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Frequency vs. step responses

Magnitude frequency response of low-pass filters
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where
— bandwidth is the largest wyp, such that |G(jw)| > 1//2 for all < wy

— resonance peak M, := maxy|G(jw)| > 1
and we assume that |G(0)| = 1.

1-order systems: bandwidth vs. raise time
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showing that
— wider w, == shorter t, (faster transients)
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2-order systems: bandwidth vs. raise time

If )

w,
G(s) = n
(s) s2 + 2lwps + w3

then with { =1 and w, € {0.25,1, 4},
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showing that

— wider w, == shorter t, (faster transients)

2-order systems: resonance vs. overshoot

If )

w,
G(s) = n
(s) s2 + 2lwps + w3

then with ¢ € {0.5,1/3,0.2} and w, =1,
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showing that
— larger M, = larger OS

— wider w, = shorter t, (faster transients)

3-order systems with zeros

If
owns + w2

G(s) =

then with { =1, w, =1, and « € {2, 3,5},
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showing that
— larger M, = larger OS
— wider @, = shorter t, (faster transients)

3-order systems with zeros (contd)

If
6(s) = awns + w?

~ (s/2 +1)(52 + 2¢wns + w?)
then with { =1, w, =1, and @ € {2, -3, -5},
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showing that
— larger M, = larger US
— wider w, = faster leap (transients)




Rules of thumb

In general, we may expect that

— The higher M, is, the larger the OS / US might be
typically,
— narrow peaks indicate oscillatory responses, with oscillation frequencies close to
frequencies of peak on the Bode magnitude plot
— wide peaks indicate overshoot / undershoot without oscillations
— The larger wy, is, the faster time response is

think of the Fourier transform frequency scaling property, F{Pcy} = é P/ (F{y})
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State-space representation

Example 1: mass-spring-damper 1
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Can be described by the second-order ODE my(t) + cy(t) + ky(t) = u(t).
If we introduce the vector
x(t) :== [y(t) ] )

y(t)

the system can be described by the first-order matrix ODE

X(t) = [_ko/m o } x(t) + {1/0”’} u(t)
y(£)=1[1 0]x(¢)

Example 2: Fibonacci series

The Fibonacci series can be described as the impulse response of the system
G : u > y described by the second-order difference equation

y[t+2] —y[t+1] — y[t] = u[t + 1]

(see Tutorial 6). If we introduce the vector

x[t] := { Vit +y1[]t]— ult] } ’

the system can be described by the first-order matrix difference equation

x[t+1] = H Hx[t]Jr“]u[t]

ylt]=1[1 0]x[t]




Example 3: mass-spring-damper 3
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Assuming zero spring and dashpot forces at y; =0 and y» =& > 0,
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Example 3: mass-spring-damper 3 (contd)

Define
Xlgtg }qgt;
| x(t | yelt
=15 | = |l
xa(t) ya(t)

The dynamics of the system can be written as the first-order matrix ODE?!

, - -1

100 O X3
(1) = 01 0 O Xq
00 m O C2(X4 - X3) — C1X3 + k2(X2 — X1 — %‘) — kixq
|00 0 m C2(X3—X4)-|—k2(X1—X2—|—‘§)—|—U(t)
y(e) = | 2t e
( | x2(t)

'The time argument of x;(t) in the right-hand side is dropped due to space limitations.

Example 4: pendulum on cart

Can be described by the ODE (see Tutorial 1)

(M + m)ye(t) + (ml cos 0(t))6(t) — mi6?(t)sin 6(t) = u(t)
(ml cos 0(t))ye(t) + (J + mI?)0(t) + mglsinO(t) = 0

where
— M and m are cart and pendulum masses, respectively
— J is the moment of inertial of the pendulum about its center of mass
— [ is the distance from the pendulum center of mass to its pivot point

— g is the standard gravity

Example 4: pendulum on cart (contd)

Define
x(t) Ye(t)
x(t) 0(t)
t) = = | .
=) | = | welo)
xa(t) 0(t)
The dynamics of the system can be written as the first-order matrix ODE
( (10 0 0 - x3(t)
(1) = 01 0 0 xa(t)
|00 M+m mlcosxyt) mix2(t)sinxa(t) + u(t)
|0 0 micosxa(t) J+ ml? —mlg sin xa(t)
r Frend (X, 1)
Xl(t) P
t) =
\Y( ) i x(t)

with the inverse well defined? for all x3 = 6.

