Linear Systems (034032) lecture no. 12

Leonid Mirkin

Faculty of Mechanical Engineering Technion—IIT

 $\tilde{\mathbf{X}}$

Outline

Initial conditions

Stability of unforced motion (Lyapunov stability)

Modal behavior

Coda

Previously on Linear Systems...

An input / output (I/O) system $G: u \mapsto y$ is a *mapping* between input and output signals, whose domain is \mathbb{R} (or \mathbb{Z} , in the discrete case). To analyze them at time instances $t \ge 0$ we need to

- either know the whole input history in t < 0
- $-\,$ or assume that all inputs have support in \mathbb{R}_+

The LTI system

$$G:\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

is solved via its state, as

$$x(t) = \int_{-\infty}^{t} e^{A(t-s)} Bu(s) ds \implies y(t) = \int_{-\infty}^{t} C e^{A(t-s)} Bu(s) ds + Du(t)$$

the output equation is static, so readily handleable

Suppose that we do not know u(t) in $t \le 0$ and that u(t) = 0 for all t > 0. The question of interest (a variation on the initial value problem) is

- can we determine y(t) for t > 0 from the knowledge of y(0) and $\dot{y}(0)$?

To answer this question, select m = 1, c = 2, and $k = 1 + \pi^2 \approx 10.870$ (so that $\omega_n \approx 3.3$, $\zeta \approx 0.3$, and $\omega_d = \pi$) and consider input signals of the form $u = \alpha \$_2 1 + (\beta - \alpha) \$_\tau 1 - \beta 1$, i.e.

$$u(t) = \alpha \mathbb{1}(t+2) + (\beta - \alpha)\mathbb{1}(t+\tau) - \beta \mathbb{1}(t) = \underbrace{\beta}_{\alpha}^{\beta}_{\alpha}$$

for some $\tau \in (0, 2)$ and $\alpha, \beta \in \mathbb{R}$.

4/3

Example (contd)

Consider two choices:

1.
$$\tau = 1$$
, $\alpha = \frac{1}{1+e^{-1}}$, and $\beta = 1$ yields
 $u(t) = \underbrace{1}_{-2} \underbrace{1}_{-1} \underbrace{1}_{0} \underbrace{1}_{0.731}_{t}$ and $y(t) = \underbrace{1}_{-2} \underbrace{1}_{-1} \underbrace{1}_{0} \underbrace{1}_{t}$
2. $\tau = 1 - \frac{1}{\pi} \arctan(\frac{2\pi}{\pi^2 - 1})$, $\alpha = 0$, and $\beta = \frac{1}{1+e^{-\tau}}$ yields
 $u(t) = \underbrace{1}_{-2} \underbrace{1}_{-0.804} \underbrace{1}_{0} \underbrace{1}_{0} \underbrace{1}_{t}$ and $y(t) = \underbrace{1}_{-2} \underbrace{1}_{-0.804} \underbrace{1}_{0} \underbrace{1}_{t}$

In both cases, y(0) = 1 and $\dot{y}(0) = 0$, but we have different y(t) for t > 0. The question now is

- what information does enable us to disregard past inputs?

Example (contd)

Returning to our mass-spring-damper example, what we need to determine y(t) for t > 0 is a

```
- state at t = 0.
```

This is a realization-dependent issue. Pick the observer form, viz.

$$(A, B, C, D) = \left(\begin{bmatrix} -c/m & 1 \\ -k/m & 0 \end{bmatrix}, \begin{bmatrix} c/m \\ k/m \end{bmatrix}, \begin{bmatrix} 1 & 0 \end{bmatrix}, 0 \right)$$

for which (see Lect. 11, Slide 23)

$$x = \begin{bmatrix} y \\ \dot{y} + \frac{c}{m}(y-u) \end{bmatrix}.$$

Hence, the information about the system at t = 0 required to start up is

$$y(0)$$
 and $\dot{y}(0) - \frac{c}{m}u(0)$ (effectively, $\dot{y}(0)$ and $u(0)$)

and u(0) was different in the two studied cases (1 vs. 0.691).

