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TECHNION — Israel Institute of Technology, Faculty of Mechanical Engineering

Linear Systems (034032)
tutorial 7

1 Topics

Transfer functions, zeros and poles, 1st order and 2nd order systems, step response.

2 Background

2.1 Rational transfer functions

An LTI system G W u 7! y can be represented by its transfer function G.s/. In some important cases (viz.
systems described by ODEs) transfer functions are of the form of a quotient of two polynomials, like

G.s/ D
Y.s/

U.s/
D
bms

m C bm�1s
m�1 C � � � C b1s C b0

sn C an�1sn�1 C � � � C a1s C a0

for some n;m 2 ZC and real coefficients ai and bi . Such transfer functions are said to be rational. Their
poles are the roots of the denominator polynomial (assuming that the numerator and denominator polyno-
mials are coprime, i.e. have no common roots). The roots of the numerator are called zeros of G.s/. The
system is said to be proper if n � m, strictly proper is n > m, bi-proper if n D m, non-proper if n < m.

2.2 First order system

Canonical form of first order system

The transfer function of a general first-order system takes the form

G.s/ D
kst

�s C 1
(1)

where kst is the static gain and � is the time constant. The single pole of the system is p D �1=� 2 R�.

Step response of first order system

The step response of a first order system is

ystep.t/ D kst.1 � e�t=� /1.t/ (2)

The static gain kst scales the response amplitude. When t D � and t D 3�

ystep.�/ D kst.1 � e�1/ � 0:63kst and ystep.3�/ D kst.1 � e�3/ � 0:95kst;

respectively. The time constant � dictates the responsiveness of the system. For the effect of changing kst
and � see Fig. 1.
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Fig. 1: First order system

2.3 Second order system

Canonical form of second order system

The transfer function of a general second-order system takes the form

G.s/ D
kst!

2
n

s2 C 2�!ns C !2n
(3)

where kst is the static gain, � is the damping ratio, and !n is the natural frequency. The poles of the system
are

s1;2 D !n.�� ˙
p
�2 � 1/

and three cases shall be distinguished:

1. � > 1: the system is called overdamped, the poles s1;2 2 R and such that s1 ¤ s2

2. � D 1: the system is called critically damped and the poles s1;2 2 R, with s1 D s2

3. 0 � � < 1: the system is called underdamped and the poles s1;2 2 C and s1 D s2

Step response of an overdamped second order system

The step response in this case is

y.t/ D kst.1 � ˇes1t C .ˇ � 1/es2t /1.t/; where ˇ D
1

2

�
�p
�2 � 1

C 1

�
> 1 (4)

Increasing !n will cause a faster response. Increasing � will cause a slower response, see Fig. 2.

Step response of a critically damped second order system

In this case the poles s1;2 D �!n and the step response is

y.t/ D kst
�
1 � .1C !nt /e�!nt

�
1.t/ (5)

Increasing !n will cause a faster response (as in overdamped system).
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Fig. 2: Overdamped second order system

Step response of an underdamped second order system

In this case the poles s1; s2 2 C

s1;2 D ��!n ˙ j!n
p
1 � �2 D ��!n ˙ j!d;

where !d ´ !n
p
1 � �2 is the damped natural frequency. The step response in this case is

y.t/ D kst

�
1 �

1p
1 � �2

e��!nt sin .!dt C arccos �/
�

1.t/ (6)

We can notice that the response is composed of an exponential decay with ��!n and an oscillation with
the frequency !d (and thus the period 2�=!d).

Step response properties

1. Static gain: G.0/ is called the static gain of G. The static gain of the first and second order system
is kst.

2. Overshoot:
OS D

yos

yss
D
ymax � yss

yss
D e

�
��p
1��2

Sometimes it is useful to obtain the damping ratio from OS via the relation

� D
jln OSjp
�2 C ln2 OS

(7)
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Fig. 3: Upper plots: Underdamped second order system � D 0:3. Lower plots: Underdamped (� D 0:3),
critically-damped (� D 1), and overdamped (� D 2:6) systems, where !n D 4

