

LINEAR SYSTEMS (034032) TUTORIAL 2

1 Topics

Signal norms, sampling, reconstruction, standard signals, complex number review.

2 Problems

Fig. 1: Triangle signal

Question 1. Consider the continuous time signal

$$y(t) = \begin{cases} t & 0 \le t < 10\\ 60 - 5t & 10 \le t \le 12\\ 0 & \text{otherwise} \end{cases}$$

shown in Fig. 1. Construct y using the step function, 1, and the ramp signal, ramp.

Solution.

$$y = \text{ramp} - 6\$_{-10} \text{ ramp} + 5\$_{-12} \text{ ramp} \implies y(t) = t \mathbb{1}(t) - 6(t - 10) \mathbb{1}(t - 10) + 5(t - 12) \mathbb{1}(t - 12)$$
 which is what we need.

Question 2. Let y be the signal from Question 1. Let $f := f_1 + f_2 + f_3$, where $f_1 = \delta$, $f_2 = 3 \mathbb{S}_{-2} \delta$, and $f_3 = 0.5 \mathbb{S}_{-3} \delta$ i.e.

$$f(t) = \delta(t) + 3\delta(t - 2) + 0.5\delta(t - 3)$$

Find the convolution y * f.

 ∇

Solution. Remember the following definition / properties:

•
$$(y * f)(t) = \int_{-\infty}^{\infty} y(s) f(t - s) ds = \int_{-\infty}^{\infty} y(t - s) f(s) ds$$

•
$$y * (f_1 + f_2 + f_3) = y * f_1 + y * f_2 + y * f_3$$

•
$$\int_{-\infty}^{\infty} y(t)\delta(t-t_0)dt = y(t_0)$$
 (sifting property)

Hence,

$$(y * f_1)(t) = \int_{-\infty}^{\infty} y(t - s)\delta(s)ds = y(t)$$

$$(y * f_2)(t) = \int_{-\infty}^{\infty} y(t - s)3\delta(s - 2)ds = 3y(t - 2)$$

$$(y * f_3)(t) = \int_{-\infty}^{\infty} y(t - s)0.5\delta(s - 3)ds = 0.5y(t - 3)$$

and we end up with

$$y * f = y + 3S_{-2}y + 0.5S_{-3}y \implies (y * f)(t) = y(t) + 3y(t-2) + 0.5y(t-3),$$

see Fig. 2(a).

Fig. 2: Plots for question 2 solution.

Fig. 2(b) shows the plot of the resulting y * f.

Question 3. Let y be the signal from Question 1.

- 1. Compute the L_{∞} and L_2 norms of y.
- 2. Find the ideally sampled signal \bar{y} with the sampling period h = 2.
- 3. Compute the ℓ_{∞} and ℓ_2 norms of \bar{y} .

- 4. Convert the sampled signal \bar{y} back the the continuous time using the ZOH to produce an analog y_{ZOH} .
- 5. Compute the error, $e := y y_{\text{ZOH}}$, and its L_{∞} and L_2 norms.

Solution. Remember that the L_2 and L_∞ norms of continuous-time signals are defined as

$$||f||_2 := \left(\int_{-\infty}^{\infty} |f(t)|^2 dt\right)^{1/2}$$
 and $||f||_{\infty} := \sup_{t} |f(t)|$

and the ℓ_2 and ℓ_∞ norms of discrete-time signals are defined as

$$||f||_2 := \left(\sum_{t=-\infty}^{\infty} |f[t]|^2\right)^{1/2}$$
 and $||f||_{\infty} := \sup_{t} |f[t]|$

1. From definitions,

$$||y||_{\infty} = \sup_{t} |y(t)| = 10$$

and

$$||y||_{2}^{2} = \int_{-\infty}^{\infty} |y(t)|^{2} dt = \int_{0}^{10} t^{2} dt + \int_{10}^{12} (60 - 5t)^{2} dt$$
$$= \frac{t^{3}}{3} \Big|_{0}^{10} + \frac{(60 - 5t)^{3}}{-15} \Big|_{10}^{12} = \frac{10^{3} - 0}{3} + \frac{0 - 10^{3}}{-15} = 400,$$

so that

$$||y(t)||_2 = \sqrt{400} = 20.$$

2. The ideal sampler assigns $\bar{y}[i] = y(ih)$. Hence,

$$\bar{y}[i] = \begin{cases} ih & 0 \le i \le 5 \\ 0 & \text{otherwise} \end{cases} = \{\dots, 0, 2, 4, 6, 8, 10, 0, \dots\}$$

see Fig. 3(a).