State as history accumulator

Given t_0 , let us take another look at the state solution at $t_0 + t > t_0$

$$\begin{aligned} x(t_0+t) &= \int_{-\infty}^{t_0+t} e^{A(t_0+t-s)} Bu(s) ds \\ &= \int_{-\infty}^{t_0} e^{A(t_0+t-s)} Bu(s) ds + \int_{t_0}^{t_0+t} e^{A(t_0+t-s)} Bu(s) ds \end{aligned}$$

and because $e^{A(t_0+t-s)} = e^{At}e^{A(t_0-s)}$ and e^{At} does not depend on s,

$$= e^{At} \underbrace{\int_{-\infty}^{t_0} e^{A(t_0-s)} Bu(s) ds}_{\times(t_0)} + \underbrace{\int_{t_0}^{t_0+t} e^{A(t_0+t-s)} Bu(s) ds}_{u(s) \text{ for } s > t_0}$$

Therefore, the knowledge of $x(t_0)$ and u(t) for $t > t_0$ is enough to compute x(t) for all $t > t_0$. In other words,

-x(t) at a given t accumulates the effect of the input history up to t.

Starting point

The reasoning above implies that

- systems can be analyzed from any time point $t = t_0$ if $x(t_0)$ is known. In the time-invariant case this starting point can be always chosen as t = 0. Consequently, \mathbb{R}_+ is taken as the domain of all involved signals and systems are considered in the form

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0 \\ y(t) = Cx(t) + Du(t) \end{cases}$$

with an initial condition $x_0 \in \mathbb{R}^n$. In other words,

- systems may be treated as mappings $(x_0, u) \mapsto y$ operating on \mathbb{R}_+

in the state space.

Remark: It shall be emphasized that "operating on \mathbb{R}_+ " is not the same as "having support in \mathbb{R}_+ " assumed when systems were studied from pure I/O perspectives. Unless $x_0 = 0$, the presence of initial conditions implies that involved signals acted in \mathbb{R}_- as well. The notion of the state just enables us to ignore their particular forms. All we need to know is the state at t = 0.

Finite-dimensional systems

Since *dynamical* systems are those with *memory*, the property of a state to hold the whole history suggests that

- the dimension of x(t) may be regarded as a measure of the complexity of corresponding dynamics. Systems admitting a finite vector as their state are then called finite dimensional.

We know that

- $-\,$ an LTI system with a state realization has a proper & rational transfer function
- an LTI system with a proper & rational transfer function always admits a state-space realization (cf. canonical realizations)

Hence, an LTI system (with a proper transfer function) is

- finite dimensional iff its transfer function is rational.

Systems with irrational transfer functions, such as the delay element $(e^{-\tau s})$ or finite-memory integrator $((1 - e^{-\mu s})/s)$, are infinite dimensional.

Initial conditions and similarity transformations

Nothing really special, still the transformation $x \to \tilde{x} = Tx$. Just remember that in the new coordinates

 $\begin{cases} \dot{\tilde{x}}(t) = (TAT^{-1})\tilde{x}(t) + (TB)u(t), & \tilde{x}(0) = Tx_0 \\ y(t) = (CT^{-1})\tilde{x}(t) + Du(t) \end{cases}$

i.e. initial conditions are also affected by T.

Solution with initial conditions

lf

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0 \\ y(t) = Cx(t) + Du(t) \end{cases}$$

then

$$\mathbf{x}(t) = \mathrm{e}^{At} \mathbf{x}_0 + \int_0^t \mathrm{e}^{A(t-s)} B u(s) \mathrm{d}s$$

(we already saw that) and

$$y(t) = C e^{At} x_0 + \int_0^t C e^{A(t-s)} Bu(s) ds + Du(t)$$

As a matter of fact,

- effect of initial conditions on the state is $e^{At}x_0$
- effect of $u = \delta$ on the state is $e^{At}B$ (if t > 0)

Thus, response to nonzero initial condition and the Dirac delta at the input are closely related, although the former is richer (x_0 is arbitrary, B is fixed).

