

TUTORIAL 4

1 Topics

Discrete-time Fourier transform (DTFT). Sampling in the frequency domain. Zero-order hold (ZOH).

2 Background results

The discrete-time Fourier transform (DTFT) is defined as

$$X(e^{j\theta}) = (\mathfrak{F}{x})(e^{j\theta}) = \sum_{t=-\infty}^{+\infty} x[t]e^{-j\theta t}.$$

Under some technical conditions (see slides), the inverse discrete-time Fourier transform results in

$$x[t] = (\mathfrak{F}^{-1}\{X\})[t] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) e^{j\theta t} d\theta.$$

The periodic summation of a signal x with period T is

$$x_T := \sum_{i=-\infty}^{\infty} \mathbb{S}_{iT} x \implies x_T(t) = \sum_{i=-\infty}^{\infty} x(t+iT).$$

The spectrum of the sampled version of x, i.e. the discrete signal \bar{x} such that $\bar{x}[i] = x(ih)$, is

$$\bar{X} = \frac{1}{h} \mathbb{P}_{1/h} X_{2\pi/h} \implies \bar{X}(e^{j\theta}) = \frac{1}{h} X_{2\pi/h}(j\theta/h)$$

Let \bar{x} be a discrete signal and x_{ZOH} be a continuous-signal obtained from \bar{x} via the zero-order hold, i.e.

$$x_{\text{ZOH}}(t) = \bar{x}[i], \quad \forall t \in (ih, (i+1)h)$$

for a given sampling period h > 0. The spectrum of x is then

$$X(j\omega) = h \operatorname{sinc}\left(\frac{\omega h}{2}\right) e^{-j\omega h/2} \bar{X}(e^{j\omega h}).$$

Theorem 1 (the Sampling Theorem). If $supp(X) \subset [-\omega_N, \omega_N]$, then x can be perfectly recovered from its sampled measurements as

$$x = \sum_{i=-\infty}^{\infty} x(ih) \mathbb{S}_{-ih} \mathbb{P}_{\omega_{N}} \operatorname{sinc} \implies x(t) = \sum_{i=-\infty}^{\infty} x(ih) \operatorname{sinc}((t-ih)\omega_{N})$$

known as the sinc-interpolator (sinc hold).

3 Problems

Question 1. Let $x = \operatorname{rect}_{2N}$, i.e.

$$x[t] = \begin{cases} 1 & \text{if } |t| \le N \\ 0 & \text{otherwise} \end{cases}$$

see Fig. 1. Find the DTFT of x.

Fig. 1: Discrete-time signal x[i]

Question 2. Let *y* be such that

$$y(t) = \frac{1}{2\pi} \operatorname{sinc}^2(t/2)$$

- 1. What is the minimal sampling frequency, ω_s , to fulfil the sampling theorem? What is the corresponding sampling period, *h*?
- 2. What is the DTFT of sampled signal \tilde{y} sampled at $\tilde{\omega}_s = 3/4\omega_s$ of the frequency in section 1?
- 3. What is the DTFT of sampled signal \bar{y} sampled at the frequency in section 1, ω_s ?
- 4. Let \hat{y} be the signal resulting from performing zero-order hold on \bar{y} . What is the Fourier transform of \hat{y} ?

Question 3. Let *y* be a signal with the Fourier transform

$$Y(i\omega) = e^{-\frac{1}{2}\omega^2}$$

Its spectrum is shown in Fig. 2. What is the minimal sampling frequency that fulfils the Sampling Theorem?

Fig. 2: Fourier transform, $Y(j\omega)$

Question 4. Let *x* be a signal with the Fourier transform in Fig. 3.

Fig. 3: Fourier transform, $X(j\omega)$

Draw the spectrum of the sampled signal, sampled with a sampling period of $h = \pi$

Fig. 5: Fourier transform $X(j\omega)$ and DTFT $\bar{X}(e^{j\theta})$

4 Homework problems

Question 5. Consider the continuous time signal x and its sampled signal \bar{x} . The Fourier transform $X(j\omega)$ and DTFT $\bar{X}(e^{j\theta})$ are shown in Fig. 4.

Fig. 4: Fourier transform $X(j\omega)$ and DTFT $\overline{X}(e^{j\theta})$

- 1. What is the minimal sampling frequency needed to have perfect reconstruction?
- 2. Has the signal been distorted in the frequency domain?
- 3. What is the sampling period *h*?
- 4. Calculate the sampling frequency ω_s . Does this conform with the sampling theorem?
- 5. What is the height of the triangle $\bar{X}(e^{j\theta})$?

Question 6. Consider a continuous time signal x and its sampled version \bar{x} . The Fourier transform $X(j\omega)$ and DTFT $\bar{X}(e^{j\theta})$ are shown in Fig. 5.

- 1. Has the signal been distorted in the frequency domain?
- 2. Calculate the sampling frequency ω_s and sampling period *h*.
- 3. What is the height of the triangle $\bar{X}(e^{j\theta})$?

Question 7. Consider a continuous time signal x and its sampled version \bar{x} . The Fourier transform $X(j\omega)$ and DTFT $\bar{X}(e^{j\theta})$ are shown in Fig. 6.

Fig. 6: Fourier transform $X(j\omega)$ and DTFT $\bar{X}(e^{j\theta})$

- 1. Has the signal been distorted in the frequency domain?
- 2. Calculate the sampling frequency ω_s and sampling period *h*.
- 3. Does this conform with the sampling theorem.

Fig. 7: Fourier transform, $X(j\omega)$

Draw the spectrum of the sampled signal, sampled with a sampling frequency of $\omega_{\rm N} = 1.5$