
Linear Systems (034032)
lecture no. 11

Leonid Mirkin

Faculty of Mechanical Engineering
Technion—IIT

1/44

Outline

Solution to state equation

Canonical realizations

Linearization

2/44

State-space representation: continuous-time case

Given A ∈ Rn×n, B ∈ Rn, C ∈ R1×n, and D ∈ R, the set of equations

G :

{
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

is known as the state-space representation of a continuous-time G : u 7→ y .
Here

− the (internal) signal x is called the state vector of G

− the upper equation (differential) is called the state equation

− the lower one (algebraic) is called the output equation

The quadruple (A;B;C ;D) is dubbed a state-space realization of G .

3/44

Solution to the state equation: (educated) guess

Consider the function

x(t) =

∫ t

−∞
eA(t−s)Bu(s)ds

Using the Leibniz integral rule,

d

dt

∫ b(t)

a(t)
f (s; t)ds

=

∫ b(t)

a(t)

@

@t
f (s; t)ds +

db(t)

dt
f (b(t); t)− da(t)

dt
f (a(t); t);

and the relation @
@t
eA(t−s) = AeA(t−s), we have that

ẋ(t) =

∫ t

−∞
AeA(t−s)Bu(s)ds + eA(t−t)Bu(t) = Ax(t) + Bu(t)

This is exactly the state equation.
4/44

Solution to the state equation and impulse response

Thus, the solution of

G :

{
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

is

y(t) =

∫ t

−∞
C eA(t−s)Bu(s)ds + Du(t):

As a matter of fact, this y = g ∗ u under

g(t) = Dı(t) + C eAtB1(t);

which implies that

− the system G is LTI

− g above is its impulse response in terms of that state-space realization

− the system G is causal g has support in R+

5/44

Transfer function via state-space realization

State-space representation in the Laplace domain is

G :

{
sX (s) = AX (s) + BU(s)

Y (s) = CX (s) + DU(s)

The first (state) equation yields

(sI − A)X (s) = BU(s) =⇒ X (s) = (sI − A)−1BU(s)

(well defined in Cmax�∈ spec(A) Re�
) and the second (output) equation yields

Y (s) = (D + C (sI − A)−1B)U(s):

Hence, the transfer function of this system is

G (s) = D + C (sI − A)−1B :

It is indeed the Laplace transform of g = Dı + C expA B1.
6/44

Transfer function via state-space realization (contd)

The transfer function

G (s) = D + C (sI − A)−1B = D +
C adj(sI − A)B

det(sI − A)

=
D det(sI − A) + C adj(sI − A)B

det(sI − A)
;

where adj(sI − A) is the adjugate matrix. It has polynomial entries, so that
both the numerator and the denominator of G (s) are polynomials. Thus,

− G (s) is rational

− poles of G (s) are among1 the eigenvalues of A, i.e. in spec(A)

1It’s a bit more complicated, but precise relation goes beyond the scope of the course.
7/44

Transfer function via state-space realization: properness

Because

lim
|s|→∞

C (sI − A)−1B = lim
|s|→∞

1
sC

(
I − 1

sA
)−1

B = lim
�→0

�C (I − �A)−1B = 0

we have that
lim

|s|→∞
D + C (sI − A)−1B = D:

Compare

lim
|s|→∞

bns
n + bn−1s

n−1 + · · ·+ b1s + b0
sn + an−1sn−1 + · · ·+ a1s + a0

= bn:

Thus, the transfer function

− D + C (sI − A)−1B is strictly proper iff D = 0 (or bi-proper iff D ̸= 0).

The parameter D is called the feed-through term of the realization.

8/44

Similar realizations

Let T ∈ Rn×n be nonsingular. Define x̃ ··= Tx , where x is a state of an LTI
system G . Its derivative

˙̃x(t) = Tẋ(t) = T (Ax(t) + Bu(t)) = TAT−1x̃(t) + TBu(t)

Because y(t) = Cx(t) + Du(t) = CT−1x̃(t) + Du(t), we have

G :

{
˙̃x(t) = TAT−1x̃(t) + TBu(t) =·· Ãx̃(t) + B̃u(t)

y(t) = CT−1x̃(t) + Du(t) =·· C̃ x̃(t) + D̃u(t)

and conclude that x̃ is also a state vector of G , with the realization

(Ã; B̃; C̃ ; D̃) ··= (TAT−1;TB;CT−1;D):

The realizations (A;B;C ;D) and (TAT−1;TB;CT−1;D) are called similar.