Systems with initial conditions in the Laplace domain

In

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0$$

we

- no longer assume that the state x has support in \mathbb{R}_+

- do not know how x behaved on \mathbb{R}_-

As such,

 $-\,$ it is natural to switch from the bilateral to unilateral Laplace analysis. The main consequence of that is the differentiation rule, which is now

$$y(t) = \dot{x}(t) \implies Y(s) = sX(s) - x_0$$

Thus, the state equation reads

$$X(s) = (sI - A)^{-1}x_0 + (sI - A)^{-1}BU(s)$$

Unforced (autonomous) motion

Given

$$G:\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

the equation

$$\dot{x}(t) = Ax(t), \quad x(0) = x$$

i.e. the state equation with zero inputs, is known as the unforced motion (or autonomous motion) of the system, where the state responds only to initial conditions. Because the

- initial conditions response is a richer form of the impulse response,

the unforced motion fully represents properties of the system G, while being easier to analyze.

Also worth emphasizing is that for every $t_0 \ge 0$,

- the behavior of x(t) in $t > t_0$ is *completely* determined by $x(t_0)$, no matter how this $x(t_0)$ was reached.

Outline

Initial conditions

Stability of unforced motion (Lyapunov stability)

Modal behavior

Coda

Discrete version

The state is still the history accumulator, with the state representation

$$G:\begin{cases} x[t+1] = Ax[t] + Bu[t], \quad x[0] = x_0\\ y[t] = Cx[t] + Du[t] \end{cases}$$

and its solution

$$x[t] = A^{t}x_{0} + \sum_{s=0}^{t} A^{t-s}Bu[s] \quad \& \quad y[t] = CA^{t}x_{0} + \sum_{s=0}^{t} CA^{t-s}Bu[s] + Du[t]$$

In the z-domain the state variable is

$$X(z) = (zI - A)^{-1}x_0 + (zI - A)^{-1}BU(z)$$

because, again, the need to switch to the unilateral z transform.

Lyapunov stability: nonlinear case

An equilibrium $x_{\mathsf{eq}} \in \mathbb{R}^n$ of autonomous dynamics $\dot{x} = f(x)$ is said to be

- stable if for every $\epsilon>0$ there is $\delta=\delta(\epsilon)>0$ such that

 $||x(0) - x_{eq}|| < \delta \implies ||x(t) - x_{eq}|| < \epsilon, \quad \forall t \in \mathbb{R}_+$

- asymptotically stable if it is stable and there is $\delta > 0$ such that

$$||x(0) - x_{eq}|| < \delta \implies \lim_{t \to \infty} ||x(t) - x_{eq}|| = 0$$

The region of attraction of an asymptotically stable equilibrium is the set of initial conditions x(0) that generate states x converging to x_{eq} . If the region of attraction is the whole set \mathbb{R}^n , then the equilibrium is said to be globally asymptotically stable.

Remark 1: In principle, we may assume w.l.o.g. that $x_{eq} = 0$ in the definition. Otherwise, just rewrite the dynamics in terms of deviations $x_{\delta} = x - x_{eq}$.

Remark 2: $\delta(\epsilon)$ is clearly a monotonically increasing function of ϵ . But unless the stability property is global, it is not strictly monotonic and often saturates.

15/36

13/36

16/3

Examples

Pendulum has essentially 2 nontrivial equilibria (assuming no dry friction):

Ball on hills (assuming Newtonian dynamics with a nonzero mass) may have many equilibria:

Connecting linear and nonlinear

Theorem (Lyapunov's indirect method)

Let $\dot{x} = f(x)$ for a continuously differentiable $f : \mathbb{R}^n \to \mathbb{R}^n$, $x_{eq} \in \mathbb{R}^n$ be its equilibrium, and

$$A = \frac{\partial f(x)}{\partial x} \bigg|_{x = x_{eq}} \in \mathbb{R}^{n \times r}$$

be the corresponding Jacobian.

- If $\operatorname{spec}(A) \in \mathbb{C} \setminus \overline{\mathbb{C}}_0$, then x_{eq} is asymptotically stable.
- If A has at least one eigenvalue in \mathbb{C}_0 , then x_{eq} is unstable.

Remark: It is worth emphasizing that the equivalence in the asymptotic stability conditions above is normally only *local*, even though linear properties are global. In other words, if the linearized dynamics $\dot{x} = Ax$ are (globally) asymptotically stable, its nonlinear original might still be asymptotically stable only locally.

