D a2s
2C

a1s C a0.
0 a2 a0

1 a1

2 a0

Thus, for D.s/ to be Hurwitz, we must have that a2, a1, and a0 are nonzero and have the same sign.
Therefore, the necessary condition (see theorem 3) is in this case a sufficient condition as well.

Third order polynomial (memorize!) The Routh table for a third order polynomial D.s/ D a3s
3 C

a2s
2 C a1s C a0.

0 a3 a1

1 a2 a0

2 a1 �
a3

a2
a0

3 a0

Requiring that all elements in the first column have the same sign leads to the following condition forD.s/
to be Hurwitz:

� a0, a1, a2, a3 are nonzero and have the same sign and

� a1a2 > a0a3.

2.3.2 Discrete-time case

Given the polynomial D.´/ D an´
n C an�1´

n�1 C � � � C a1´C a0, the associated Jury table is

0 j0;1 D an j0;2 D an�1 � � � j0;n D a1 j0;nC1 D a0

j0;nC1 D a0 j0;n D a1 � � � j0;2 D an�1 j0;1 D an

1 j1;1 j1;2 � � � j1;n

j1;n j1;n�1 � � � j1;1

:::
:::

:::

n � 1 jn�1;1 jn�1;2

jn�1;2 jn�1;1

n jn;1

where for each i 2 Z1::n�
ji;1 � � � ji;nC1�i

�
D
�
ji�1;1 � � � ji�1;nC1�i

�
�
ji�1;nC2�i

ji�1;1

�
ji�1;nC2�i � � � ji�1;2

�
(the i th row has nC 1 � i elements). The Jury table is said to be regular if all ji;1 ¤ 0. Otherwise, it is
singular.

Theorem 5 (necessary and sufficient condition). Consider a polynomial in ´ with an > 0.

D.´/ D an´
n
C an�1´

n�1
C � � � C a1´C a0

� D.´/ is Schur iff the associated Jury table is regular and all the elements of the first column are
positive.

� If the Jury table is regular, then D.´/ has no roots on the unit circle f´ 2 C j j´j D 1g and the
number of poles outside of the unit circle f´ 2 C j j´j > 1g equals the number of negative elements
in the first column of the table.



4

� If the Jury table is singular, then D.´/ is not Schur. Is this case, we cannot say anything about the
location of the poles, except that there is at least one pole in f´ 2 C j j´j � 1g.3

2.4 Matlab commands

Matlab commands to analyze the stability of a system:

� isstable(G) returns a logical value of 1 (true) if the dynamic system model G (e.g. obtained via
the tf command) is stable and a logical value of 0 (false) otherwise.

� isproper(G) returns a logical value of 1 (true) if the transfer function of a dynamic system model
G is proper and a logical value of 0 (false) otherwise.

3 Problems

Question 1. Consider the continuous-time LTI system with transfer function G.s/.

G.s/ D
s2 C 1

3s C 2

Is this system I/O stable?

Question 2. Consider the continuous-time LTI system with transfer function G.s/.

G.s/ D
1

s3 C 7s2 � 4s C 2

Is this system I/O stable?

Question 3. Consider the continuous-time LTI system with transfer function G.s/.

G.s/ D
1

s5 C 4s4 C 2s3 C 2s2 C s C 10

Is this system I/O stable? If not, then where are the poles placed?

Question 4. Consider the continuous-time LTI system with transfer function G.s/.

G.s/ D
�10

s2 C 5s C 2

Is this system I/O stable?

Question 5. Consider the system shown in fig. 1.

Fig. 1: Inverted pendulum with torsion spring.
3There are tricks to deal with singularities, but these are not part of the course material.
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The transfer function of the linearized system is given by

G.s/ D
L

mL2s2 C cs C .k �mgL/
:

For those interested, a derivation is given in appendix A. When is this system I/O stable?

Question 6. Consider the continuous-time LTI system with transfer function G.s/.

G.s/ D
6

s3 C 2s2 C ks C 4
; k 2 R

For which k is this system I/O stable? Describe the placement of the poles for different k.

Question 7. Consider the discrete-time LTI system with transfer function G.´/.

G.s/ D
1

´3 C 4´2 C 8´C 3

Is this system I/O stable? If not, then where are the poles placed?
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4 Homework problems

Question 8. Consider the continuous-time LTI system with transfer function G.s/.

G.s/ D
1

s4 C 2s3 C ks2 C 4s C k
; k 2 R

For which k is this system I/O stable? Describe the placement of the poles for different k.

Question 9. Consider the continuous-time LTI system with transfer function G.s/.

G.s/ D
1

s4 C 2s3 C 3s2 C 6s C 5

Is this system I/O stable? If not, then where are the poles placed?

Question 10. Consider the continuous-time LTI system with transfer function G.s/.

G.s/ D
1

s4 C 2s3 C 8s2 C 4s C 6

Is this system I/O stable? If not, then where are the poles placed?

Question 11. Consider the discrete-time LTI system with transfer function G.´/.

G.´/ D
1

´2 C k´C 4
; k 2 R

For which k is this system I/O stable? Describe the placement of the poles for different k.
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Fig. 2: Inverted pendulum with torsion spring.

A Inverted pendulum with a torsion spring [not part of the course mate-
rial]

An inverted pendulum with length L is held in place by a torsion spring with constant k, as can be seen in
fig. 2. A mass m is placed at the end of the rod. In addition, a torsion damper is set in place with constant
c. Finally, an external force is acting on the mass perpendicularly to the rod.

We will use Lagrangian mechanics to derive the transfer function (which you probably have not seen
yet). The position and velocity of the mass are given by

Er D

�
L sin �
L cos �

�
; Ev D

"
L cos � P�
�L sin � P�

#
:

For the potential energy, we have

V D
1

2
k�2
Cmg.L cos �/:

For the kinetic energy, we have

K D
1

2
m.L P�/2:

Thus, the Lagrangian is

L D K � V D 1

2
m.L P�/2 �

1

2
k�2
�mg.L cos �/:

The force Ef acts perpendicularly to the rod.

Ef D f

�
cos �
� sin �

�
The dampening applies a torque � D �c P� . As it doesn’t depend on � , we can conclude that the force
applied to the mass is perpendicular to the rod as well.

Efc D
�c P�

L

�
cos �
� sin �

�
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We can now combine these two non conservative forces into a generalized force.

Q D . Ef C Efc/ �
@Er

@�
D .f �

c P�

L
/

�
cos �
� sin �

�
�

�
L cos �
�L sin �

�
D fL � c P�

Now, we can write

d
dt

�
@L

@ P�

�
�
@L

@�
D Q H) mL2 R� C k� �mgL sin � D fL � c P�:

Upon linearization (sin � � �), we get

mL2 R� C c P� C .k �mgL/� D fL :

In the Laplace domain, the transfer function of the linearized system G.s/ D �.s/=F.s/ is

G.s/ D
L

mL2s2 C cs C .k �mgL/
:


