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TECHNION — Israel Institute of Technology, Faculty of Mechanical Engineering

Linear Systems (034032)
tutorial 7

1 Topics

Transfer functions, zeros and poles, 1st order and 2nd order systems, step response.

2 Background

2.1 Rational transfer functions

An LTI system G W u 7! y can be represented by its transfer function G.s/. In some important cases (viz.
systems described by ODEs) transfer functions are of the form of a quotient of two polynomials, like

G.s/ D
Y.s/

U.s/
D
bms

m C bm�1s
m�1 C � � � C b1s C b0

sn C an�1sn�1 C � � � C a1s C a0

for some n;m 2 ZC and real coefficients ai and bi . Such transfer functions are said to be rational. Their
poles are the roots of the denominator polynomial (assuming that the numerator and denominator polyno-
mials are coprime, i.e. have no common roots). The roots of the numerator are called zeros of G.s/. The
system is said to be proper if n � m, strictly proper is n > m, bi-proper if n D m, non-proper if n < m.

2.2 First order system

Canonical form of first order system

The transfer function of a general first-order system takes the form

G.s/ D
kst

�s C 1
(1)

where kst is the static gain and � is the time constant. The single pole of the system is p D �1=� 2 R�.

Step response of first order system

The step response of a first order system is

ystep.t/ D kst.1 � e�t=� /1.t/ (2)

The static gain kst scales the response amplitude. When t D � and t D 3�

ystep.�/ D kst.1 � e�1/ � 0:63kst and ystep.3�/ D kst.1 � e�3/ � 0:95kst;

respectively. The time constant � dictates the responsiveness of the system. For the effect of changing kst
and � see Fig. 1.
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Fig. 1: First order system

2.3 Second order system

Canonical form of second order system

The transfer function of a general second-order system takes the form

G.s/ D
kst!

2
n

s2 C 2�!ns C !2n
(3)

where kst is the static gain, � is the damping ratio, and !n is the natural frequency. The poles of the system
are

s1;2 D !n.�� ˙
p
�2 � 1/

and three cases shall be distinguished:

1. � > 1: the system is called overdamped, the poles s1;2 2 R and such that s1 ¤ s2

2. � D 1: the system is called critically damped and the poles s1;2 2 R, with s1 D s2

3. 0 � � < 1: the system is called underdamped and the poles s1;2 2 C and s1 D s2

Step response of an overdamped second order system

The step response in this case is

y.t/ D kst.1 � ˇes1t C .ˇ � 1/es2t /1.t/; where ˇ D
1

2

�
�p
�2 � 1

C 1

�
> 1 (4)

Increasing !n will cause a faster response. Increasing � will cause a slower response, see Fig. 2.

Step response of a critically damped second order system

In this case the poles s1;2 D �!n and the step response is

y.t/ D kst
�
1 � .1C !nt /e�!nt

�
1.t/ (5)

Increasing !n will cause a faster response (as in overdamped system).
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Fig. 2: Overdamped second order system

Step response of an underdamped second order system

In this case the poles s1; s2 2 C

s1;2 D ��!n ˙ j!n
p
1 � �2 D ��!n ˙ j!d;

where !d ´ !n
p
1 � �2 is the damped natural frequency. The step response in this case is

y.t/ D kst

�
1 �

1p
1 � �2

e��!nt sin .!dt C arccos �/
�

1.t/ (6)

We can notice that the response is composed of an exponential decay with ��!n and an oscillation with
the frequency !d (and thus the period 2�=!d).

Step response properties

1. Static gain: G.0/ is called the static gain of G. The static gain of the first and second order system
is kst.

2. Overshoot:
OS D

yos

yss
D
ymax � yss

yss
D e

�
��p
1��2

Sometimes it is useful to obtain the damping ratio from OS via the relation

� D
jln OSjp
�2 C ln2 OS

(7)
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Fig. 3: Upper plots: Underdamped second order system � D 0:3. Lower plots: Underdamped (� D 0:3),
critically-damped (� D 1), and overdamped (� D 2:6) systems, where !n D 4

3. Initial slope: We may use the initial value theorem to check the initial slope of first and second order
systems

lim
t!0
Py.t/ D lim

s!1
s2Y.s/ D lim

s!1
s2G.s/

1

s
D

(
kst=� 1st order
0 2nd order

4. Rise time: The time it takes the response to reach from 10% to 90% of its steady-state value. For an
underdamped system an approximated formula is given by

tr �
1:6�3 � 0:17�2 C 0:92� C 1:02

!n
(8)

5. Peak time: The time it takes the response to reach the first peak, which is tp D �=!d.

6. Settling time: The time it takes the response to converge into an error sleeve around the steady state
value. An upper bound on ts, which is based on the exponential envelope

jy.t/ � yssj �
kstp
1 � �2

e��!nt ;
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is

ts � �
ln ı C ln

p
1 � �2

�!n
(9)

where ı is the desired error bound (relatively to yss).

2.4 Matlab commands

Some Matlab commands to create transfer functions and their step response:

� G = tf(vN,vD); generates a continuous-time real-rational transfer functionG.s/ from two vectors,
vN D

�
bm � � � b1 b0

�
and vD D

�
1 an�1 � � � a1 a0

�
.

