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1 Topics

Transfer functions, zeros and poles, 1st order and 2nd order systems, step response.

2 Background

2.1 Rational transfer functions

An LTI system G : u — y can be represented by its transfer function G(s). In some important cases (viz.
systems described by ODEs) transfer functions are of the form of a quotient of two polynomials, like
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for some n,m € Z and real coefficients a; and b;. Such transfer functions are said to be rational. Their
poles are the roots of the denominator polynomial (assuming that the numerator and denominator polyno-
mials are coprime, i.e. have no common roots). The roots of the numerator are called zeros of G(s). The
system is said to be proper if n > m, strictly proper is n > m, bi-proper if n = m, non-proper if n < m.
2.2 First order system

Canonical form of first order system

The transfer function of a general first-order system takes the form

k
G(s) = ——— (1)
where kg is the static gain and t is the time constant. The single pole of the system is p = —1/7 € R_.
Step response of first order system
The step response of a first order system is
Ysiep(t) = k(1 =7/ 1(0) @)

The static gain kg scales the response amplitude. When ¢t = 7 and ¢ = 37
Vstep(7) = k(1 —€™") 2 0.63ky  and  yyep(37) = ky(1 —€e7°) ~ 0.95ky,

respectively. The time constant t dictates the responsiveness of the system. For the effect of changing k
and t see Fig. 1.
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Fig. 1: First order system

2.3 Second order system
Canonical form of second order system

The transfer function of a general second-order system takes the form

2
ksta)n

G(s) =
) §2 + 2Cwns + w?
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where kg is the static gain, ¢ is the damping ratio, and w, is the natural frequency. The poles of the system
are
S12 = on(=¢ £ V2 —1)
and three cases shall be distinguished:
1. ¢ > 1: the system is called overdamped, the poles 51, € R and such that 51 # s
2. ¢ = 1: the system is called critically damped and the poles s » € R, with s; = s,

3. 0 < ¢ < 1: the system is called underdamped and the poles s; » € C and 51 = 52

Step response of an overdamped second order system

The step response in this case is

Y1) = ka(1 = e’ + (B — 1)e™)1(1),  where f = %(\/% + 1) > 1 4)

Increasing w, will cause a faster response. Increasing ¢ will cause a slower response, see Fig. 2.

Step response of a critically damped second order system

In this case the poles 51, = —wj, and the step response is
y () = ka(1 = (1 + wnt)e™®")1(1) 5)

Increasing w, will cause a faster response (as in overdamped system).
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Fig. 2: Overdamped second order system

Step response of an underdamped second order system

In this case the poles 51,5, € C

S1,2 = —Cawy * jony1— gz = —{wy + jod,

where wq := wn+/1 — ¢? is the damped natural frequency. The step response in this case is

y(t) = kst(l — e 5 sin (wat + arccos {)) 1(2) (6)

1
V1=
We can notice that the response is composed of an exponential decay with —(w, and an oscillation with
the frequency wq (and thus the period 27/ wq).

Step response properties

1. Static gain: G(0) is called the static gain of G. The static gain of the first and second order system
is kS[-

2. Overshoot:

OS:&z—ymax_yss = \/%

Vss Yss
Sometimes it is useful to obtain the damping ratio from OS via the relation
In OS

V72 +1n?0S
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Fig. 3: Upper plots: Underdamped second order system { = 0.3. Lower plots: Underdamped ({ = 0.3),
critically-damped ({ = 1), and overdamped ({ = 2.6) systems, where w, = 4

3. Initial slope: We may use the initial value theorem to check the initial slope of first and second order

systems
ksg/t st order

1
lim y() = lim s*Y(s) = lim s*G(s)- =
t—0 y( ) §—>00 s (S) §—>00 s (S) Ky 0 2nd order
. Rise time: The time it takes the response to reach from 10% to 90% of its steady-state value. For an
underdamped system an approximated formula is given by
1.60% — 0.17¢% 4 0.92¢ + 1.02
L~ ¢ g ¢ ®)

Wn

. Peak time: The time it takes the response to reach the first peak, which is 7, = 7 /wy.

. Settling time: The time it takes the response to converge into an error sleeve around the steady state
value. An upper bound on ¢, which is based on the exponential envelope

kst e—Cwnt

|J’(t)_YSs|§\/1—_—é_2 ,



is
- Iné +1n+/1—¢2

s =
o

where § is the desired error bound (relatively to yg).

