
Linear Systems (034032)
lecture no. 12

Leonid Mirkin

Faculty of Mechanical Engineering
Technion—IIT

1/36

Previously on Linear Systems . . .

An input / output (I/O) system G : u 7→ y is a mapping between input and
output signals, whose domain is R (or Z, in the discrete case). To analyze
them at time instances t ≥ 0 we need to

− either know the whole input history in t < 0

− or assume that all inputs have support in R+

The LTI system

G :

{
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

is solved via its state, as

x(t) =

∫ t

−∞
eA(t−s)Bu(s)ds =⇒ y(t) =

∫ t

−∞
C eA(t−s)Bu(s)ds + Du(t)

the output equation is static, so readily handleable
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Example

m

k

c
yu whose dynamics are

mÿ(t) + cẏ(t) + ky(t) = cu̇(t) + ku(t)

Suppose that we do not know u(t) in t ≤ 0 and that u(t) = 0 for all t > 0.
The question of interest (a variation on the initial value problem) is

− can we determine y(t) for t > 0 from the knowledge of y(0) and ẏ(0) ?

To answer this question, select m = 1, c = 2, and k = 1+ �2 ≈ 10:870 (so
that !n ≈ 3:3, � ≈ 0:3, and !d = �) and consider input signals of the form
u = ˛S21 + (ˇ − ˛)S�1 − ˇ1, i.e.

u(t) = ˛1(t + 2) + (ˇ − ˛)1(t + �)− ˇ1(t) =
t0−2 −�

˛
ˇ

for some � ∈ (0; 2) and ˛; ˇ ∈ R.
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Example (contd)

Consider two choices:

1. � = 1, ˛ = 1
1+e−1 , and ˇ = 1 yields

u(t) =
t0−2 −1

0.731

1

and y(t) =
t0−2 −1

1

2. � = 1− 1
� arctan( 2�

�2−1
), ˛ = 0, and ˇ = 1

1+e−� yields

u(t) =
t0−2 −0.804

0.691

and y(t) =
t0−2 −0.804

1

In both cases, y(0) = 1 and ẏ(0) = 0, but we have different y(t) for t > 0.
The question now is

− what information does enable us to disregard past inputs ?
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State as history accumulator

Given t0, let us take another look at the state solution at t0 + t > t0

x(t0 + t) =

∫ t0+t

−∞
eA(t0+t−s)Bu(s)ds

=

∫ t0

−∞
eA(t0+t−s)Bu(s)ds +

∫ t0+t

t0

eA(t0+t−s)Bu(s)ds

and because eA(t0+t−s) = eAt eA(t0−s) and eAt does not depend on s,

= eAt
∫ t0

−∞
eA(t0−s)Bu(s)ds︸ ︷︷ ︸

x(t0)

+

∫ t0+t

t0

eA(t0+t−s)Bu(s)ds︸ ︷︷ ︸
u(s) for s > t0

Therefore, the knowledge of x(t0) and u(t) for t > t0 is enough to compute
x(t) for all t > t0. In other words,

− x(t) at a given t accumulates the effect of the input history up to t.
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Example (contd)

Returning to our mass-spring-damper example, what we need to determine
y(t) for t > 0 is a

− state at t = 0.

This is a realization-dependent issue. Pick the observer form, viz.

(A;B;C ;D) =

([
−c=m 1
−k=m 0

]
;

[
c=m
k=m

]
;
[
1 0

]
; 0

)
for which (see Lect. 11, Slide 23)

x =

[
y

ẏ + c
m (y − u)

]
:

Hence, the information about the system at t = 0 required to start up is

y(0) and ẏ(0)− c

m
u(0) (effectively, ẏ(0) and u(0))

and u(0) was different in the two studied cases (1 vs. 0:691).
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Starting point

The reasoning above implies that

− systems can be analyzed from any time point t = t0 if x(t0) is known.

In the time-invariant case this starting point can be always chosen as t = 0.
Consequently, R+ is taken as the domain of all involved signals and systems
are considered in the form{

ẋ(t) = Ax(t) + Bu(t); x(0) = x0

y(t) = Cx(t) + Du(t)

with an initial condition x0 ∈ Rn. In other words,

− systems may be treated as mappings (x0; u) 7→ y operating on R+

in the state space.