9/44

Similar realizations (contd)

Not surprisingly,

g̃(t) = Dı(t) + CT−1eTAT
−1tTB1(t) = Dı(t) + CT−1T eAtT−1TB1(t)

= Dı(t) + C eAtB1(t)

= g(t)

and

G̃ (s) = D + CT−1(sI − TAT−1)−1TB = D + CT−1(T (sI − A)T−1)−1TB

= D + CT−1T (sI − A)−1T−1TB = D + C (sI − A)−1B

= G (s)

In other words,

− similarity transformation does not affect I/O relations,

it only change the internal variable.

10/44

Diagonal realization

If an LTI system G has a realization of the form

(A;B;C ;D) =

 a1 0

. . .

0 an

 ;
 b1

...
bn

 ; [c1 · · · cn
]
; 0

 ;

then its transfer function

G (s) =
[
c1 · · · cn

]sIn −

 a1 0
. . .

0 an

−1 b1
...
bn

=

[
c1 · · · cn

] 1=(s − a1) 0
. . .

0 1=(s − an)

 b1

...
bn

=

n∑
i=1

cibi
s − ai

i.e. diagonalization corresponds to the partial fraction expansion of G (s).
11/44

Side remark: time invariance

As saw earlier, state-space representations with constant parameters always
correspond to LTI systems. Can we say that realizations with

− time-varying parameters do not correspond to LTI dynamics ?

Example: let

G :

ẋ(t) = − cos t

2− sin t
x(t) + (2− sin t)u(t)

y(t) =
1

2− sin t
x(t)

But

ẏ(t) =
1

2− sin t
ẋ(t) +

(d

dt

1

2− sin t

)
x(t)

=
1

2− sin t

(
− cos t

2− sin t
x(t) + (2− sin t)u(t)

)
+

cos t

(2− sin t)2
x(t)

= u(t)

In other words, the mapping u 7→ y is an integrator, which is LTI.

12/44

State-space representation: discrete-time case

Given A ∈ Rn×n, B ∈ Rn, C ∈ R1×n, and D ∈ R, the set of equations

G :

{
x [t + 1] = Ax [t] + Bu[t]

y [t] = Cx [t] + Du[t]

is refereed to as the state-space representation of a discrete-time LTI system
G : u 7→ y . Here

− the (internal) signal x is called the state vector of G

− the upper equation (difference) is called the state equation

− the lower one (algebraic) is called the output equation

The quadruple (A;B;C ;D) is dubbed a state-space realization of G .

13/44

State-space representation: discrete-time case (contd)

Solution:

x [t] =
t∑

s=−∞
At−sBu[s] & y [t] =

t∑
s=−∞

CAt−sBu[s] + Du[t]

Impulse response:

g [t] = Dı[t] + CAk−1B1[t − 1]

Transfer function:
G (z) = D + C (zI − A)−1B

Similar realizations: still

(A;B;C ;D) and (TAT−1;TB;CT−1;D)

14/44

Outline

Solution to state equation

Canonical realizations

Linearization

15/44

From I/O to state space

If (A;B;C ;D) is a state-space realization of an LTI G , we know that

G (s) = D + C (sI − A)−1B

In many situation, we need the other direction, viz.

− given a rational transfer function of a system G , find its realization.

In some applications state equations arise naturally from physics, sometimes
they appear quite artificial. Realization are never unique (think of similarity
transformations) either. So there are many choices, whose usability depends
on a concrete application.

Below we shall see

− a flavor of some common choices.

16/44

“Physical” realization

Let G (s) be of the form

G (s) =
b

sn + an−1sn−1 + · · ·+ a1s + a0
:

(no zeros). It corresponds to the ODE

y (n)(t) + an−1y
(n−1)(t) + · · ·+ a1ẏ(t) + a0y(t) = bu(t)

w/o derivatives on the input signal. In this case we may always choose

x(t) =

x1(t)
x2(t)
...

xn(t)

 =

y(t)
ẏ(t)
...

y (n−1)(t)

as its state vector.