Lyapunov stability: linear case

If the system is linear, i.e. f(x) = Ax for some $A \in \mathbb{R}^{n \times n}$, then the stability analysis is greatly simplified.

Theorem

An equilibrium of the system $\dot{x} = Ax$ is

- stable iff spec(A) $\in \{s \in \mathbb{C} \mid \text{Re} s \leq 0\}$ and the geometric multiplicity of every pure imaginary eigenvalue equals its algebraic multiplicity
- asymptotically stable iff spec(A) $\in \{s \in \mathbb{C} \mid \text{Re} s < 0\}$

and those properties are global.

Remark: Because poles of the transfer function belong to spec(A), a system is I/O stable whenever its state-space realization is asymptotically stable by Lyapunov.

An equilibrium of a linear system must satisfy $Ax_{eq} = 0$. Hence,

- if det(A) \neq 0, then the only equilibrium is $x_{eq} = 0$
- if det(A) = 0, then there is an infinite number of equilibrium points spanned by all right eigenvectors associated with the eigenvalues of A at the origin

.8/30

Connecting linear and nonlinear (contd)

If the rightmost eigenvalue of the Jacobian matrix is on the imaginary axis, then the stability conclusion is no longer unambiguous.

Example

Let $\dot{x} = \alpha x^3$ for $\alpha \neq 0$. Its only equilibrium is at $x_{eq} = 0$ and the Jacobian A = 0, for any α . The linearized dynamics, $\dot{x}_{\delta} = 0$, are stable then. But the solution to the original equation is

$$x(t) = \frac{x(0)}{\sqrt{1 - 2\alpha x^2(0)t}} = \begin{cases} x(0) & \text{if } \alpha < 0 \\ 0 & \text{if } \alpha > 0 \\ x(0) & \text{if } \alpha > 0 \end{cases}$$

(finite escape point at $t = t_e := 1/(2\alpha x^2(0))$ if $\alpha > 0$). Thus, the system is

- asymptotically stable if lpha < 0 $\delta = \epsilon$ for all $\epsilon > 0$
- unstable if $\alpha > 0$

Outline Initial conditions Stability of unforced motion (Lyapunov stability) Modal behavior Coda

Background: diagonalization

If $A \in \mathbb{R}^{n \times n}$ is not defective, then all its n (right) eigenvectors η_i are linearly independent and the matrix having them as columns is nonsingular. Define

$$T := \begin{bmatrix} \eta_1 & \cdots & \eta_n \end{bmatrix} \text{ and } T^{-1} =: \begin{bmatrix} \upsilon_1' \\ \vdots \\ \upsilon_n' \end{bmatrix} \implies T^{-1}T = [\upsilon_i'\eta_j]$$

(i.e. v_i is the transpose complex conjugate of the *i*th row of T^{-1}) such that $v'_i \eta_j = \delta_{ij}$ (Kronecker delta). In this case

$$A = T\Lambda_A T^{-1} = \begin{bmatrix} \eta_1 & \cdots & \eta_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix} \begin{bmatrix} \upsilon_1' \\ \vdots \\ \upsilon_n' \end{bmatrix}$$

If
$$\lambda_j=\overline{\lambda_i}$$
, then $\eta_j=\overline{\eta_i}$ and $\upsilon_j=\overline{\upsilon_i}$ as well.

¹Just conjugate $A\eta_i = \eta_i \lambda_i$ and remember that A is real valued to convince yourselves.

Examples 1 and 2

Consider autonomous linear dynamics

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -5 & -6 \end{bmatrix} x(t) \text{ and } \dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 5 & -4 \end{bmatrix} x(t)$$

whose characteristic polynomials are (s+5)(s+1) and (s+5)(s-1), i.e. one of them is asymptotically stable and another one is unstable. The initial condition responses can be visualized in the state (phase) plane by plotting $x_2(t)$ vs. $x_1(t)$ as t grows from 0 to ∞ :