3. From definitions,

$$\|\bar{y}\|_{\infty} = \sup_{i} |\bar{y}[i]| = \sup_{i} \{\dots, 0, 2, 4, 6, 8, 10, 0, \dots\} = 10$$

and

$$\|\bar{y}\|_{2}^{2} = \sum_{i=-\infty}^{\infty} |\bar{y}[i]|^{2} = \sum_{i=1}^{5} |\bar{y}[i]|^{2} = 4 + 16 + 36 + 64 + 100 = 220$$

so that

$$\|\bar{y}\|_2 = \sqrt{220} \approx 14.8324.$$

4. Fig. 3(b) presents the reconstructed y by the zero-order hold. This function can be written as:

$$y_{\text{ZOH}}(t) = \sum_{i=-\infty}^{\infty} (\bar{y}[i] - \bar{y}[i-1]) \cdot \mathbb{1}(t-ih) = \sum_{i=1}^{6} (\bar{y}[i] - \bar{y}[i-1]) \cdot \mathbb{1}(t-ih)$$

$$= 2\mathbb{1}(t-2) + 2\mathbb{1}(t-4) + 2\mathbb{1}(t-6) + 2\mathbb{1}(t-8) + 2\mathbb{1}(t-10) - 10\mathbb{1}(t-12)$$

$$= \begin{cases} 2\lfloor \frac{t}{2} \rfloor & 0 \le t \le 12\\ 0 & \text{otherwise} \end{cases}$$

The second equality removes the zero values of the sum. The last equality expresses it more concisely using the floor function, $\lfloor x \rfloor$, which is the greatest integer less than or equal to x.

Fig. 3: Plots for the solution of Question 3.

5. Substituting the expression for y_{ZOH} into the definition for the error, we have that

$$e(t) = y(t) - y_{\text{ZOH}}(t) = \begin{cases} t - 2\left\lfloor \frac{t}{2} \right\rfloor & 0 \le t < 10\\ 60 - 5t - 2\left\lfloor \frac{t}{2} \right\rfloor & 10 \le t \le 12\\ 0 & \text{otherwise} \end{cases}$$

This e is shown in Fig. 3(c). Its norms are

$$||e||_{\infty} = \sup_{t} |e(t)| = 10$$

and

$$||e||_{2}^{2} = \int_{-\infty}^{\infty} |e(t)|^{2} dt = \int_{0}^{12} |e(t)|^{2} dt = \int_{10}^{12} \left| 60 - 5t - 2 \left\lfloor \frac{t}{2} \right\rfloor \right|^{2} dt + \int_{0}^{10} \left| t - 2 \left\lfloor \frac{t}{2} \right\rfloor \right|^{2} dt$$
$$= \int_{10}^{12} |60 - 5t - 10|^{2} dt + 5 \int_{0}^{2} t^{2} dt = \frac{(50 - 5t)^{3}}{-15} \Big|_{10}^{12} + 5 \cdot \frac{1}{3} 2^{3} = \frac{200}{3} + \frac{40}{3} = 80$$

from which

$$||e||_2 = \sqrt{80} \approx 8.9443.$$

That's all . . .

∇

Fig. 4: Plots for the solution of Question 4.

Question 4. Reminder that the rectangular pulse signal is the following

$$rect(t) = \begin{cases} 1 & |t| \le 1/2 \\ 0 & \text{otherwise} \end{cases}$$

Consider the continuous time signal

$$y = \sum_{i=1}^{\infty} \mathbb{S}_{-i}(\mathbb{P}_{2^{i-1}} \operatorname{rect}) \quad \Longrightarrow \quad y(t) = \sum_{i=1}^{\infty} \operatorname{rect}(2^{i-1}(t-i))$$

Fig. 4 shows rect and y.

- 1. Compute the L_2 norms of y.
- 2. Find the ideally sampled signal \bar{y} with h = 1.
- 3. Compute the ℓ_2 norms of \bar{y} .

Solution.