17/44

“Physical” realization (contd)

Taking into account that y (n) = −an−1y
(n−1) − · · · − a1ẏ − a0y + bu,

ẋ(t) =

ẏ(t)
ÿ(t)
...

y (n−1)(t)

y (n)(t)

 =

x2(t)
x3(t)
...

xn(t)
−an−1xn(t)− · · · − a0x1(t) + bu(t)

=

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−a0 −a1 · · · −an−1

x1(t)
x2(t)
...

xn(t)

+

0
...
0
b

 u(t)

which is a state equation. The output equation reads then

y(t) =
[
1 0 · · · 0

]
x(t)

18/44

“Physical” realization (contd)

Thus, if

G (s) =
b

sn + an−1sn−1 + · · ·+ a1s + a0
;

then its possible state-space realization is

[
A B

C D

]
=

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
−a0 −a1 · · · −an−1 b

1 0 · · · 0 0

 :

This realization is sometimes dubbed physical, for its

− state vector comprises the outputs and their first derivatives

(think of position, velocity, acceleration, jerk, et cetera), so is easy to grasp.

19/44

What if there are zeros

Let

G (s) =
bn−1s

n−1 + · · ·+ b1s + b0
sn + an−1sn−1 + · · ·+ a1s + a0

:

Its output in the Laplace domain

Y (s) = G (s)U(s) =

(n−1∑
i=0

bi s
i

) Gv (s)︷ ︸︸ ︷
1

sn + an−1sn−1 + · · ·+ a1s + a0
U(s);

Therefore, y = b0v + · · ·+ bn−1v
(n−1), where v = Gvu satisfies

v (n)(t) + an−1v
(n−1)(t) + · · ·+ a1v̇(t) + a0v(t) = u(t):

Now note that Gv admits the “physical” realization with b = 1, whose state
xv has v (i−1) as its ith element. Hence,

y(t) =
[
b0 · · · bn−1

]
xv (t)

and we may just modify the “C” term of the “physical” realization.
20/44

Canonical realizations: companion form

Let G (s) be strictly proper, i.e.

G (s) =
bn−1s

n−1 + · · ·+ b1s + b0
sn + an−1sn−1 + · · ·+ a1s + a0

:

The state-space realization discussed above, known as the companion form,
is

[
A B

C D

]
=

[
Acf Bcf

Ccf Dcf

]
··=

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
−a0 −a1 · · · −an−1 1

b0 b1 · · · bn−1 0

This realization is

− particularly convenient in feedback control.

But the state vector itself, derivatives of v , is no longer readily interpretable.

21/44

Canonical realizations: observer form

Let G (s) be strictly proper, i.e.

G (s) =
bn−1s

n−1 + · · ·+ b1s + b0
sn + an−1sn−1 + · · ·+ a1s + a0

:

Its state-space realization in observer form has

[
A B

C D

]
=

[
Aof Bof

Cof Dof

]
··=

−an−1 1 · · · 0 bn−1

...
...

. . .
...

...
−a1 0 · · · 1 b1
−a0 0 · · · 0 b0
1 0 · · · 0 0

 :

This realization is

− particularly convenient in state estimation

(reconstructing state from partial measurements). Its state is also a mess.

22/44

Example

m

k

c
yu Described by

mÿ(t) + cẏ(t) + ky(t) = cu̇(t) + ku(t)

and has no physical realization.

Companion canonical realization:ẋ(t) =

[
0 1

−k=m −c=m

]
x(t) +

[
0
1

]
u(t)

y(t) =
[
k=m c=m

]
x(t)

x =

[
v
v̇

]
v̈ = u − y

Observer canonical realization:ẋ(t) =

[
−c=m 1
−k=m 0

]
x(t) +

[
c=m
k=m

]
u(t)

y(t) =
[
1 0

]
x(t)

x =

[
y

ẏ + (y − u)c=m

]

23/44

Canonical realizations: bi-proper case

Let

G (s) =
bns

n + bn−1s
n−1 + · · ·+ b1s + b0

sn + an−1sn−1 + · · ·+ a1s + a0

for bn ̸= 0. The trick is to rewrite it as

bns
n + bn−1s

n−1 + · · ·+ b0
sn + an−1sn−1 + · · ·+ a0

= bn +

G̃(s)︷ ︸︸ ︷
(bn−1 − bnan−1)s

n−1 + · · ·+ b0 − bna0
sn + an−1sn−1 + · · ·+ a0

Hence, canonical realizations of G (s) are those of the (strictly proper) G̃ (s)
complemented by D = bn.

