Linear Systems (034032)
lecture no. 10

Leonid Mirkin

Faculty of Mechanical Engineering

Technion-IIT

5

Magnitude frequency response of low-pass filters

where

- bandwidth is the largest ω_{b} such that $|G(\mathrm{j} \omega)| \geq 1 / \sqrt{2}$ for all $\omega \leq \omega_{\mathrm{b}}$
- resonance peak $M_{\mathrm{r}}:=\max _{\omega}|G(\mathrm{j} \omega)|>1$
and we assume that $|G(0)|=1$.

Outline

Frequency vs. step responses

1-order systems: bandwidth vs. raise time
If

$$
G(s)=\frac{1}{\tau s+1}
$$

then with $\tau \in\{0.2,1,2\}$,

showing that

- wider $\omega_{\mathrm{b}} \Longrightarrow$ shorter t_{r} (faster transients)

2-order systems: bandwidth vs. raise time

 If$$
G(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{\mathrm{n}} s+\omega_{\mathrm{n}}^{2}}
$$

then with $\zeta=1$ and $\omega_{\mathrm{n}} \in\{0.25,1,4\}$,

showing that

- wider $\omega_{\mathrm{b}} \Longrightarrow$ shorter t_{r} (faster transients)

3-order systems with zeros

If

$$
G(s)=\frac{\alpha \omega_{\mathrm{n}} s+\omega_{\mathrm{n}}^{2}}{(s / 2+1)\left(s^{2}+2 \zeta \omega_{\mathrm{n}} s+\omega_{\mathrm{n}}^{2}\right)}
$$

then with $\zeta=1, \omega_{\mathrm{n}}=1$, and $\alpha \in\{2,3,5\}$,

showing that

- larger $M_{r} \Longrightarrow$ larger $O S$
- wider $\omega_{\mathrm{b}} \Longrightarrow$ shorter t_{r} (faster transients)

2-order systems: resonance vs. overshoot If

$$
G(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

then with $\zeta \in\{0.5,1 / 3,0.2\}$ and $\omega_{\mathrm{n}}=1$,

showing that

- larger $M_{r} \Longrightarrow$ larger $O S$
- wider $\omega_{\mathrm{b}} \Longrightarrow$ shorter t_{r} (faster transients)

3-order systems with zeros (contd)

If

$$
G(s)=\frac{\alpha \omega_{\mathrm{n}} s+\omega_{\mathrm{n}}^{2}}{(s / 2+1)\left(s^{2}+2 \zeta \omega_{\mathrm{n}} s+\omega_{n}^{2}\right)}
$$

then with $\zeta=1, \omega_{\mathrm{n}}=1$, and $\alpha \in\{-2,-3,-5\}$,

showing that

- larger $M_{r} \Longrightarrow$ larger US
- wider $\omega_{\mathrm{b}} \Longrightarrow$ faster leap (transients)

Rules of thumb

In general, we may expect that

- The higher M_{r} is, the larger the OS / US might be typically,
- narrow peaks indicate oscillatory responses, with oscillation frequencies close to frequencies of peak on the Bode magnitude plot
- wide peaks indicate overshoot / undershoot without oscillations
- The larger ω_{b} is, the faster time response is
think of the Fourier transform frequency scaling property, $\mathfrak{F}\left\{\mathbb{P}_{S} y\right\}=\frac{1}{\varsigma} \mathbb{P}_{1 / \varsigma}(\mathfrak{F}\{y\})$

Example 1: mass-spring-damper 1

Can be described by the second-order ODE $m \ddot{y}(t)+c \dot{y}(t)+k y(t)=u(t)$.
If we introduce the vector

$$
x(t):=\left[\begin{array}{l}
y(t) \\
\dot{y}(t)
\end{array}\right],
$$

the system can be described by the first-order matrix ODE

$$
\left\{\begin{array}{l}
\dot{x}(t)=\left[\begin{array}{cc}
0 & 1 \\
-k / m & -c / m
\end{array}\right] x(t)+\left[\begin{array}{c}
0 \\
1 / m
\end{array}\right] u(t) \\
y(t)=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x(t)
\end{array}\right.
$$