1. Reminder: time shift, time scale

$$(\mathbb{S}_{\tau})(t) = x(t+\tau)$$
 and $(\mathbb{P}_{\alpha}x)(t) = x(\alpha t)$

Applying the time shift and scaling

$$x := \mathbb{P}_{2^{i-1}} \operatorname{rect} \implies x(t) = \operatorname{rect}(2^{i-1}t)$$

and

$$y = \mathbb{S}_{-i}(\mathbb{P}_{2^{i-1}} \operatorname{rect}) = \mathbb{S}_{-i} x \implies y(t) = x(t-i) = \operatorname{rect}(2^{i-1}(t-i))$$

By the definition of the L_2 norm,

$$||y||_{2}^{2} = \int_{-\infty}^{\infty} |y(t)|^{2} dt = \int_{0}^{\infty} \left| \sum_{i=1}^{\infty} \operatorname{rect}(2^{i-1}(t-i)) \right|^{2} dt$$

$$= \int_{0}^{\infty} \sum_{i=1}^{\infty} \operatorname{rect}(2^{i-1}(t-i)) dt = \int_{0.5}^{1.5} 1 dt + \int_{1.75}^{2.75} 1 dt + \dots + \int_{i-1/2^{i}}^{i+1/2^{i}} 1 dt + \dots$$

$$= \sum_{i=1}^{\infty} \int_{i-1/2^{i}}^{i+1/2^{i}} 1 dt = \sum_{i=1}^{\infty} \frac{1}{2^{i-1}} = \sum_{i=0}^{\infty} \frac{1}{2^{i}} = 2$$

The second line first equality is from the fact that each section of the sum is not overlapping, so the signal is 0 or 1. The second line second equality is the integrals divided into the nonzero sections. The last equality uses the solution to a geometric sum, $\sum_{k=0}^{\infty} r^k = 1/(1-r)$ whenever 0 < r < 1. Thus,

$$||y||_2 = \sqrt{2}.$$

- 2. The sampling is such that it lines up with the nonzero values of the signal. Hence, $\bar{y} = \mathbb{S}_{-1}\mathbb{1}$.
- 3. Calculating

$$\|\bar{y}\|_{2}^{2} = \sum_{i=-\infty}^{\infty} |\bar{y}[i]|^{2} = \sum_{i=1}^{\infty} 1 = \infty.$$

Therefore, the norm is infinite.

This is an example of a signal whose L_2 norm is finite, but the ℓ_2 norm is not.

That's all... ∇

3 Complex Numbers Review

3.1 Imaginary Unit

The imaginary unit is j

$$j := \sqrt{-1} \quad \Longrightarrow \quad j^2 = -1$$

3.2 Representations

Let z be a complex number. Two representations are

- canonical, (a,b): z = a + jb
- polar, (r, θ) : $z = r \cos \theta + jr \sin \theta$

Euler's formula is

$$e^{jx} = \cos x + i \sin x$$

The polar can also written using Euler formula

$$z = r\cos\theta + ir\sin\theta = re^{i\theta}$$

3.3 Complex plane

The x axis is the real axis, and the y axis is the imaginary axis. Plotting the point z = 2 + j.

Fig. 5: z = 2 + j on the complex plane

3.4 Basic functions

Conjugate

$$\bar{z} = a - ib = re^{-i\theta}$$

Real / imaginary parts

$$\operatorname{Re} z = a$$
 and $\operatorname{Im} z = b$.

Absolute value / modulus with canonical and polar representations

$$|z| = \sqrt{a^2 + b^2}$$

$$|z| = |re^{-j\theta}| = |r| \cdot |e^{-j\theta}| = |r| |\cos \theta + j \sin \theta| = |r| \sqrt{\cos^2 \theta + \sin^2 \theta} = |r| \sqrt{1} = |r|$$

The absolute value squared can also be expressed using the conjugate.

$$|z|^2 = z \cdot \bar{z}$$

Argument is the arctangent of the imaginary part divided by the real part. The codomain of arctan is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. The arg(z) functions, has shifting of the angle for the codomain to be $(-\pi, \pi]$. Here z = x + jy

$$\arg(x + jy) = \begin{cases} \arctan(\frac{y}{x}) & x > 0\\ \arctan(\frac{y}{x}) + \pi & x < 0, y \ge 0\\ \arctan(\frac{y}{x}) - \pi & x < 0, y < 0\\ +\frac{\pi}{2} & x = 0, y > 0\\ -\frac{\pi}{2} & x = 0, y < 0\\ \text{undefined} & x = 0, y = 0 \end{cases}$$

(a) complex plane for arg function

(b) complex plane for various characteristics of $z \in \mathbb{C}$

Fig. 6: Complex plane diagrams.