3. Initial slope: We may use the initial value theorem to check the initial slope of first and second order
systems

lim
t!0
Py.t/ D lim

s!1
s2Y.s/ D lim

s!1
s2G.s/

1

s
D

(
kst=� 1st order
0 2nd order

4. Rise time: The time it takes the response to reach from 10% to 90% of its steady-state value. For an
underdamped system an approximated formula is given by

tr �
1:6�3 � 0:17�2 C 0:92� C 1:02

!n
(8)

5. Peak time: The time it takes the response to reach the first peak, which is tp D �=!d.

6. Settling time: The time it takes the response to converge into an error sleeve around the steady state
value. An upper bound on ts, which is based on the exponential envelope

jy.t/ � yssj �
kstp
1 � �2

e��!nt ;



5

is

ts � �
ln ı C ln

p
1 � �2

�!n
(9)

where ı is the desired error bound (relatively to yss).

2.4 Matlab commands

Some Matlab commands to create transfer functions and their step response:

� G = tf(vN,vD); generates a continuous-time real-rational transfer functionG.s/ from two vectors,
vN D

�
bm � � � b1 b0

�
and vD D

�
1 an�1 � � � a1 a0

�
.

For example, G = tf([-2 1],[1 2 3 1]); generates G.s/ D
�2s C 1

s3 C 2s2 C 3s C 1
.

� G = tf(vN,vD,h); generates a discrete-time real-rational transfer functionG.´/ from two vectors,
vN D

�
bm � � � b1 b0

�
and vD D

�
1 an�1 � � � a1 a0

�
and the sampling period h.

For example, G = tf([1 -1],[1 -2 1],0.1); generates G.´/ D
´ � 1

´2 � 2´C 1
, where the dis-

crete time instance i corresponds to 0:1i in the continuous time.

� pzmap(G) draws the complex plane with poles (denoted as “x”) and zeros (denoted as “o”) of G.s/
or G.´/ on it.

� step(G) draws the step response of a system with the transfer function G.s/ (or G.´/). The right-
click on the plot offers several options, including showing various transients characteristics on it,
like tp, OS, tr, ts, as well as yss.

� step(G,t) draws the step response of a system with the transfer function G.s/ (or G.´/) at time
instances defined by the vector t.

� [y,t] = step(G); returns a vector y containing the step response of a system with the transfer
function G.s/ (or G.´/) and the vector t of time instances for which y was generated.

� y = step(G,t); returns a vector y containing the step response of a system with the transfer func-
tion G.s/ (or G.´/) at time instances defined by the vector t.

� dcgain(G) returns the static gain ofG (i.e.G.0/ in the continuous time orG.1/ in the discrete time).

� impulse(G) draws the impulse response of a system with the transfer function G.s/ (or G.´/).
Variants similar to those of the step command are available here as well.

� t = linspace(t1,t2,N); returns a row vector with N evenly spaced points in the interval Œt1; t2�.

For example, t = linspace(1,3,5); returns the row vector [1 1.5 2 2.5 3].



6

3 Problems

Question 1. Consider the systemGRLC W vin 7! iR shown in Fig. 4. In other words, the input is the applied

Fig. 4: RLC circuit

voltage vin and the output is the resistor’s current iR. Here R D 1, L D 1, and C D 1=8 are constants,
referred to as the resistance, inductance, and capacitance, respectively.

1. Write the transfer function GRLC .s/ of the system.

2. Determine if the system is proper / strictly proper / bi-proper / non-proper.

3. Find the zeros and poles of GRLC .s/ and associate them with parts of the complex plane C.

4. What is the system’s steady-state value for step input vin D 5 � 1.t/

5. Calculate the step response vin D 1

Solution.

1. By Kirchhoff’s voltage law,

vin.t/ D vR.t/C vL.t/ D vR.t/C vC .t/

where vR, vL, and vC are the voltage drops at the resistor, inductor, and capacitor, respectively. It is
known that

vR.t/ D RiR.t/; vL.t/ D L
diL.t/

dt
; and vC .t/ D

1

C

Z t

�1

iC .s/ds:

Hence,
vin.t/ D RiR.t/C L

diL.t/
dt

and
vin.t/ D RiR.t/C

1

C

Z t

�1

iC .s/ds H) Pvin.t/ D R
diR.t/

dt
C
1

C
iC .t/

In the Laplace domain, by the linearity and differentiation rules, we have that

Vin.s/ D RIR.s/C sLIL.s/ H) IL.s/ D
Vin.s/ �RIR.s/

Ls

sVin.s/ D RsIR.s/C
1

C
IC .s/ H) IC .s/ D Cs.Vin.s/ �RIR.s//

By Kirchhoff’s current law,

IR.s/ D IL.s/C IC .s/ D
Vin.s/ �RIR.s/

Ls
C Cs.Vin.s/ �RIR.s//;
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from which
RLCs2IR.s/C LsIR.s/CRIR.s/ D LCs

2V.s/C V.s/:

Hence, the transfer function is

GRLC .s/ D
IR.s/

V .s/
D

LCs2 C 1

RLCs2 C Ls CR

Substituting R D 1, L D 1, and C D 1=8 we end up with

GRLC .s/ D
.1=8/s2 C 1

.1=8/s2 C s C 1
D

s2 C 8

s2 C 8s C 8
:

2. Because n D m D 2, the transfer function GRLC .s/ is proper, not strictly proper, bi-proper.

3. The zeros, which are the roots of the numerator, are ´1;2 D ˙2j
p
2 2 jR (the imaginary axis). The

poles, which are the roots of the denominator, are p1;2 D �4˙ 2
p
2 2 R (the real axis).

Fig. 5: Pole-zero map for Question 1

4. By the final value theorem,

yss D lim
t!1

y.t/ D lim
s!0

sY.s/ D lim
s!0

sG.s/U.s/ D lim
s!0

sG.s/
5

s
D 5G.0/ D 5

5. There are two alternatives to this item.

(a) The step response is

Istep.s/ D GRLC .s/
1

s
D

s2 C 8

s.s2 C 8s C 8/
D

Res.Istep; 0/

s
C

Res.Istep; p1/

s � p1
C

Res.Istep; p2/

s � p2

D
1

s
�

p
2

s � .�4C 2
p
2/
C

p
2

s � .�4 � 2
p
2/

where p1 D �4C 2
p
2 and p2 D �4 � 2

p
2.

istep.t/ D 1.t/ �
p
2e�.4�2

p
2/t1.t/C

p
2e�.4C2

p
2/t1.t/:
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(b) Note that GRLC .s/ D G0.s/C .1=8/s2G0.s/, where

G0.s/ D
8

s2 C 8s C 8
:

Hence, the step response istep of GRLC can be obtained as a superposition of the step response
y0 of G0 and its second derivative (this is the time-domain counterpart of multiplying by s2
in the Laplace domain). G0.s/ is the canonical second-order transfer function with kst D 1,
!n D

p
8, and � D

p
2 (for 2 �

p
2 �
p
8 D 8). This is an overdamped system, whose step

response is as in (4). Hence,

istep.t/ D y0.t/C
1

8
Ry0.t/ D kst

�
1 �

�
1C

s21
8

�
ˇes1t C

�
1C

s22
8

�
.ˇ � 1/es2t

�
1.t/

D 1.t/ �

�
1C

.�4C 2
p
2/2

8

�
1C
p
2

2
e�.4�2

p
2/t1.t/

C

�
1C

.�4 � 2
p
2/2

8

��
1C
p
2

2
� 1

�
e�.4C2

p
2/t1.t/

D 1.t/ �
p
2e�.4�2

p
2/t1.t/C

p
2e�.4C2

p
2/t1.t/;

which coincides with what we had with the first approach.

That’s all . . . O

Question 2. Consider the system GT W qin 7! h shown in Fig. 6. Its input is the volumetric flow qin to a

Fig. 6: Tank system

tank with cross-section A and the output h.t/ is the liquid level in the tank. Assume that qout.t/ D h.t/=R,
where qout is the outlet volumetric flow and R is the flow resistance.

1. Derive the transfer function GT .s/ of the system and determine if it is proper / strictly proper/ bi-
proper / non-proper.

2. Find the zeros and poles of GT .s/ and associate them with specific parts of the complex plane C.

3. Calculate and plot the response for step input qin D 1.t/. Find the steady-state value, initial slope,
time it takes to reach� 63% and� 99% from its steady state value. Assume that R D 2 and A D 3.

Solution.