Remark: It shall be emphasized that “operating on R+” is not the same as “having support
in R+” assumed when systems were studied from pure I/O perspectives. Unless x0 = 0,
the presence of initial conditions implies that involved signals acted in R− as well. The
notion of the state just enables us to ignore their particular forms. All we need to know is
the state at t = 0.
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Finite-dimensional systems

Since dynamical systems are those with memory, the property of a state to
hold the whole history suggests that

− the dimension of x(t) may be regarded as a measure of the complexity

of corresponding dynamics. Systems admitting a finite vector as their state
are then called finite dimensional.

We know that

− an LTI system with a state realization has a proper & rational transfer
function

− an LTI system with a proper & rational transfer function always admits
a state-space realization (cf. canonical realizations)

Hence, an LTI system (with a proper transfer function) is

− finite dimensional iff its transfer function is rational.

Systems with irrational transfer functions, such as the delay element (e−�s)
or finite-memory integrator ((1− e−�s)=s), are infinite dimensional.
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Solution with initial conditions

If {
ẋ(t) = Ax(t) + Bu(t); x(0) = x0

y(t) = Cx(t) + Du(t)

then

x(t) = eAtx0 +

∫ t

0
eA(t−s)Bu(s)ds

(we already saw that) and

y(t) = C eAtx0 +

∫ t

0
C eA(t−s)Bu(s)ds + Du(t)

As a matter of fact,

− effect of initial conditions on the state is eAtx0

− effect of u = ı on the state is eAtB (if t > 0)

Thus, response to nonzero initial condition and the Dirac delta at the input
are closely related, although the former is richer (x0 is arbitrary, B is fixed).
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Initial conditions and similarity transformations

Nothing really special, still the transformation x → x̃ = Tx . Just remember
that in the new coordinates{

˙̃x(t) = (TAT−1)x̃(t) + (TB)u(t); x̃(0) = Tx0

y(t) = (CT−1)x̃(t) + Du(t)

i.e. initial conditions are also affected by T .
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Systems with initial conditions in the Laplace domain

In
ẋ(t) = Ax(t) + Bu(t); x(0) = x0

we

− no longer assume that the state x has support in R+

− do not know how x behaved on R−

As such,

− it is natural to switch from the bilateral to unilateral Laplace analysis.

The main consequence of that is the differentiation rule, which is now

y(t) = ẋ(t) =⇒ Y (s) = sX (s)− x0

Thus, the state equation reads

X (s) = (sI − A)−1x0 + (sI − A)−1BU(s)
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Unforced (autonomous) motion

Given

G :

{
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

the equation
ẋ(t) = Ax(t); x(0) = x0

i.e. the state equation with zero inputs, is known as the unforced motion (or
autonomous motion) of the system, where the state responds only to initial
conditions. Because the

− initial conditions response is a richer form of the impulse response,

the unforced motion fully represents properties of the system G , while being
easier to analyze.

Also worth emphasizing is that for every t0 ≥ 0,

− the behavior of x(t) in t > t0 is completely determined by x(t0),

no matter how this x(t0) was reached.
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Discrete version

The state is still the history accumulator, with the state representation

G :

{
x [t + 1] = Ax [t] + Bu[t]; x [0] = x0

y [t] = Cx [t] + Du[t]

and its solution

x [t] = Atx0 +
t∑

s=0

At−sBu[s] & y [t] = CAtx0 +
t∑

s=0

CAt−sBu[s] + Du[t]

In the z-domain the state variable is

X (z) = (zI − A)−1x0 + (zI − A)−1BU(z)

because, again, the need to switch to the unilateral z transform.
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Lyapunov stability: nonlinear case

An equilibrium xeq ∈ Rn of autonomous dynamics ẋ = f (x) is said to be

− stable if for every � > 0 there is ı = ı(�) > 0 such that

∥x(0)− xeq∥ < ı =⇒ ∥x(t)− xeq∥ < �; ∀t ∈ R+

− asymptotically stable if it is stable and there is ı > 0 such that

∥x(0)− xeq∥ < ı =⇒ lim
t→∞

∥x(t)− xeq∥ = 0

The region of attraction of an asymptotically stable equilibrium is the set of
initial conditions x(0) that generate states x converging to xeq. If the region
of attraction is the whole set Rn, then the equilibrium is said to be globally
asymptotically stable.

Remark 1: In principle, we may assume w.l.o.g. that xeq = 0 in the definition. Otherwise,
just rewrite the dynamics in terms of deviations xı = x − xeq.