State solution: real eigenvalues

Consider the autonomous state equation

$$\dot{x}(t) = Ax(t), \quad x(0) = x_0$$

and assume that A is not defective with real eigenvalues. The solution

$$\begin{aligned} \mathbf{x}(t) &= \mathbf{e}^{At} \mathbf{x}_0 = \mathbf{e}^{T\Lambda_A T^{-1}t} \mathbf{x}_0 = T \mathbf{e}^{\Lambda_A t} T^{-1} \mathbf{x}_0 \\ &= \begin{bmatrix} \eta_1 & \cdots & \eta_n \end{bmatrix} \begin{bmatrix} \mathbf{e}^{\lambda_1 t} & \mathbf{0} \\ & \ddots \\ \mathbf{0} & \mathbf{e}^{\lambda_n t} \end{bmatrix} \begin{bmatrix} \upsilon_1' \mathbf{x}_0 \\ \vdots \\ \upsilon_n' \mathbf{x}_0 \end{bmatrix} = \sum_{i=1}^n \eta_i \mathbf{e}^{\lambda_i t} (\upsilon_i' \mathbf{x}_0). \end{aligned}$$

Defining $\mu_i(x_0) := \upsilon'_i x_0 := \langle x_0, \upsilon_i \rangle \in \mathbb{R}$, we get

$$x(t) = \sum_{i=1}^{n} \eta_i \mathrm{e}^{\lambda_i t} \mu_i(x_0)$$

where the initial conditions only affect the constant scalar coefficients μ_i .

24/3

Modes

The form

$$x(t) = \sum_{i=1}^{n} \eta_i \mathrm{e}^{\lambda_i t} \mu_i(x_0)$$

means that solutions to unforced systems are a superposition of elementary exponential signals \exp_{λ_i} , each one of which is shaped by the corresponding eigenvectors, $\eta_i \in \mathbb{R}^n$. The signal

 $-\eta_i \exp_{\lambda_i}$ is known as the *i*th mode of the system and the scalar

- $\mu_i(x_0) = \upsilon'_i x_0$ is called the degree of excitation of the *i*th mode by x_0 . In fact, $\mu_i(x_0)$ is the *i*th coordinate of x_0 with respect to the eigenbasis $\{\eta_i\}$ of \mathbb{R}^n , cf.

$$x_0 = \sum_{i=1}^n \alpha_i \eta_i \implies \alpha_i = \upsilon_i' x_0$$

and then

 $- e^{\lambda_i t} \mu_i(x_0)$ is the corresponding coordinate of x(t).

The initial conditions $x(0) = \eta_1$ and $x(0) = \eta_2$ generate the traverse of x(t) along the corresponding eigenvectors, while $x(0) = -\eta_1 - 0.25\eta_2$ results in a superposition of two modes. Additional observations:

- instability \implies every trajectory with $\mu_2(x(0)) \neq 0$ diverges
- $-\,$ trajectories eventually approach the eigenvector of the unstable mode

Modal response in the phase plane: Example 1

Return to the stable 2-order system with $\lambda_1=-5$ and $\lambda_2=-1.$

The initial conditions $x(0) = \eta_1$ and $x(0) = \eta_2$ generate the traverse of x(t) along the corresponding eigenvectors, while $x(0) = -1.25\eta_1 - \eta_2$ results in a superposition of two modes. Some observations:

- trajectories can never cross the eigenvector lines if do not start there
- asymptotic stability \implies every trajectory converges to the origin
- trajectories eventually approach the eigenvector of the slowest mode

Consider

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix} x(t)$$

with $(\lambda_1, \eta_1) = (-2, \begin{bmatrix} -1\\ 2 \end{bmatrix}/\sqrt{5})$ and $(\lambda_2, \eta_2) = (0, \begin{bmatrix} 1\\ 0 \end{bmatrix})$. Its second mode is stable, but not asymptotically (aka neutrally stable). The phase plane is

Starting on $x(0) = \eta_2$ results in a point (x = x(0)), other initial conditions generate the traverse along a line parallel to η_1 and shifted by $\mu_2(x(0))$, so all converge to $\mu_2(x(0))\eta_2$, like those from $x(0) = \eta_1$, $x(0) = -\eta_1 - 0.6\eta_2$, and $x(0) = -\eta_1 + 0.4\eta_2$.

