TECHNION — Israel Institute of Technology, Faculty of Mechanical Engineering

Fig. 1: Signals for Question 1

Question 1. Describe properties (domains and codomains) of the signals in Fig. 1.

Question 2. Consider a mass rotating inside a cylinder depicted in Fig. 2. The mass, whose moment of inertia is J, is attached to a torsion spring, whose torsion coefficient is k_T . An external torque τ acts on the mass and friction between the mass and the cylinder is assumed to generate a viscous friction torque $\tau_c = -c_T \dot{\theta}$. Find the relation between input signal τ and output signal θ .

Question 3. Consider the following system described in Fig. 3.

The input is a force f acting on the cart m_1 , which is constrained to slide without friction in the horizontal direction. A pendulum, mass m_2 , length l, is attached to the cart and is free to rotate around its axis. The outputs are the position of the cart x and the angle of the pendulum θ . Write the equations of motion.

Norms

Norms are a class of functions that enable us to quantify the size of a vector by assigning a nonnegative

Fig. 2: Spring mass damper system.

Fig. 3: Cart and pendulum

scalar to each vector. Properties of a Norm:

- 1. Positive Definiteness: It should always be nonnegative. It is zero if and only if the vector is zero, i.e., zero vector. $||v|| \ge 0$ and $||v|| = 0 \Leftrightarrow v = 0$
- 2. Homogeneity: Multiplying a vector by a scalar multiplies the vector's norm by the scalar's absolute value. $\|\alpha v\| = |\alpha| \|v\|$
- 3. Triangle inequality: The norm of a sum of two vectors is no more than the sum of their norms. $||v|| + ||u|| \ge ||v + u||$

Two useful norms are

- 1. Norm-2: $||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$
- 2. Norm-infinity: $||x||_{\infty} = \max |x_i|$

Question 4. Calculate $||x||_2$ and $||x||_{\infty}$ where

1.
$$x = [x_1, x_2, x_3]$$
 and $|x_2| \ge |x_1| \ge |x_3|$

2.
$$x = [1, 0, 0]$$

3.
$$x = [1, 1, 1]$$

Question 5. Find the sets of a 2D vector x such that $||x||_2 = 1$ and $||x||_{\infty} = 1$