24/44

Outline

Solution to state equation

Canonical realizations

Linearization

25/44

Nonlinear state-space realization

A class of continuous-time nonlinear systems G : u 7→ y can be described by

G :

{
ẋ(t) = f (x(t); u(t))

y(t) = h(x(t); u(t))

for some functions f : Rn × R → Rn and h : Rn × R → R, such that

− both they (i.e. f and h) and their derivatives in x and u are continuous.

Such models are frequently derived from first principles. Yet in many cases
we prefer to analyze linear models. So an important question is

− how to approximate nonlinear models with linear models ?

26/44

Equilibrium

An equilibrium of the system

G :

{
ẋ(t) = f (x(t); u(t))

y(t) = h(x(t); u(t))

is any pair (xeq; ueq) ∈ Rn × R for which the system is at rest, i.e. for which
ẋ = f (x ; u) can be solved for

ẋ = 0:

Hence, an equilibrium should satisfy the algebraic equation

f (xeq; ueq) = 0:

If this equation has no solution in (xeq; ueq), then no equilibria exist. It may
also be the case that there are many (even infinitely many) solutions to this
equation, so there are many equilibrium points.

27/44

Deviations from equilibrium

Define
xı(t) ··= x(t)− xeq and uı(t) ··= u(t)− ueq;

In this case

f (x ; u) = f (xeq; ueq) +

(
@f (x ; u)

@x

∣∣∣x=xeq
u=ueq

)
xı +

(
@f (x ; u)

@u

∣∣∣x=xeq
u=ueq

)
uı + hot

Taking into account that f (xeq; ueq) = 0 and ẋı = ẋ , we conclude that

ẋı(t) =

(
@f (x ; u)

@x

∣∣∣x=xeq
u=ueq

)
xı(t) +

(
@f (x ; u)

@u

∣∣∣x=xeq
u=ueq

)
uı(t)

is an approximation of ẋ = f (x ; u) in a “sufficiently small” neighbourhood
of (x ; u) = (xeq; ueq). And these dynamics are linear.

28/44

Deviations from equilibrium (contd)

The function h in the output equation can be decomposed as

h(x ; u) = h(xeq; ueq) +

(
@h(x ; u)

@x

∣∣∣x=xeq
u=ueq

)
xı +

(
@h(x ; u)

@u

∣∣∣x=xeq
u=ueq

)
uı + hot

Defining
yı(t) = y(t)− h(xeq; ueq)

we conclude that

yı(t) =

(
@h(x ; u)

@x

∣∣∣x=xeq
u=ueq

)
xı(t) +

(
@h(x ; u)

@u

∣∣∣x=xeq
u=ueq

)
uı(t)

is an approximation of y = h(x ; u) in a “sufficiently small” neighbourhood
of (x ; u) = (xeq; ueq). And this equation is linear.

29/44

Linearized dynamics

Thus, we end up with the linear

Gı :

{
ẋı(t) = Axı(t) + Buı(t)

yı(t) = Cxı(t) + Duı(t)

where

A ··=
@f (x ; u)

@x

∣∣∣x=xeq
u=ueq

∈ Rn×n; B ··=
@f (x ; u)

@u

∣∣∣x=xeq
u=ueq

∈ Rn;

C ··=
@h(x ; u)

@x

∣∣∣x=xeq
u=ueq

∈ R1×n; D ··=
@h(x ; u)

@u

∣∣∣x=xeq
u=ueq

∈ R:

(this A is known as the Jacobian matrix). The linear system

− Gı is called the linearization of G around the equilibrium (xeq; ueq)

in terms of deviation variables xı , uı , and yı .