1. The tank volume is v.t/ D Ah.t/, so the rate of its change

Pv.t/ D A Ph.t/ D qin.t/ � qout.t/ D qin.t/ �
1

R
h.t/:
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In the Laplace domain,
sAH.s/ D Qin.s/ �H.s/=R

from which
GT .s/ D

H.s/

Qin.s/
D

R

RAs C 1
D

kst

�s C 1

for kst D R and � D RA. This transfer function is strictly proper (1 D n > m D 0).

2. The single pole is p D �1=� 2 R (the real axis), see Fig. 7(a).

(a) Pole-zero map of the tank system

X 6.07882

Y 1.27384

(b) Step response of the tank system

Fig. 7: Plots for Question 2

3. By (2), the solution is

hstep.t/ D kst

�
1 � e�t=�

�
D R

�
1 � e�t=.RA/

�
1.t/

shown in Fig. 7(b). We know that the steady-state value is G.0/ D R D 2 (can also be derived by
the final value theorem). The system reaches� 63% its steady state value in � seconds, and reaches
� 99% its steady state value in 5� seconds. Also, we notice that the initial slope is not zero, as
expected in first order system.

That’s all . . . O

Question 3. Consider the system GR W � 7! � shown in Fig. 8. The mass, whose moment of inertia, J ,

Fig. 8: Rotational mass-spring-damper system
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is attached to a torsion spring, whose torsion coefficient is kT . An external torque � acts on the mass and
friction between the mass and the cylinder is assumed to generate a viscous friction torque �c D �cT P� .

1. Derive the transfer function GR.s/ of the system.

2. Determine if the system is strictly proper / bi-proper/ non-proper

3. Find the zeros and poles of GR.s/ and place them in the C plane.

4. Find kst, !n, �, !d, tr, tp, OS, and ts for ı D 0:05 assuming that J D 2, cT D 3, and kT D 10.

Solution. The Newtonian equation of motion of the mass is J R� D �net, where �net is the net torque applied
to it. In our case,

�net D � � kT � � cT P�:

Hence, we the relation describing the system � 7! � .

J R�.t/C cT P�.t/C kT �.t/ D �.t/ H) .Js2 C cT s C kT /�.s/ D T .s/

Thus, the transfer function

GR.s/ D
�.s/

T .s/
D

1

Js2 C cT s C kT
D

1=J

s2 C .cT =J /s C kT =J
D

kst!
2
n

s2 C 2�!ns C !2n

(it is obviously a strictly proper second-order system). Assuming that J D 2, cT D 3, and kT D 10, the
static gain

kst D GR.0/ D
1

kT
D 0:1;

the natural frequency

!2n D
kT

J
H) !n D

r
kT

J
D
p
5 D 2:23;

and the damping ratio satisfies

2�!n D
cT

J
H) � D

cT

2!nJ
� 0:33 < 1:

Hence the system is underdamped and the damped natural frequency

!d D !n
p
1 � �2 D 2:1

The map of poles and zeros and the step response, calculated by (6), are shown in Fig. 9.
From the plot in Fig. 9(b) we can calculate characteristics of the transient response,

tr D 0:825 � 0:213 D 0:612; tp D 1:491; OS D
0:133 � 0:1

0:1
� 100% D 33%; and ts D 3:542:

Note that the approximate rise time in (8) is tr � 0:612, which is quite accurate, within a per mille. The
bound in (9) yields ts � 4:074, which is about 15% larger. O
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(a) Pole-zero map of the rotational system

�.t/

t

0:01

0:09

0:1

0:133

0 0:213 0:825 1:491 3:542 4:074

(b) Step response of the rotational system

Fig. 9: Plots for Question 3

Fig. 10: Swing system

4 Homework problems

Question 4. Consider the system Gsw W F 7! � shown in Fig. 10. A force f is applied on a massless rod,
and mass m is attached at the tip. The rod is attached to the ground via a spring with the stiffness k and a
viscous damper with the coefficient c. Assume throughout that m D 1, a D 1, and b D 1=3.

1. Derive the transfer function Gsw.s/ of the following system and determine if the system is proper /
strictly proper / bi-proper / non-proper. Assume that deviations of the swing rotates from � D 0 are
small.

