Linear Systems (034032)
TUTORIAL 1

Fig. 1: Signals for Question 1

Question 1. Describe properties (domains and codomains) of the signals in Fig. 1.

Solution.

1(a) $p: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, i.e. it assigns an element of \mathbb{R}_{+}(codomain, pressure) to every element of \mathbb{R}_{+}(domain, time).

1 (b) $u: \mathbb{R}_{+} \rightarrow\{-1,0,1\}$, i.e. it assigns an element in the 3-elements set $\{-1,0,1\}$ (codomain, switch values) to every element of \mathbb{R}_{+}(domain, time).

1 (c) $u: \mathbb{Z}_{1 . .10} \rightarrow \mathbb{Z}_{1 . .20}$, i.e. it assigns an element of $\mathbb{Z}_{1 . .20}$ (codomain, standing) to every element of $\mathbb{Z}_{1 . .10}$ (domain, matchday).

1(d) $g: \mathbb{Z}_{1 . .10} \times \mathbb{Z}_{1 \ldots 10} \rightarrow \mathbb{Z}_{0 . .255}$, i.e. it assigns an element of $\mathbb{Z}_{0 . .255}$ (codomain, 8-bit grayscale brightness) to every element of $\mathbb{Z}_{1 . .10} \times \mathbb{Z}_{1 . .10}$ (domain, (x, y) pixel coordinate).

Fig. 2: Spring mass damper system.

Question 2. Consider a mass rotating inside a cylinder depicted in Fig. 2. The mass, whose moment of inertia is J, is attached to a torsion spring, whose torsion coefficient is k_{T}. An external torque τ acts on the mass and friction between the mass and the cylinder is assumed to generate a viscous friction torque $\tau_{c}=-c_{T} \dot{\theta}$. Find the relation between input signal τ and output signal θ.

Solution. The Newtonian motion equation of the mass is $J \ddot{\theta}=\tau_{\text {net }}$, where $\tau_{\text {net }}$ is the net torque applied to it. In our case,

$$
\tau_{\text {net }}=\tau-k_{T} \theta-c_{T} \dot{\theta}
$$

Hence, we end up with

$$
J \ddot{\theta}(t)+c_{T} \dot{\theta}(t)+k_{T} \theta(t)=\tau(t),
$$

which is the relation describing the system $\tau \mapsto \theta$.
Question 3. Consider the following system described in Fig. 3.

Fig. 3: Cart and pendulum
The input is a force f acting on the cart m_{1}, which is constrained to slide without friction in the horizontal direction. A pendulum, mass m_{2}, length l, is attached to the cart and is free to rotate around its axis. The outputs are the position of the cart x and the angle of the pendulum θ. Write the equations of motion.

Solution. The free-body diagram (FBD) is shown in Fig.4.

Fig. 4: FBD
Equations of motion on the cart

$$
\begin{equation*}
\sum F_{x}=m_{1} \ddot{x}(t)=f(t)+f_{x}(t) \tag{1}
\end{equation*}
$$

The position, velocity, and acceleration of the pendulum's center of mass B is given by

$$
\begin{aligned}
p_{B} & =\left(x_{B}, y_{B}\right)=\left(x+\frac{l}{2} \sin \theta,-\frac{l}{2} \cos \theta\right) \\
v_{B} & =\left(\dot{x}_{B}, \dot{y}_{B}\right)=\left(\dot{x}+\frac{l}{2} \cos \theta \dot{\theta}, \frac{l}{2} \sin \theta \dot{\theta}\right) \\
a_{B}=\left(\ddot{x}_{B}, \ddot{y}_{B}\right) & =\left(\ddot{x}+\frac{l}{2}\left[\ddot{\theta} \cos \theta-\dot{\theta}^{2} \sin \theta\right], \frac{l}{2}\left[\ddot{\theta} \sin \theta+\dot{\theta}^{2} \cos \theta\right]\right)
\end{aligned}
$$