Remark 2: ı(�) is clearly a monotonically increasing function of �. But unless the stability
property is global, it is not strictly monotonic and often saturates.
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Examples

Pendulum has essentially 2 nontrivial equilibria (assuming no dry friction):

stable unstable

Ball on hills (assuming Newtonian dynamics with a nonzero mass) may have
many equilibria:

yeq1
stable

yeq2
unstable

yeq3
unstable

yeq4
unstable unstable

strangely enough
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Lyapunov stability: linear case

If the system is linear, i.e. f (x) = Ax for some A ∈ Rn×n, then the stability
analysis is greatly simplified.

Theorem
An equilibrium of the system ẋ = Ax is

− stable iff spec(A) ∈ {s ∈ C | Re s ≤ 0} and the geometric multiplicity
of every pure imaginary eigenvalue equals its algebraic multiplicity

− asymptotically stable iff spec(A) ∈ {s ∈ C | Re s < 0}
and those properties are global.

Remark: Because poles of the transfer function belong to spec(A), a system is I/O stable
whenever its state-space realization is asymptotically stable by Lyapunov.

An equilibrium of a linear system must satisfy Axeq = 0. Hence,

− if det(A) ̸= 0, then the only equilibrium is xeq = 0

− if det(A) = 0, then there is an infinite number of equilibrium points
spanned by all right eigenvectors associated with the eigenvalues of A at the origin
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Connecting linear and nonlinear

Theorem (Lyapunov’s indirect method)

Let ẋ = f (x) for a continuously differentiable f : Rn → Rn, xeq ∈ Rn be its
equilibrium, and

A =
@f (x)

@x

∣∣∣∣
x=xeq

∈ Rn×n

be the corresponding Jacobian.

− If spec(A) ∈ C \ C̄0, then xeq is asymptotically stable.

− If A has at least one eigenvalue in C0, then xeq is unstable.

Remark: It is worth emphasizing that the equivalence in the asymptotic stability conditions
above is normally only local, even though linear properties are global. In other words, if
the linearized dynamics ẋ = Ax are (globally) asymptotically stable, its nonlinear original
might still be asymptotically stable only locally.
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Connecting linear and nonlinear (contd)

If the rightmost eigenvalue of the Jacobian matrix is on the imaginary axis,
then the stability conclusion is no longer unambiguous.

Example

Let ẋ = ˛x3 for ˛ ̸= 0. Its only equilibrium is at xeq = 0 and the Jacobian
A = 0, for any ˛. The linearized dynamics, ẋı = 0, are stable then. But the
solution to the original equation is

x(t) =
x(0)√

1− 2˛x2(0)t
=


t0

x(0)
if ˛ < 0

t0 te

x(0)
if ˛ > 0

(finite escape point at t = te ··= 1=(2˛x2(0)) if ˛ > 0). Thus, the system is

− asymptotically stable if ˛ < 0 ı = � for all � > 0

− unstable if ˛ > 0
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Examples 1 and 2

Consider autonomous linear dynamics

ẋ(t) =

[
0 1
−5 −6

]
x(t) and ẋ(t) =

[
0 1
5 −4

]
x(t)

whose characteristic polynomials are (s + 5)(s + 1) and (s + 5)(s − 1), i.e.
one of them is asymptotically stable and another one is unstable. The initial
condition responses can be visualized in the state (phase) plane by plotting
x2(t) vs. x1(t) as t grows from 0 to ∞:

x2

x1

x(0)

x(0)

x(0)

0

x2

x1

x(0)

x(0)
x(0)

0

Responses are qualitatively different for different initial conditions. Why?
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Background: diagonalization

If A ∈ Rn×n is not defective, then all its n (right) eigenvectors �i are linearly
independent and the matrix having them as columns is nonsingular. Define

T ··=
[
�1 · · · �n

]
and T−1 =··

 � ′
1
...
� ′
n

 =⇒ T−1T = [� ′
i�j ]

(i.e. �i is the transpose complex conjugate of the ith row of T−1) such that
� ′
i�j = ıij (Kronecker delta). In this case

A = TΛAT
−1 =

[
�1 · · · �n

] �1 0
. . .

0 �n

 � ′
1
...
� ′
n


If �j = �i , then

1 �j = �i and �j = �i as well.

1Just conjugate A�i = �i�i and remember that A is real valued to convince yourselves.
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State solution: real eigenvalues

Consider the autonomous state equation

ẋ(t) = Ax(t); x(0) = x0

and assume that A is not defective with real eigenvalues. The solution

x(t) = eAtx0 = eTΛAT
−1tx0 = T eΛAtT−1x0

=
[
�1 · · · �n

] e�1t 0
. . .

