Linear Systems (034032)

TUTORIAL 5

1 Topics

Bilateral Laplace transform, bilateral z-transform, RoC, partial fraction expansion, solving differential equations, final and initial value theorems.

2 Definitions

2.1 Laplace Transform

The bilateral Laplace transform of a continuous time signal $x: \mathbb{R} \rightarrow \mathbb{F}$ is

$$
X(s)=(\mathfrak{L}\{x\})(s)=\int_{-\infty}^{+\infty} x(t) \mathrm{e}^{-s t} \mathrm{~d} t
$$

where the region of convergence (RoC) is all $s \in \mathbb{C}$ for which the integral converges. If $\operatorname{supp}(x)=\mathbb{R}_{+}$, then $\exists \alpha_{x} \in \mathbb{R} \cup\{ \pm \infty\}$ such that

$$
\operatorname{RoC}=\mathbb{C}_{\alpha_{x}}:=\left\{s \in \mathbb{C} \mid \operatorname{Re} s>\alpha_{x}\right\}
$$

Specifically, for $\alpha_{x} \in\{ \pm \infty\}$ we have that

$$
\begin{aligned}
\alpha_{x}=-\infty & \Longrightarrow \mathrm{RoC}=\mathbb{C} \\
\alpha_{x}=\infty & \Longrightarrow \mathrm{RoC}=\varnothing
\end{aligned}
$$

$2.2 \quad z$ Transform

The bilateral Z transform of a discrete time signal $x: \mathbb{Z} \rightarrow \mathbb{F}$ is

$$
X(z)=(\mathfrak{Z}\{x\})(z)=\sum_{t=-\infty}^{+\infty} x[t] z^{-t}
$$

where the region of convergence (RoC) is all $z \in \mathbb{C}$ for which the sum converges. If $\operatorname{supp}(x)=\mathbb{Z}_{+}$then $\exists \alpha_{x} \in \mathbb{R} \cup\{\infty\}$ such that

$$
\operatorname{RoC}=\left\{z \in \mathbb{C}| | z \mid>\alpha_{x}\right\}
$$

2.3 Partial Fraction Expansion

Given a rational proper $(n \geq m)$ function F,

$$
F(s)=\frac{b_{m} s^{m}+b_{m-1} s^{m-1}+\cdots+b_{1} s+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}}=: \frac{N(s)}{D(s)}
$$

we can rewrite the function as,

$$
F(s)=F(\infty)+\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} \frac{c_{i j}}{\left(s-p_{i}\right)^{j}}
$$

where p_{i} is the i th distinct pole of F (the i th root of $D(s)$) of order n_{i}. For a simple pole (a pole p_{i} with order $n_{i}=1$) we can calculate $c_{i 1}$ as

$$
c_{i 1}=\operatorname{Res}\left(F(s), p_{i}\right):=\lim _{s \rightarrow p_{i}}\left(s-p_{i}\right) F(s)
$$

For higher order poles we need to do a few tricks like using coefficient comparison.

2.4 Final and Initial Value Theorems

Given a continuous signal $x: \mathbb{R} \rightarrow \mathbb{F}$ with $\operatorname{supp}(x) \subset \mathbb{R}_{+}$, the initial and final value theorems are as follows.

1. Initial value theorem:

$$
\lim _{t \rightarrow 0} x(t)=\lim _{s \rightarrow \infty} s X(s)
$$

assuming $x\left(0^{+}\right)$exists.
2. Final value theorem:

$$
\lim _{t \rightarrow \infty} x(t)=\lim _{s \rightarrow 0} s X(s)=\operatorname{Res}(X, 0)
$$

assuming x is converging.
Similarly, for a discrete signal $x: \mathbb{Z} \rightarrow \mathbb{F}$ with $\operatorname{supp}(x) \subset \mathbb{Z}_{+}$,

1. Initial value theorem:

$$
x[0]=\lim _{z \in \mathbb{R}, z \rightarrow \infty} X(z),
$$

assuming $x[0]$ exists.
2. Final value theorem:

$$
\lim _{t \rightarrow \infty} x[t]=\lim _{z \rightarrow 1}(z-1) X(z)=\operatorname{Res}(X, 1),
$$

assuming x is converging.

3 Problems

Question 1. Consider the signal y shown in Fig. 1 defined as

$$
y=\mathbb{S}_{1 / 2} \text { rect }-\mathbb{S}_{-1 / 2} \text { rect } \quad \Longrightarrow \quad y(t)=\operatorname{rect}\left(t+\frac{1}{2}\right)-\operatorname{rect}\left(t-\frac{1}{2}\right)
$$

with

$$
\operatorname{rect}(t)=\left\{\begin{array}{ll}
1 & |t| \leq 1 / 2 \\
0 & \text { otherwise }
\end{array} .\right.
$$

Find the Laplace transform of y and its RoC in three different ways,

1. by calculating the Laplace transform directly,
2. by using the Laplace transform properties,
3. by using the Fourier transform,

Fig. 1: Signal Used in Question 1.

Fig. 2: The Mass-Spring-Damper System Used in Question 2.

Question 2. Consider the mass-spring-damper system in Fig. 2 with

$$
m=1, \quad k=6, \quad \text { and } \quad c=5
$$

We suppose zero spring force at $x=0$ and zero initial velocity and position. By Newton's second law

$$
m \ddot{x}(t)=F(t)-f_{\text {damper }}(t)-f_{\text {spring }}(t)=F(t)-c \dot{x}(t)-k x(t)
$$

which is equivalent to

$$
m \ddot{x}(t)+c \dot{x}(t)+k x(t)=F(t)
$$

1. Find the solution to the problem, i.e. the position of the mass in time, for the given input force $F=\mathbb{1}$.
2. The mass position is measured using a digital sensor with the sampling period h. Find the z transform of the sampled signal \bar{x}.
3. What is the position of the mass after infinite time (use the Final Value Theorem)? What will the sensor show?

Question 3. Consider the signal from Fig. 3, i.e.

$$
x(t)=\cos \left(\omega_{x} t\right) \mathbb{1}(t)
$$

1. Find the Laplace transform of x with its RoC.
2. What about $-\mathbb{P}_{-1} x$?

Fig. 3: Signal used in Question 3.

4 Homework problems

Fig. 4: The Thermometer system used in question 4.
Question 4. We are again given the system of the thermometer as in Lecture 5 (see Fig. 4). We assume the thermometer has some initial stable temperature θ_{0} (for example, due to it being placed in a different room for a long period of time). After which, it is transferred to a different environment.

The dynamic equation of the system is as follows:

$$
\tau \dot{\theta}(t)=\theta_{\mathrm{amb}}(t)-\theta(t)
$$

where $\theta_{\text {amb }}$ is the ambient temperature (which can change over time), and θ is the temperature of the thermometer.

1. Express the temperature shown by the thermometer as a function of time for the ambient temperature

$$
\theta_{\mathrm{amb}}(t)=\theta_{1} t \mathbb{\rrbracket}(t)+\theta_{0}
$$

2. Assuming $\tau>0$ find the stable temperature.

Question 5. Given bellow a system $u \mapsto y$, described by the difference equation

$$
y[k+2]-1.2 y[k+1]+0.2 y[k]=0.8 u[k]
$$

Assume that $u=1$. Find the discrete output y. Can you use the final value theorem to find the system output at $k \rightarrow \infty$? What about the initial value theorem for $k=0$?