?The determinant of the matrix to be inverted is J(M + m) 4 (M + msin’x3)m/*> > 0.




State-space equations

Equations of a system G : u+> y of the form

x(t) = Ax(t) + Bu(t) x[t + 1] = Ax[t] + Bu[t]
y(t) = Cx(t) + Du(t) y[t] = Cx[t] + Dult]

are known as the state-space representations of G and the internal signal x
is called its state vector.

State-space representations are widely used because they
— facilitate the use of powerful numerical tools in the analysis
— are readily extendible to MIMO systems
— are extendible to time-varying / nonlinear systems
in the form x(t) = f(x, u, t) and y(t) = h(x, u, t) for some functions g and h
Yet to understand basic properties of systems in state space

— we need linear algebra background.
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Math background: linear algebra

Linear algebra, notation and terminology

A matrix A € R™™M is an n X m table of real numbers,

a1 di12 - dim
az1 a - dim

A= . . . = [aij],
dnl an2 °°° dnm

accompanied by their manipulation rules (addition, multiplication, etc). The
number of linearly independent rows (or columns) in A is called its rank and
denoted rank A. A matrix A € R"*™ is said to

— have full row (column) rank if rank A = n (rank A = m)
— besquareif n=m, tall if n> m, and fatif n<m
— be diagonal (A = diag{a;}) if it is square and a;; = 0 whenever | # j
— be lower (upper) triangular if a;; = 0 whenever i > j (i < j)
— be symmetric if A= A’, where the transpose A" := [ajj]
The identity matrix /, := diag{1} € R™*" (if the dimension is clear, just /).

Linear algebra, notation and terminology (contd)

Let A€ R™" (square). Its

— determinant, det(A)  definition is long, but you shall know it already

— trace, tr(A) := Y7, aji

— inverse, A1 such that A71A = /; exists iff det(A) #0; (A71)"1 = A

— power, Ak := A A..... Aforevery k € N and A = | whenever A # 0
Power properties: k times

_ AkAr _ Ak+r

— if Ais diagonal, then A* = [aX] is diagonal as well

— if Ais triangular, then AX is triangular as well, with a,’-} on the diagonal
Also,

— Ais said to be nilpotent if 3k € N such that Ak =0

— A1, Ay € R™ are said to commute if AjA; = ArA;

al, for « € R commutes with every n X n matrix; A and A’ commute Vk,l €Z

— A1, Ax € R™" are said to be similar if there is a nonsingular T € R"*"
such that A; = TA>T ! or, equivalently, AT = TA,




Eigenvalues

Given a square matrix A € R™*", its eigenvalues are the solutions A € C to
xa(A) :=det(Al —A) = A"+ y, A" 4+ A F 0 =0

(characteristic equation). The set of all eigenvalues of a matrix A is dubbed
its spectrum, spec(A). The spectral radius p(A) := max;c spec(a)|Al-
Some facts:
— every n X n matrix A has n (not necessarily distinct) eigenvalues
— if A; € spec(A) is such that Im A; # 0, then 4, € spec(A) as well
— Aj € spec(A) = At € spec(At), Vt € R
— A €spec(A) = A; € spec(TAT 1), VT such that det(T) # 0
TI0 A = det(A)
— YL A =tr(A)
If A is diagonal or triangular, then

— its eigenvalues equal the diagonal elements, i.e. A; = aj;

Eigenvalues: multiplicity

Given A € R"" and A; € spec(A),

— algebraic multiplicity of A; is its multiplicity in xa(A)

— geometric multiplicity of A; is n — rank(A;/ — A)
They need not coincide. If 3A; € spec(A) such that its algebraic multiplicity
is larger than geometric one, then A is said to be defective.