0 e�nt

 � ′
1x0
...

� ′
nx0

 =
n∑

i=1

�i e
�i t(� ′

i x0):

Defining �i (x0) ··= � ′
i x0 ··= ⟨x0; �i ⟩ ∈ R, we get

x(t) =
n∑

i=1

�i e
�i t�i (x0)

where the initial conditions only affect the constant scalar coefficients �i .
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Modes

The form

x(t) =
n∑

i=1

�i e
�i t�i (x0)

means that solutions to unforced systems are a superposition of elementary
exponential signals exp�i

, each one of which is shaped by the corresponding
eigenvectors, �i ∈ Rn. The signal

− �i exp�i
is known as the ith mode of the system

and the scalar

− �i (x0) = � ′
i x0 is called the degree of excitation of the ith mode by x0.

In fact, �i (x0) is the ith coordinate of x0 with respect to the eigenbasis {�i}
of Rn, cf.

x0 =
n∑

i=1

˛i�i =⇒ ˛i = � ′
i x0;

and then

− e�i t�i (x0) is the corresponding coordinate of x(t).
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Modal response in the phase plane: Example 1

Return to the stable 2-order system with �1 = −5 and �2 = −1.

x2

x1

x(0)

x(0)

x(0)

0

x2

x10

�1�1(x(0))

�2�2(x(0))

x(0)

The initial conditions x(0) = �1 and x(0) = �2 generate the traverse of x(t)
along the corresponding eigenvectors, while x(0) = −1:25�1 − �2 results in
a superposition of two modes. Some observations:

− trajectories can never cross the eigenvector lines if do not start there

− asymptotic stability =⇒ every trajectory converges to the origin

− trajectories eventually approach the eigenvector of the slowest mode
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Modal response in the phase plane: Example 2

Return to the unstable 2-order system with �1 = −5 and �2 = 1.

x2

x1

x(0)

x(0)
x(0)

0

x2

x10

�1�1(x(0))

�2�2(x(0))

x(0)

The initial conditions x(0) = �1 and x(0) = �2 generate the traverse of x(t)
along the corresponding eigenvectors, while x(0) = −�1 − 0:25�2 results in
a superposition of two modes. Additional observations:

− instability =⇒ every trajectory with �2(x(0)) ̸= 0 diverges

− trajectories eventually approach the eigenvector of the unstable mode
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Modal response in the phase plane: Example 3

Consider

ẋ(t) =

[
0 1
0 −2

]
x(t)

with (�1; �1) = (−2;
[−1

2

]
=
√
5) and (�2; �2) = (0;

[
1
0

]
). Its second mode is

stable, but not asymptotically (aka neutrally stable). The phase plane is

x2

x1

x(0)

x(0)

x(0)

x(0)

0

Starting on x(0) = �2 results in a point (x = x(0)), other initial conditions
generate the traverse along a line parallel to �1 and shifted by �2(x(0)), so
all converge to �2(x(0))�2, like those from x(0) = �1, x(0) = −�1 − 0:6�2,
and x(0) = −�1 + 0:4�2.
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Second-order complex eigenvalues

If A ∈ R2×2 has eigenvalues at � ± j!, then ∃�r; �i; �r; �i ∈ R2 such that

A =
[
�r + j�i �r − j�i

] [ � + j! 0
0 � − j!

] [
� ′
r + j� ′

i

� ′
r − j� ′

i

]
Hence,

x(t) = eAtx0 =
[
�r + j�i �r − j�i

] [ e(�+j!)t 0

0 e(�−j!)t

] [
� ′
r + j� ′

i

� ′
r − j� ′

i

]
x0

= e�t
[
�r + j�i �r − j�i

] [ ej!t 0
0 e−j!t

] [
� ′
r + j� ′

i

� ′
r − j� ′

i

]
x0

=
(
�r cos(!t)− �i sin(!t)

)
e�t�r(x0)

+
(
�i cos(!t) + �r sin(!t)

)
e�t�i(x0)

where

− �r(x0) ··= 2� ′
rx0 and �i(x0) ··= −2� ′

i x0 are degrees of excitation

− (�r cos(!t)−�i sin(!t))e�t and (�i cos(!t)+�r sin(!t))e
�t are modes
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Modal response in the phase plane: Example 4

Consider

ẋ(t) =

[
0 1

−�2 − !2 �

]
x(t)

whose eigenvalues are at � ± j!. The phase plane plots for ! = 2 are

x2

x1

x(0)