For example, G = tf([-2 1],[1 2 3 1]); generates G.s/ D
�2s C 1

s3 C 2s2 C 3s C 1
.

� G = tf(vN,vD,h); generates a discrete-time real-rational transfer functionG.´/ from two vectors,
vN D

�
bm � � � b1 b0

�
and vD D

�
1 an�1 � � � a1 a0

�
and the sampling period h.

For example, G = tf([1 -1],[1 -2 1],0.1); generates G.´/ D
´ � 1

´2 � 2´C 1
, where the dis-

crete time instance i corresponds to 0:1i in the continuous time.

� pzmap(G) draws the complex plane with poles (denoted as “x”) and zeros (denoted as “o”) of G.s/
or G.´/ on it.

� step(G) draws the step response of a system with the transfer function G.s/ (or G.´/). The right-
click on the plot offers several options, including showing various transients characteristics on it,
like tp, OS, tr, ts, as well as yss.

� step(G,t) draws the step response of a system with the transfer function G.s/ (or G.´/) at time
instances defined by the vector t.

� [y,t] = step(G); returns a vector y containing the step response of a system with the transfer
function G.s/ (or G.´/) and the vector t of time instances for which y was generated.

� y = step(G,t); returns a vector y containing the step response of a system with the transfer func-
tion G.s/ (or G.´/) at time instances defined by the vector t.

� dcgain(G) returns the static gain ofG (i.e.G.0/ in the continuous time orG.1/ in the discrete time).

� impulse(G) draws the impulse response of a system with the transfer function G.s/ (or G.´/).
Variants similar to those of the step command are available here as well.

� t = linspace(t1,t2,N); returns a row vector with N evenly spaced points in the interval Œt1; t2�.

For example, t = linspace(1,3,5); returns the row vector [1 1.5 2 2.5 3].
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3 Problems

Question 1. Consider the systemGRLC W vin 7! iR shown in Fig. 4. In other words, the input is the applied

Fig. 4: RLC circuit

voltage vin and the output is the resistor’s current iR. Here R D 1, L D 1, and C D 1=8 are constants,
referred to as the resistance, inductance, and capacitance, respectively.

1. Write the transfer function GRLC .s/ of the system.

2. Determine if the system is proper / strictly proper / bi-proper / non-proper.

3. Find the zeros and poles of GRLC .s/ and associate them with parts of the complex plane C.

4. What is the system’s steady-state value for step input vin D 5 � 1.t/

5. Calculate the step response vin D 1

Question 2. Consider the system GT W qin 7! h shown in Fig. 5. Its input is the volumetric flow qin to a

Fig. 5: Tank system

tank with cross-section A and the output h.t/ is the liquid level in the tank. Assume that qout.t/ D h.t/=R,
where qout is the outlet volumetric flow and R is the flow resistance.

1. Derive the transfer function GT .s/ of the system and determine if it is proper / strictly proper/ bi-
proper / non-proper.

2. Find the zeros and poles of GT .s/ and associate them with specific parts of the complex plane C.

3. Calculate and plot the response for step input qin D 1.t/. Find the steady-state value, initial slope,
time it takes to reach� 63% and� 99% from its steady state value. Assume that R D 2 and A D 3.

Question 3. Consider the system GR W � 7! � shown in Fig. 6. The mass, whose moment of inertia, J ,
is attached to a torsion spring, whose torsion coefficient is kT . An external torque � acts on the mass and
friction between the mass and the cylinder is assumed to generate a viscous friction torque �c D �cT P� .

1. Derive the transfer function GR.s/ of the system.
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Fig. 6: Rotational mass-spring-damper system

2. Determine if the system is strictly proper / bi-proper/ non-proper

3. Find the zeros and poles of GR.s/ and place them in the C plane.

4. Find kst, !n, �, !d, tr, tp, OS, and ts for ı D 0:05 assuming that J D 2, cT D 3, and kT D 10.

4 Homework problems

Question 4. Consider the system Gsw W F 7! � shown in Fig. 7. A force f is applied on a massless rod,

Fig. 7: Swing system

and mass m is attached at the tip. The rod is attached to the ground via a spring with the stiffness k and a
viscous damper with the coefficient c. Assume throughout that m D 1, a D 1, and b D 1=3.

1. Derive the transfer function Gsw.s/ of the following system and determine if the system is proper /
strictly proper / bi-proper / non-proper. Assume that deviations of the swing rotates from � D 0 are
small.

2. Find the static gain kst, the natural frequency !n, the steady state yss, and expression to damping
ratio � under the spring stiffness k D 9.

3. Given c D 3, determine whether the system is overdamped, underdamped, or critically damped.

4. Given that c D 2:25 find the damped frequency !d and peak time tp.

5. Find the range of c where overshoot OS � 20%

6. Find the range of c in which the response has no overshoot.

Question 5. Consider the following discrete-time model of a system G W u 7! y.

yŒk C 2� D 1:2yŒk C 1� � 0:2yŒk�C 0:8uŒk�:
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1. Write the transfer function G.´/ of the following system.

2. Determine if the system is strictly proper/ bi-proper/ non-proper

3. Find the zeros and poles of G.´/ and place them in the C plane.

4. Find its step response using ´-transform