Equations of motion on the pendulum are

$$
\begin{gather*}
\Sigma F_{x}=m_{2} \ddot{x}_{B}(t)=-f_{x} \\
\Sigma F_{y}=m_{2} \ddot{y}_{B}(t)=-f_{y}-m_{2} g \\
I_{B} \ddot{\theta}=f_{x} \frac{l}{2} \cos \theta+f_{y} \frac{l}{2} \sin \theta \tag{2}
\end{gather*}
$$

where $I_{B}=\frac{1}{12} m_{2} l^{2}$ is the moment of inertia. From the first two equations, we get

$$
\begin{aligned}
f_{x} & =-m_{2}\left(\ddot{x}+\frac{l}{2}\left[\ddot{\theta} \cos \theta-\dot{\theta}^{2} \sin \theta\right]\right) \\
f_{y} & =-m_{2}\left(\frac{l}{2}\left[\ddot{\theta} \sin \theta+\dot{\theta}^{2} \cos \theta\right]\right)-m_{2} g
\end{aligned}
$$

Substitute f_{x} and f_{y} into the third equation (2) and the cart equation of motion (1) we get

$$
\begin{aligned}
& \frac{1}{3} m_{2} l^{2} \ddot{\theta}+\frac{1}{2} m_{2} l \ddot{x} \cos \theta+\frac{1}{2} m_{2} g l \sin \theta=0 \\
& \left(m_{1}+m_{2}\right) \ddot{x}+\frac{1}{2} m_{2} l\left(\ddot{\theta} \cos \theta-\dot{\theta}^{2} \sin \theta\right)=f
\end{aligned}
$$

Let's assume the pendulum rotates around $\theta=0$ with small angles hence

$$
\sin \theta \approx \theta \quad \cos \theta \approx 1 \quad \sin \theta \dot{\theta}^{2} \approx 0
$$

the equations take the form

$$
\begin{gathered}
\frac{1}{3} m_{2} l^{2} \ddot{\theta}+\frac{1}{2} m_{2} l \ddot{x}+\frac{1}{2} m_{2} g l \theta=0 \\
\left(m_{1}+m_{2}\right) \ddot{x}+\frac{1}{2} m_{2} l \ddot{\theta}=f
\end{gathered}
$$

Norms

Norms are a class of functions that enable us to quantify the size of a vector by assigning a nonnegative scalar to each vector.
Properties of a Norm:

1. Positive Definiteness: It should always be nonnegative. It is zero if and only if the vector is zero, i.e., zero vector. $\|v\| \geq 0$ and $\|v\|=0 \Leftrightarrow v=0$
2. Homogeneity: Multiplying a vector by a scalar multiplies the vector's norm by the scalar's absolute value. $\|\alpha v\|=|\alpha|\|v\|$
3. Triangle inequality: The norm of a sum of two vectors is no more than the sum of their norms. $\|v\|+\|u\| \geq\|v+u\|$

Two useful norms are

1. Norm-2 : $\|x\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}$
2. Norm-infinity: $\quad\|x\|_{\infty}=\max \left|x_{i}\right|$

Question 4. Calculate $\|x\|_{2}$ and $\|x\|_{\infty}$ where

1. $x=\left[x_{1}, x_{2}, x_{3}\right]$ and $\left|x_{2}\right| \geq\left|x_{1}\right| \geq\left|x_{3}\right|$
2. $x=[1,0,0]$
3. $x=[1,1,1]$

Solution.

1. $\|x\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}=\sqrt{\sum_{i=1}^{3}\left|x_{i}\right|^{2}}=\sqrt{\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\left|x_{3}\right|^{2}}$ $\|x\|_{\infty}=\max \left|x_{i}\right|=\left|x_{2}\right|$
2. $\|x\|_{2}=\sqrt{|1|^{2}+|0|^{2}+|0|^{2}}=1$ $\|x\|_{\infty}=1$
3. $\|x\|_{2}=\sqrt{|1|^{2}+|1|^{2}+|1|^{2}}=\sqrt{3}$ $\|x\|_{\infty}=1$

Question 5. Find the sets of a 2D vector x such that $\|x\|_{2}=1$ and $\|x\|_{\infty}=1$
Solution.

Fig. 5: $\|x\|_{2}$

Fig. 6: $\|x\|_{\infty}$