2. Find the static gain kst, the natural frequency !n, the steady state yss, and expression to damping
ratio � under the spring stiffness k D 9.

3. Given c D 3, determine whether the system is overdamped, underdamped, or critically damped.

4. Given that c D 2:25 find the damped frequency !d and peak time tp.

5. Find the range of c where overshoot OS � 20%

6. Find the range of c in which the response has no overshoot.

Solution.

1. The equation of motion is
J R�.t/ D

X
M.t/:
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The moment of inertial of this system J D ma2 and the net torqueX
M.t/ D �

2

3
a �
2

3
ac P�.t/ �

1

3
a �
1

3
ak�.t/C bf .t/:

Hence,
ma2 R�.t/ D �

2

3
a �
2

3
ac P�.t/ �

1

3
a �
1

3
ak�.t/C bf .t/

or, with the numerical values of m, a, and b,

R�.t/C
4

9
c P�.t/C

1

9
k�.t/ D

1

3
f .t/

In the Laplace domain this equation reads

�.s/ D
1=3

s2 C .4=9/cs C .1=9/k
F.s/ H) Gsw.s/ D

�.s/

F.s/
D

1=3

s2 C .4=9/cs C .1=9/k

It is strictly proper.

2. If k D 9, then
Gsw.s/ D

1=3

s2 C .4=9/cs C 1

Comparing this Gsw.s/ with the canonical form (3), the following relations can be established:

kst D Gsw.0/ D
1=3

1
D
1

3
; !n D 1; and 2�!n D

4

9
c H) � D

2c

9

3. If c D 3, then
� D

2c

9
D
2

3
< 1

so the system is underdamped.

4. If c D 2:25, then � D 0:5, so that

!d D !n
p
1 � �2 D

p
3

2
and tp D �=!d:

5. We know that the overshoot grows if the damping ratio reduces. Hence, (7) yields that to have
OS � 0:2 we need

� �
jln 0:2jp
�2 C ln2 0:2

D �min D 0:456

Because � D 2c=9, the damping coefficient should satisfy

c �
9

2
�min D 2:052

6. Underdamped second-order systems always have a nonzero overshoot, whereas under- and critically
damped systems have zero overshoot. This, all we need is to have � � 1, which is equivalent to the
condition c � 4:5.

That’s all . . . O
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Question 5. Consider the following discrete-time model of a system G W u 7! y.

yŒk C 2� D 1:2yŒk C 1� � 0:2yŒk�C 0:8uŒk�:

1. Write the transfer function G.´/ of the following system.

2. Determine if the system is strictly proper/ bi-proper/ non-proper

3. Find the zeros and poles of G.´/ and place them in the C plane.

4. Find its step response using ´-transform

Solution. Using ´-transform and its shift property (i.e. .ZfS�xg/.´/ D ´�X.´/), we have that

.´2 � 1:2´C 0:2/Y.´/ D 0:8U.´/ H) G.´/ D
0:8

´2 � 1:2´C 0:2
D

0:8

.´ � 0:2/.´ � 1/
:

It is strictly proper, it has no zeros and two poles, at ´ D 0:2 and ´ D 1 (both are real).
The time-domain u D 1 corresponds to U.´/ D ´=.´ � 1/. Hence, the step response in the ´ domain

Y.´/ D
0:8

´2 � 1:2´C 0:2

´

´ � 1
D

0:8

.´ � 1/2.´ � 0:2/
D

0:25

´ � 0:2
�
0:25

´ � 1
C

1

.´ � 1/2

We know the inverse ´-transforms of functions ´=.´ � �/. Hence, introduce

Y1.´/ D ´Y.´/ D �
0:25´

´ � 1
C

0:25´

´ � 0:2
C

´

.´ � 1/2

Using inverse ´-transform
y1Œt � D �0:251Œt �C 0:25 � 0:2

t1Œt �C t1Œt �;

so that
yŒt � D y1Œt � 1� D �0:251Œt � 1�C 0:25 � 0:2

t�11Œt � 1�C .t � 1/1Œt � 1�;

see the blue plot in Fig. 11. The same result (the red plot in Fig. 11) is obtained with the direct use of

Fig. 11: Discrete system

Matlab’s commands G = tf([0.8],[1,-1.2,0.2],1); and step(G). O