30/44

Example 1

m1 m2

k1

c1

k2

c2

y1 y2

u

It is described by ẋ = f (x ; u) & y = h(x ; u) with x1 = y1, x2 = y2, x3 = ẏ1,
x4 = ẏ2,

f (x ; u) =

1 0 0 0
0 1 0 0
0 0 m1 0
0 0 0 m2

−1

x3
x4

c2(x4 − x3)− c1x3 − k2(x1 − x2 + �)− k1x1
c2(x3 − x4) + k2(x1 − x2 + �) + u

and

h(x ; u) =

[
x1
x2

]
:

31/44

Example 1: equilibria

Equilibrium equation
xeq;3
xeq;4

c2(xeq;4 − xeq;3)− c1xeq;3 − k2(xeq;1 − xeq;2 + �)− k1xeq;1
c2(xeq;3 − xeq;4) + k2(xeq;1 − xeq;2 + �) + ueq

 = 0

so that xeq;3 = xeq;4 = 0,

k2(xeq;1 − xeq;2 + �) + k1xeq;1 = 0; and k2(xeq;1 − xeq;2 + �) + ueq = 0

(2 equations in 3 variables). Hence,

xeq =

ueq=k1

(1=k1 + 1=k2)ueq + �
0
0

for every ueq ∈ R.

32/44

Example 1: derivatives

Derivatives:

@f (x ; u)

@x
=

1 0 0 0
0 1 0 0
0 0 m1 0
0 0 0 m2

−1

0 0 1 0
0 0 0 1

−k1 − k2 k2 −c1 − c2 c2
k2 −k2 c2 −c2

@f (x ; u)

@u
=

1 0 0 0
0 1 0 0
0 0 m1 0
0 0 0 m2

−1

0
0
0
1

 =

0
0
0

1=m2

@h(x ; u)

@x
=

[
1 0 0 0
0 1 0 0

]
@h(x ; u)

@u
= 0

are all independent of x and u, meaning that higher derivatives are zero and

− the first-order expansion is accurate.
33/44

Example 1: deviation variables and linear model

In terms of

xı(t) = x(t)−

(1=k1)ueq

(1=k1 + 1=k2)ueq + �
0
0

 and uı(t) = u(t)− ueq

the linear dynamics
ẋı(t) =

0 0 1 0
0 0 0 1

−k1+k2
m1

k2
m1

− c1+c2
m1

c2
m1

k2
m2

− k2
m2

c2
m2

− c2
m2

 xı(t) +

0
0
0
1
m2

 uı(t)

yı(t) =

[
1 0 0 0
0 1 0 0

]
xı(t)

is an accurate linear description of the mass-string-damper system.

34/44

Example 2

�

yc

u

It is described by ẋ = f (x ; u) & y = h(x ; u) with x1 = yc, x2 = � , x3 = ẏc,
x4 = �̇ ,

f (x ; u) =

1 0 0 0
0 1 0 0
0 0 M +m ml cos x2
0 0 ml cos x2 J +ml2

−1

x3
x4

mlx24 sin x2 + u
−mlg sin x2

 ;
and

h(x ; u) =

[
x1
x2

]
:

35/44

Example 2: equilibria

Because the inverted matrix is always nonsingular, equilibrium satisfies
xeq;3
xeq;4

mlx2eq;4 sin xeq;2 + ueq
−mlg sin xeq;2

 = 0

so that xeq;3 = xeq;4 = ueq = 0, sin xeq;2 = 0, and any xeq;1. Hence,

xeq =

xeq;1
�k
0
0

 and ueq = 0

for all xeq;1 ∈ R, k ∈ Z (i.e. the cart may be in any position, the pendulum
may be either upright or hung down, and the external force must be zero).