� = −0.2 x2

x1x(0)

x(0)

� = 0 x2

x1
x(0)

� = 0.08

These pictures are representative, namely

− if � < 0 (asymptotically stable), then spirals converging to the origin

− if � = 0 (neutrally stable), then ellipses

− if � > 0 (unstable), then diverging spirals
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Math literacy

− complex numbers

− the imaginary unit j
− canonical (Re c + j Im c) and polar (|c |ej arg c) representations
− operations with complex numbers
− complex plane

− complex functions

− poles and removable singularities
− rational functions, their poles, zeros, properness
− partial fraction expansion of rational functions, residues

− linear algebra

− eigenvalues and eigenvectors
− similarity transformations and diagonalization
− Cayley–Hamilton and its meaning
− matrix power, functions of matrices (especially, matrix exponential)
− computing functions of matrices
− matrix calculus
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Notions to understand

− signals in time and transformed domains

− main properties, viz. support, decay, convergence, periodicity
− standard signals, viz. step, ramp, sinc, exponential, harmonic, Dirac delta
− oprations on signals, viz. scaling (also of time P& ), shift (S� ), convolution
− signal norms, viz. L1, L2, L∞, as well as `1, `2, `∞; energy and power
− Fourier series and transforms, their meaning in terms of harmonic content
− sampling in time and frequency domains, frequency aliasing, !s and !N

− Laplace and z transforms, with RoC and use in solving diff [. . .] equations

− systems and their classifications

− systems as constraints on interrelated signals, I/O systems as mappings
− dynamic vs. static, SISO vs. MIMO, time invariant vs. time varying, linear

vs. nonlinear, finite dimensional vs. infinite dimensional, causality
− block-diagrams; series, parallel, and feedback interconnections of systems
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Notions to understand (contd)

− LTI systems, I/O viewpoint

− LTI systems and convolution, impulse response
− transfer functions and system properties via them (stability and causality)
− BIBO and L2 / `2 stability conditions, also in the rational case
− stability tests (checking if a polynomial is Hurwitz or Schur)
− step responses, steady state and transients
− transients characteristics: over- and undershoot, raise time, settling time
− step responses of 1- and 2-order systems (including effects of zeros)
− frequency response, magnitude and phase, processing harmonic inputs
− frequency response plots: Bode (construct and read) and polar (read)
− systems as filters (low-pass, high-pass, band-pass, band-stop, notch)

− LTI systems, state-space viewpoint

− state-space realizations
− from state space to transfer functions and back again
− linearization technique (equilibrium, Jacobian, et alii)
− state as history accumulator
− initial conditions and unforced motion
− Lyapunov stability and its visualization on the phase plane
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Formulae to memorize

− convolution of signals, x ∗ y , in both time and transformed domains

− the sifting property of the Dirac delta,∫
R

f (t)ı(t − t0)dt = f (t0)

− frequency response of sampled signals,

X̄ (ej� ) =
1

h

∑
i∈Z

X (j�+2� i
h ) or X̄ (ej!h) =

1

h

∑
i∈Z

X
(
j(! + 2!Ni)

)
and the Nyquist frequency !N

··= �=h

− time shift property (S�x) of Fourier, Laplace, and z transforms,

ej!�X (j!); ej��X (ej� ); e�sX (s); z�X (z)

− inverse Laplace transforms of 1
s ,

1
s+a ,

s sin�+! cos�
s2+!2 when RoC = C˛
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Formulae to memorize (contd)

− condition for a2s
2 + a1s + a0 and a3s

3 + a2s
2 + a1s + a0 being Hurwitz

− standard forms of 1- and 2-order transfer functions, i.e.

kst
�s + 1

and
kst!

2
n

s2 + 2�!ns + !2
n

− values in dB of 0:01, 0:1, 1=
√
2, 1,

√
2, 10, 100

− Bode plots of basic blocks (gain, 1- and 2-order), quantitatively

− bandwidth of the frequency response of a system with G (s) = 1
�s+1

− solution to the state equation, x(t) = eAtx0 +

∫ t

0
eA(t−s)Bu(s)ds

− canonical companion and observer state-space realizations, viz.
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
−a0 −a1 · · · −an−1 1

b0 b1 · · · bn−1 0

 and


−an−1 1 · · · 0 bn−1

...
...

. . .
...

...
−a1 0 · · · 1 b1
−a0 0 · · · 0 b0
1 0 · · · 0 0


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