Second-order complex eigenvalues

If $A \in \mathbb{R}^{2 \times 2}$ has eigenvalues at $\sigma \pm i\omega$, then $\exists \eta_r, \eta_i, \upsilon_r, \upsilon_i \in \mathbb{R}^2$ such that

$$A = \left[\begin{array}{cc} \eta_r + j\eta_i & \eta_r - j\eta_i \end{array} \right] \left[\begin{array}{cc} \sigma + j\omega & 0 \\ 0 & \sigma - j\omega \end{array} \right] \left[\begin{array}{cc} \upsilon_r' + j\upsilon_i' \\ \upsilon_r' - j\upsilon_i' \end{array} \right]$$

Hence,

$$\begin{aligned} x(t) &= e^{At} x_0 = \begin{bmatrix} \eta_r + j\eta_i & \eta_r - j\eta_i \end{bmatrix} \begin{bmatrix} e^{(\sigma+j\omega)t} & 0 \\ 0 & e^{(\sigma-j\omega)t} \end{bmatrix} \begin{bmatrix} \upsilon_r' + j\upsilon_i' \\ \upsilon_r' - j\upsilon_i' \end{bmatrix} x_0 \\ &= e^{\sigma t} \begin{bmatrix} \eta_r + j\eta_i & \eta_r - j\eta_i \end{bmatrix} \begin{bmatrix} e^{j\omega t} & 0 \\ 0 & e^{-j\omega t} \end{bmatrix} \begin{bmatrix} \upsilon_r' + j\upsilon_i' \\ \upsilon_r' - j\upsilon_i' \end{bmatrix} x_0 \\ &= (\eta_r \cos(\omega t) - \eta_i \sin(\omega t))e^{\sigma t} \mu_r(x_0) \\ &+ (\eta_i \cos(\omega t) + \eta_r \sin(\omega t))e^{\sigma t} \mu_i(x_0) \end{aligned}$$

where

 $\mu_r(x_0) := 2\nu'_r x_0$ and $\mu_i(x_0) := -2\nu'_i x_0$ are degrees of excitation - $(\eta_r \cos(\omega t) - \eta_i \sin(\omega t))e^{\sigma t}$ and $(\eta_i \cos(\omega t) + \eta_r \sin(\omega t))e^{\sigma t}$ are modes

Modal response in the phase plane: Example 4

Consider

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -\sigma^2 - \omega^2 & \sigma \end{bmatrix} x(t)$$

whose eigenvalues are at $\sigma \pm i\omega$. The phase plane plots for $\omega = 2$ are

These pictures are representative, namely

- if $\sigma < 0$ (asymptotically stable), then spirals converging to the origin
- if $\sigma = 0$ (neutrally stable), then ellipses
- if $\sigma > 0$ (unstable), then diverging spirals

Math literacy

- complex numbers
 - the imaginary unit j
 - canonical (Re $c + i \operatorname{Im} c$) and polar ($|c|e^{j \arg c}$) representations
 - operations with complex numbers
 - complex plane
- complex functions
 - poles and removable singularities
 - rational functions, their poles, zeros, properness
 - partial fraction expansion of rational functions, residues
- linear algebra
 - eigenvalues and eigenvectors
 - similarity transformations and diagonalization
 - Cayley-Hamilton and its meaning
 - matrix power, functions of matrices (especially, matrix exponential)
 - computing functions of matrices
 - matrix calculus

Notions to understand

- $-\,$ signals in time and transformed domains
 - main properties, viz. support, decay, convergence, periodicity
 - $-\,$ standard signals, viz. step, ramp, sinc, exponential, harmonic, Dirac delta
 - oprations on signals, viz. scaling (also of time $\mathbb{P}_{\mathcal{S}}$), shift (\mathbb{S}_{τ}), convolution
 - signal norms, viz. L_1 , L_2 , L_∞ , as well as ℓ_1 , ℓ_2 , ℓ_∞ ; energy and power
 - $-\,$ Fourier series and transforms, their meaning in terms of harmonic content
 - $-\,$ sampling in time and frequency domains, frequency aliasing, $\omega_{\rm s}$ and $\omega_{\rm N}$
 - Laplace and z transforms, with RoC and use in solving diff $[\ldots]$ equations
- systems and their classifications
 - $-\,$ systems as constraints on interrelated signals, I/O systems as mappings
 - dynamic vs. static, SISO vs. MIMO, time invariant vs. time varying, linear vs. nonlinear, finite dimensional vs. infinite dimensional, causality
 - block-diagrams; series, parallel, and feedback interconnections of systems