36/44

Example 2: derivatives

Note that f is of the form f = M−1
f Nf and take into account that

@M−1
f Nf

@vi
= M−1

f

@Nf

@vi
+
@M−1

f

@vi
Nf = M−1

f

(
@Nf

@vi
− @Mf

@vi
f

)
and f = 0 at every equilibrium point, by definition. Hence,

@f (x ; u)

@x
=

1 0 0 0
0 1 0 0
0 0 M +m ml cos(�k)
0 0 ml cos(�k) J +ml2

−1

0 0 1 0
0 0 0 1
0 0 0 0
0 −mlg cos(�k) 0 0

@f (x ; u)

@u
=

1 0 0 0
0 1 0 0
0 0 M +m ml cos(�k)
0 0 ml cos(�k) J +ml2

−1

0
0
1
0

at every equilibrium point (with obvious derivatives of h).

37/44

Example 2: pendulum down

If k is even (pendulum is down), then cos(�k) = 1 and

@f (x ; u)

@x

∣∣∣x=xeq
u=ueq

=

0 0 1 0
0 0 0 1
0 m2l2g=˛ 0 0
0 −m(M +m)lg=˛ 0 0

 =·· Adown

@f (x ; u)

@u

∣∣∣x=xeq
u=ueq

=

0
0

(J +ml2)=˛
−ml=˛

 =·· Bdown

where ˛ ··= (M +m)J +Mml2.

38/44

Example 2: pendulum up

If k is odd (inverted pendulum), then cos(�k) = −1

@f (x ; u)

@x

∣∣∣x=xeq
u=ueq

=

0 0 1 0
0 0 0 1
0 m2l2g=˛ 0 0
0 m(M +m)lg=˛ 0 0

 =·· Aup

@f (x ; u)

@u

∣∣∣x=xeq
u=ueq

=

0
0

(J +ml2)=˛
ml=˛

 =·· Bup

where ˛ ··= (M +m)J +Mml2.

39/44

Example 2: simulations

Nonlinear and linearized (k = 0) responses,

are close for small initial angles, but become quite different for large ones.

40/44

Example 3: SIR epidemic spread model

Let

− s be the number of susceptibles in the population

− i be the number of infectives in the population

− r be the number of removed in the population

The SIR model:
d
dt s(t) = −b(t)s(t)i(t)
d
dt i(t) = b(t)s(t)i(t)− ai(t)
d
dt r(t) = ai(t)

or ẋ =

 −x1x2u
x1x2u − ax2

ax2

with the state and control signals

x =

 x1
x2
x2

 =

 s
i
r

 and u = b;

respectively (u affects it via lockdowns / vaccination).
41/44

Example 3: equilibrium and derivatives

Equilibrium: −xeq;1xeq;2ueq
xeq;1xeq;2ueq − axeq;2

axeq;2

 = 0 =⇒ xeq =

 xeq;1
0

xeq;3

for arbitrary xeq;1; xeq;3; ueq ∈ R. Hence,

@f (x)

@x

∣∣∣x=xeq
u=ueq

=

−x2u −x1u 0
x2u x1u − a 0
0 a 0

∣∣∣∣∣∣x=xeq
u=ueq

=

 0 −xeq;1ueq 0
0 xeq;1ueq − a 0
0 a 0

@f (x)

@u

∣∣∣x=xeq
u=ueq

=

−x1x2
x1x2
0

∣∣∣∣∣∣x=xeq
u=ueq

=

 0
0
0

42/44

Example 3: deviation variables and linear equations

In terms of

xı(t) =

 s(t)
i(t)
r(t)

−

 xeq;1
0

xeq;3

 and uı(t) = u(t)− ueq

the linearized state equation is

ẋı(t) =

 0 −xeq;1ueq 0
0 xeq;1ueq − a 0
0 a 0

 xı(t) +

 0
0
0

 uı(t)

is a description of the SIR model. But

− this model is useless, it is not affected by the input signal at all.

This shows that

− linearized model might make no sense, even if it can be derived.

43/44

Discrete case

A class of discrete-time nonlinear systems G : u 7→ y can be described by

G :

{
x [t + 1] = f (x [t]; u[t])

y [t] = h(x [t]; u[t])

for some functions f and h. Its linearization is almost identical to that of its
continuous-time counterpart, modulo the definition of equilibria, which now
must satisfy x [t + 1] = x [t], so that the algebraic equation to check is

f (xeq; ueq) = xeq

rather than f (xeq; ueq) = 0. The rest is mechanical . . .

44/44

	Solution to state equation
	Canonical realizations
	Linearization