Example 1: if A= [§9], then xa(s) = (s —1)? and
n —rank(A;l — A) =2 —rank([33]) =2

i.e. both algebraic and geometric multiplicity of A; = 1 are 2.

Example 2: if A= [§ 1], then ya(s) = (s — 1)? as well, but
n—rank(A;l — A) =2 —rank([3 ]) =1

i.e. the algebraic multiplicity of A; = 1 is 2, whereas the geometric one is 1.
Hence, this matrix is defective.

Eigenvectors

Right and left eigenvectors associated with A; € spec(A) are nonzero vectors
n; and 7, respectively, such that

(Ail =A)n; =0 and (Al — A) =0,
If n; and 7j; are right and left eigenvectors associated with A; # A, then
;AN = Aifiin; = Ajiiini == (Ai — Aj)iini =0 <= #in; =0

i.e. right and left eigenvectors associated with distinct eigenvalues must be
orthogonal (orthonormal, if they are normalized).

Diagonalization

If Ais not defective, then it has n linearly independent eigenvectors and

A1 0 .
A=[m - 1] [m -+ nn ] = TAAT !
0 An
or
~/ -1 ~/
m A1 0 mn y y
A= | : D = TINAT
s 0 An | LT,

Thus, non-defective matrices are diagonalizable by similarity transformation.
If all A; are distinct, then A is not defective and

A1 0 iy
0 An i

assuming that all eigenvectors are normalized.




Matrix functions

Let £(x) = >0 fix) be analytic. Its matrix version f(A) is defined as

f(A) == iﬁAf :
j=0

The matrices A and f(A) always commute.

If A; € spec(A) with the right eigenvector 7;, then for all j € N

A =mix] = (A= fAn =Y fd = nif (L)
j=0 j=0

i.e. f(A;) € spec(f(A)) and n; is the corresponding right eigenvector. In the
same vein, we can see that a left eigenvector of A is that of f(A). Also,

(TAT Y = TAT ! —  f(TAT Y)=TFA)T !

for every analytic f.

Example
Let - _
—cinx — (=1) o1 |11
f(X)_SInX_jZ_;(Zj—'—l)!X and A— 1 1 .
In this case
A% = B g] =2A, A= H ﬂ =4A ... A =271A
so that

f(A) ngo(z(j_j)i)!ﬁf“ — 12((_1)122”1A: ﬂA

[ |
2j:0 2j+1)! 2
_sin2 (11
2 |11

Matrix functions via diagonalization
If A= diag{a;}, then A/ = diag{af..} and

> . f(al) 0
f(A) = diag{z zj-af} — diag{f(a;)} = :
j=0

Jj=

o F(an)

A special case of A= «al yields f(A) = f(a)/ then.

Hence, if A is diagonalizable, i.e. there is T such that A= TAAT 1, then

f(21) 0
F(A)=TFA)T =T - Tt

0 ()

Example (contd)

Now note that

N ERIIRE

where the eigenvalues are A; =2 and A = 0 and

1 -1]7" 11 1
1 1 20 —-1 1"
Hence,

sin(A) — 1 -1 sin2 0 171 1| sin2]11
|11 0 sinO|2|-11| 2 |11}

exactly as we had before.




Cayley—Hamilton
In essence: every square matrix satisfies its own characteristic equation:
XA(A) == A"+ yp 1 A" A xoln = 0.