Various characteristics of a complex number can be shown on the complex plane, see Fig. 6(b).

3.5 Connecting Representations

Given a polar representation (r, θ) , its canonical representation (a, b) has

$$a = r \cos \theta$$
 and $b = r \sin \theta$

Given a canonical representation (a, b), its polar representation (r, θ) has

$$r = |a + \mathbf{j}b|$$
 and $\theta = \arg(a + \mathbf{j}b)$

3.6 Operations

Let z and w be two complex numbers with representations

$$z = a + jb = re^{jt}$$
 and $w = c + jd = \rho e^{j\theta}$

3.6.1 Canonical Form

Addition, it is element wise.

$$z + w = (a + jb) + (c + jd) = a + c + jb + jd = (a + c) + j(b + d)$$

Subtraction is done similarly.

Multiplication is done by multiplying each with the other. In canonical form

$$z \cdot w = (a + ib) \cdot (c + id) = ac + iad + ibc - bd = (ac - bd) + i(ad + bc)$$

Division requires multiplying by the conjugate of the denominator

$$\frac{z}{w} = \frac{z}{w} \cdot \frac{\bar{w}}{\bar{w}} = \frac{z \cdot \bar{w}}{|w|^2} = \frac{(ac + bd) + j(-ad + bc)}{c^2 + d^2}$$

3.6.2 Polar Form

Addition, also element wise.

$$z + w = (r\cos t + jr\sin t) + (\rho\cos\theta + j\rho\sin\theta)$$
$$= (r\cos t + \rho\cos\theta) + j(r\sin t + \rho\sin\theta) = ...$$
$$= |z + w|e^{j\arg z + w}$$

The result is less clear in the polar representation. Subtraction is done similarly. Multiplication, here it is cleaner

$$z \cdot w = r e^{jt} \cdot \rho e^{j\theta} = (r \cdot \rho) e^{jt} e^{j\theta} = (r\rho) e^{j(t+\theta)}$$

Division,

$$\frac{z}{w} = \frac{re^{jt}}{\rho e^{j\theta}} = \frac{r}{\rho} e^{jt} e^{-i\theta} = \frac{r}{\rho} e^{j(t-\theta)}$$

Question 5. Calculate the absolute value and argument of z.

$$z = \frac{2 - j2\sqrt{3}}{-5 - j5} \cdot \frac{-\sqrt{3} + j}{j} \cdot 2$$

x	$-\infty$	$-\sqrt{3}$	$-\frac{\sqrt{3}}{3}$	0	$-\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$+\infty$
arctan x [deg]	-90°	-60°	-30°	0°	30°	60°	90°
arctan x [rad]	$-\frac{1}{2}\pi$	$-\frac{1}{3}\pi$	$-\frac{1}{6}\pi$	0	$\frac{1}{6}\pi$	$\frac{1}{3}\pi$	$\frac{1}{2}\pi$

Fig. 7: Arctangent characteristic angles.

Solution. First, change each term to its polar representation,

$$2 - j2\sqrt{3} = 4e^{-j\frac{\pi}{3}}$$

$$-5 - j5 = 5\sqrt{2}e^{j(\frac{\pi}{4} - \pi)}$$

$$-\sqrt{3} + j1 = 2e^{j(-\frac{\pi}{6} + \pi)}$$

$$j = 1e^{j\frac{\pi}{2}}$$

$$2 = 2e^{j0}$$

Now, calculate the overall absolute value and argument based using multiplication and division of the polar representation

$$z = \frac{4e^{-j\frac{\pi}{3}}}{5\sqrt{2}e^{j(\frac{\pi}{4}-\pi)}} \frac{2e^{j(-\frac{\pi}{6}+\pi)}}{1e^{j\frac{\pi}{2}}} \cdot 2e^{j0},$$

from which

$$|z| = \frac{4 \cdot 2}{5\sqrt{2} \cdot 1} \cdot 2 = \frac{8\sqrt{2}}{5}$$
 and $\arg(z) = -\frac{\pi}{3} - \left(\frac{\pi}{4} - \pi\right) + \left(-\frac{\pi}{6} + \pi\right) - \frac{\pi}{2} + 0 = \frac{3}{4}\pi$.

That's all ...

∇