Linear Systems (034032)

TUTORIAL 1

Fig. 1: Signals for Question 1
Question 1. Describe properties (domains and codomains) of the signals in Fig. 1.
Question 2. Consider a mass rotating inside a cylinder depicted in Fig. 2. The mass, whose moment of inertia is J, is attached to a torsion spring, whose torsion coefficient is k_{T}. An external torque τ acts on the mass and friction between the mass and the cylinder is assumed to generate a viscous friction torque $\tau_{c}=-c_{T} \dot{\theta}$. Find the relation between input signal τ and output signal θ.

Question 3. Consider the following system described in Fig. 3.
The input is a force f acting on the cart m_{1}, which is constrained to slide without friction in the horizontal direction. A pendulum, mass m_{2}, length l, is attached to the cart and is free to rotate around its axis. The outputs are the position of the cart x and the angle of the pendulum θ. Write the equations of motion.

Norms

Norms are a class of functions that enable us to quantify the size of a vector by assigning a nonnegative

Fig. 2: Spring mass damper system.

Fig. 3: Cart and pendulum
scalar to each vector.
Properties of a Norm:

1. Positive Definiteness: It should always be nonnegative. It is zero if and only if the vector is zero, i.e., zero vector. $\|v\| \geq 0$ and $\|v\|=0 \Leftrightarrow v=0$
2. Homogeneity: Multiplying a vector by a scalar multiplies the vector's norm by the scalar's absolute value. $\|\alpha v\|=|\alpha|\|v\|$
3. Triangle inequality: The norm of a sum of two vectors is no more than the sum of their norms. $\|v\|+\|u\| \geq\|v+u\|$

Two useful norms are

1. Norm-2: $\|x\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}$
2. Norm-infinity: $\|x\|_{\infty}=\max \left|x_{i}\right|$

Question 4. Calculate $\|x\|_{2}$ and $\|x\|_{\infty}$ where

1. $x=\left[x_{1}, x_{2}, x_{3}\right]$ and $\left|x_{2}\right| \geq\left|x_{1}\right| \geq\left|x_{3}\right|$
2. $x=[1,0,0]$
3. $x=[1,1,1]$

Question 5. Find the sets of a 2D vector x such that $\|x\|_{2}=1$ and $\|x\|_{\infty}=1$