Important consequences:
— Ak for all k > nis a linear combination of A, i € Zg ,_1, like

A" = —yn 1 A" — = 1A= xoln
AI'H-].:7){”71/4”7‘4_7)(1/427)(0/4
= Xn 1()(11 lAnil + -+ X1A+ XO/n) T X1A2 o /(OA

= (2 = A 2)A" o (11 — X0)A+ Xn—1x0ln

— A1 if exists, is also a linear combination of A’, i € Zg p_1:

1
A= _?(Xll o gl AT AT
0

Matrix functions via Cayley—Hamilton

By CH,
00 n—1

f(A) =) fA =D gA
j=0 j=0

for some gj, j € Zo..n—1. To find those g;, define
n—1 )
g(x) = Zgjxf so that f(A) = g(A)
j=0

Although g(x) # f(x) for every x,
F(A)ni = g(Ani <= f(Ai)ni = g(Ai)ni <= f(4;) = g(%i)

for each eigenvalue-eigenvector pair. Hence,

n—1 ) Al
FA) = gM=[g & - &n1]| .
J=0 An.—l

Matrix functions via Cayley—Hamilton (contd)

If all eigenvalues of A are simple, then we have exactly n equations

[f()tl) f(kz) f(,\n) ] Vandermonde matrix, V
A1 Ao oo Ap
N I :

Mgt

with det V' =[], ., ;<,(4; — A;) # 0. Hence,

(g0 &1 -+ g1 ] =[f(21) f(A2) -~ f(Aa) VT,

which does not require to calculate eigenvectors.

Example (contd)

We already saw that

spec(“ 1]):{2’0} = V= B (1)} B [g _0055}1

and
) . 0 0.5 )
[0 g1 ] = [sin2 sin0 ] [1 _0'5} =[0 05sin2].
Hence,
. sin 2 sin2 |1 1
Sln(A)—go/2+g1A—2A—2[1 1},

exactly as we had before, again.




What if there are eigenvalues with higher multiplicity?

Diagonalization is impossible for defective matrices. Rather, every matrix is
similar to a block-diagonal form with n; x n; Jordan blocks

A 10 - 0 010 ---0
0 A; 1 --- 0 0oo01-.---0
oo s =il s s = A+ Jon,
0O 00 --- 1 00O 1
0 0 0 --- A; 000 0

where Jo, 5, € R™" is nilpotent, Jg’, = 0.

If A; € spec(A) has the multiplicity p;, then Cayley—Hamilton-based results
based on f(A;) = g(A;) shall be complemented with the conditions

df(x) _ dg(x)
dx/ x=A; - dxJ X:li’

Vj:].,...,[,b,'—l

Matrix exponential

The matrix exponential is defined (here t € R, we shall need it later on) as

1 1
exp(At) = et = | + At + E(At)2 + ﬁ(AtP 4.

Properties:
. (eAt)/ — eA’t

— et is nonsingular for every A, with

— ehitehet — o(MtA)t iff AL and A, commute
AteAt — e()‘H'A)t and eAt1 + eAt2 _ eA(t1+t2)

(eAt)—l — e—At

in particular, e

— if A'is diagonal / triangular, then so is e”f, with diagonal elements e?i
1t t2/20 «.. t"1/(n-1)!
01 t - t"2/(n-2)!
- e(kl—i—Jo,,,)t — eit
00 0 - t
00 0 - 1
— Laplace transform (£{e*1})(s) = (s/ — A)~, with RoC = C a0y, Re 2,

Example

BEEREDR R e

Its exponential

A [ il[er 0 (/171
11 0 et |\2|-j1
1 eja)t + efj(ut 7J-(ej<ot o efj(ut)

— 5 {j(ejmt —e jmt) ejmt e jot }

B [ cos(wt) sin(wt) }

~ | —sin(wt) cos(wt)
Hence, i
([ 7, 8]0 e[ len e

(ol+A)t ot At

where the equality e = e%te™ is used.

Matrix calculus

The derivative of a matrix A(t) by a scalar t € R is done component-wise,

Alt) = [a5(t)] = iA(t):[W}

Some useful rules:

— e (A(D)A(t)) = (A1) Ao(t) + As(t) (FAx(1))

— GATHE) = AT (HA)ATH(Y)

— F(ADk = Ak(kt 1) = el = At = MA
The derivative of f : R™ — R” by its vector argument x € R,

IF(x) _ [af;(x)

0x 0x;

] € R™™ for every x

i.e. it is a matrix-valued function, R™ — R™*™ of x.
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