Formulae to memorize

_

- convolution of signals, x * y, in both time and transformed domains
- the sifting property of the Dirac delta,

$$\int_{\mathbb{R}} f(t)\delta(t-t_0)\mathsf{d}t = f(t_0)$$

- frequency response of sampled signals,

$$ar{X}(\mathrm{e}^{\mathrm{j} heta}) = rac{1}{h}\sum_{i\in\mathbb{Z}}X(\mathrm{j}rac{ heta+2\pi i}{h}) \quad ext{or} \quad ar{X}(\mathrm{e}^{\mathrm{j}\omega h}) = rac{1}{h}\sum_{i\in\mathbb{Z}}X(\mathrm{j}(\omega+2\omega_{\scriptscriptstyle N}i))$$

- and the Nyquist frequency $\omega_{ extsf{N}} := \pi/h$
- time shift property $(S_{ au}x)$ of Fourier, Laplace, and z transforms,

$$e^{j\omega\tau}X(j\omega), e^{j\theta\tau}X(e^{j\theta}), e^{\tau s}X(s), z^{\tau}X(z)$$

inverse Laplace transforms of $\frac{1}{s}$, $\frac{1}{s+a}$, $\frac{s\sin\phi+\omega\cos\phi}{s^2+\omega^2}$ when $\text{RoC} = \mathbb{C}_{\alpha}$

Notions to understand (contd)

- LTI systems, I/O viewpoint
 - LTI systems and convolution, impulse response
 - $-\,$ transfer functions and system properties via them (stability and causality)
 - BIBO and $L_2\,/\,\ell_2$ stability conditions, also in the rational case
 - stability tests (checking if a polynomial is Hurwitz or Schur)
 - $-\,$ step responses, steady state and transients
 - $-\,$ transients characteristics: over- and undershoot, raise time, settling time
 - $-\,$ step responses of 1- and 2-order systems (including effects of zeros)
 - $-\,$ frequency response, magnitude and phase, processing harmonic inputs
 - $-\,$ frequency response plots: Bode (construct and read) and polar (read)
 - systems as filters (low-pass, high-pass, band-pass, band-stop, notch)
- LTI systems, state-space viewpoint
 - state-space realizations
 - $-\,$ from state space to transfer functions and back again
 - linearization technique (equilibrium, Jacobian, et alii)
 - state as history accumulator
 - initial conditions and unforced motion
 - $-\,$ Lyapunov stability and its visualization on the phase plane
- 34/36

Formulae to memorize (contd)

- condition for $a_2s^2 + a_1s + a_0$ and $a_3s^3 + a_2s^2 + a_1s + a_0$ being Hurwitz
- $-\,$ standard forms of 1- and 2-order transfer functions, i.e.

$$rac{k_{
m st}}{s+1}$$
 and $rac{k_{
m st}\omega_{
m n}^2}{s^2+2\zeta\omega_{
m n}s+\omega}$

- values in dB of 0.01, 0.1, $1/\sqrt{2}$, 1, $\sqrt{2}$, 10, 100
- Bode plots of basic blocks (gain, 1- and 2-order), quantitatively
- $-\,$ bandwidth of the frequency response of a system with $\,G(s)=\frac{1}{\tau s+1}\,$
- solution to the state equation, $x(t) = e^{At}x_0 + \int_0^t e^{A(t-s)}Bu(s)ds$
- canonical companion and observer state-space realizations, viz.

0	1		0	0		$\left[-a_{n-1} \right]$	1	$0 b_{n-1}$
÷	÷	•••	÷	:		:	÷ •.	: :
0	0	•••	1	0	and	-a ₁	0	$1 b_1$
- <i>a</i> 0	$-a_1$	•••	$-a_{n-1}$	1		- <i>a</i> 0	0	0 <i>b</i> 0
b_0	b_1	• • •	b_{n-1}	0		$\begin{bmatrix} 1 \end{bmatrix}$	0	0 0