9

2.4 Matlab commands

Some Matlab commands to create transfer functions and their step response:

e G = tf(vN,vD); generates a continuous-time real-rational transfer function G (s) from two vectors,
vN = [bm -« by by ] and vD = [ 1 ay_1 -+ ap ap ]

-2 1
For example, G = tf([-2 1],[1 2 3 1]); generates G(s) = St

s34+ 252435+ 1

e G = tf(vN,vD,h); generates a discrete-time real-rational transfer function G(z) from two vectors,
VN =[by -+ by by]andvD =1 ay—y --- ay ao | and the sampling period h.
z—1 .
For example, G = tf([1 -1],[1 -2 1],0.1); generates G(z) = PR YEET where the dis-
crete time instance i corresponds to 0.17 in the continuous time. S

e pzmap(G) draws the complex plane with poles (denoted as “x”’) and zeros (denoted as “0”’) of G(s)
or G(z) onit.

e step(G) draws the step response of a system with the transfer function G(s) (or G(z)). The right-
click on the plot offers several options, including showing various transients characteristics on it,
like 1, OS, ;, 15, as well as yg.

e step(G,t) draws the step response of a system with the transfer function G(s) (or G(z)) at time
instances defined by the vector t.

e [y,t] = step(G); returns a vector y containing the step response of a system with the transfer
function G(s) (or G(z)) and the vector t of time instances for which y was generated.

e y = step(G,t); returns a vector y containing the step response of a system with the transfer func-
tion G(s) (or G(z)) at time instances defined by the vector t.

e dcgain(G) returns the static gain of G (i.e. G(0) in the continuous time or G(1) in the discrete time).

e impulse(G) draws the impulse response of a system with the transfer function G(s) (or G(z)).
Variants similar to those of the step command are available here as well.

e t = linspace(tl,t2,N); returns arow vector with N evenly spaced points in the interval [t1, t2].

For example, t = linspace(1,3,5); returns the row vector [1 1.5 2 2.5 3].



3 Problems

Question 1. Consider the system Grr.c : vin — ig shown in Fig. 4. In other words, the input is the applied

Ix

Vin(6) (’:) E= éL

Fig. 4: RLC circuit

voltage vi, and the output is the resistor’s current ig. Here R = 1, L = 1, and C = 1/8 are constants,
referred to as the resistance, inductance, and capacitance, respectively.

1. Write the transfer function Ggy ¢ (s) of the system.

2. Determine if the system is proper / strictly proper / bi-proper / non-proper.

3. Find the zeros and poles of Ggrc(s) and associate them with parts of the complex plane C.
4. What is the system’s steady-state value for step input vi, = 5- 1(¢)

5. Calculate the step response vi, = 1

Question 2. Consider the system G : gin — & shown in Fig. 5. Its input is the volumetric flow gj, to a

1Qin (t)

h(t) Gout (1)

A R
Fig. 5: Tank system

tank with cross-section A and the output /() is the liquid level in the tank. Assume that gy () = h(¢)/R,
where goyt is the outlet volumetric flow and R is the flow resistance.

1. Derive the transfer function Gr(s) of the system and determine if it is proper / strictly proper/ bi-
proper / non-proper.

2. Find the zeros and poles of G (s) and associate them with specific parts of the complex plane C.

3. Calculate and plot the response for step input ¢i, = 1(¢). Find the steady-state value, initial slope,
time it takes to reach ~ 63% and &~ 99% from its steady state value. Assume that R =2 and A = 3.

Question 3. Consider the system Gg : 7 — 6 shown in Fig. 6. The mass, whose moment of inertia, J,
is attached to a torsion spring, whose torsion coefficient is k7. An external torque 7 acts on the mass and
friction between the mass and the cylinder is assumed to generate a viscous friction torque 7, = —cr0.

1. Derive the transfer function Gg(s) of the system.
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Fig. 6: Rotational mass-spring-damper system

2. Determine if the system is strictly proper / bi-proper/ non-proper
3. Find the zeros and poles of Gg(s) and place them in the C plane.

4. Find kg, wy, ¢, wq, &, tp, OS, and £; for 6 = 0.05 assuming that J = 2, cr = 3, and k7 = 10.

4 Homework problems

Question 4. Consider the system Gy : F + 6 shown in Fig. 7. A force f is applied on a massless rod,
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Fig. 7: Swing system

and mass m is attached at the tip. The rod is attached to the ground via a spring with the stiffness k and a
viscous damper with the coefficient c. Assume throughout thatm = 1,a = 1, and b = 1/3.

1. Derive the transfer function Gy (s) of the following system and determine if the system is proper /
strictly proper / bi-proper / non-proper. Assume that deviations of the swing rotates from 6 = 0 are
small.

2. Find the static gain kg, the natural frequency wy, the steady state yg, and expression to damping
ratio ¢ under the spring stiffness k = 9.

3. Given ¢ = 3, determine whether the system is overdamped, underdamped, or critically damped.
4. Given that ¢ = 2.25 find the damped frequency wq and peak time z,.

5. Find the range of ¢ where overshoot OS < 20%

6. Find the range of ¢ in which the response has no overshoot.

Question 5. Consider the following discrete-time model of a system G : u — y.

vk +2] = 1.2y[k + 1] — 0.2y[k] 4+ 0.8u[k].



1. Write the transfer function G(z) of the following system.
2. Determine if the system is strictly proper/ bi-proper/ non-proper
3. Find the zeros and poles of G(z) and place them in the C plane.

4. Find its step response using z-transform