Outline

State-space representation

Example 2: Fibonacci series

The Fibonacci series can be described as the impulse response of the system $G: u \mapsto y$ described by the second-order difference equation

$$
y[t+2]-y[t+1]-y[t]=u[t+1]
$$

(see Tutorial 6). If we introduce the vector

$$
x[t]:=\left[\begin{array}{c}
y[t] \\
y[t+1]-u[t]
\end{array}\right],
$$

the system can be described by the first-order matrix difference equation

$$
\left\{\begin{aligned}
x[t+1] & =\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] x[t]+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u[t] \\
y[t] & =\left[\begin{array}{ll}
1 & 0
\end{array}\right] x[t]
\end{aligned}\right.
$$

Example 3: mass-spring-damper 3

Assuming zero spring and dashpot forces at $y_{1}=0$ and $y_{2}=\xi>0$,

$$
\begin{aligned}
{\left[\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right]\left[\begin{array}{l}
\ddot{y}_{1}(t) \\
\ddot{y}_{2}(t)
\end{array}\right]+} & {\left[\begin{array}{cc}
c_{1}+c_{2} & -c_{2} \\
-c_{2} & c_{2}
\end{array}\right]\left[\begin{array}{l}
\dot{y}_{1}(t) \\
\dot{y}_{2}(t)
\end{array}\right] } \\
& +\left[\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}
\end{array}\right]\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-k_{2} \xi \\
u(t)+k_{2} \xi
\end{array}\right] .
\end{aligned}
$$

Example 3: mass-spring-damper 3 (contd)

Define

$$
x(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]:=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
\dot{y}_{1}(t) \\
\dot{y}_{2}(t)
\end{array}\right]
$$

The dynamics of the system can be written as the first-order matrix ODE^{1}

$$
\left\{\begin{array}{l}
\dot{x}(t)=\underbrace{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & m_{1} & 0 \\
0 & 0 & 0 & m_{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
x_{3} \\
x_{4} \\
c_{2}\left(x_{4}-x_{3}\right)-c_{1} x_{3}+k_{2}\left(x_{2}-x_{1}-\xi\right)-k_{1} x_{1} \\
c_{2}\left(x_{3}-x_{4}\right)+k_{2}\left(x_{1}-x_{2}+\xi\right)+u(t)
\end{array}\right]}_{f_{\mathrm{msd} 3}(x, u)} \\
y(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
\end{array}\right.
$$

[^0]
Example 4: pendulum on cart (contd)

Define

$$
x(t)=\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]:=\left[\begin{array}{c}
y_{c}(t) \\
\theta(t) \\
\dot{y}_{c}(t) \\
\dot{\theta}(t)
\end{array}\right]
$$

The dynamics of the system can be written as the first-order matrix ODE

$$
\left\{\begin{array}{l}
\dot{x}(t)=\underbrace{\left[\begin{array}{llcc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & M+m & m / \cos x_{2}(t) \\
0 & 0 & m / \cos x_{2}(t) & J+m l^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
x_{3}(t) \\
x_{4}(t) \\
m / x_{4}^{2}(t) \sin x_{2}(t)+u(t) \\
-m / g \sin x_{2}(t)
\end{array}\right]}_{f_{\text {pend }}(x, u)} \\
y(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
\end{array}\right.
$$

with the inverse well defined ${ }^{2}$ for all $x_{3}=\theta$.

State-space equations

Equations of a system $G: u \mapsto y$ of the form

$$
\left\{\begin{array} { r l }
{ \dot { x } (t) } & { = A x (t) + B u (t) } \\
{ y (t) } & { = C x (t) + D u (t) }
\end{array} \quad \text { or } \quad \left\{\begin{array}{rl}
x[t+1] & =A x[t]+B u[t] \\
y[t] & =C x[t]+D u[t]
\end{array}\right.\right.
$$

are known as the state-space representations of G and the internal signal x is called its state vector.

State-space representations are widely used because they

- facilitate the use of powerful numerical tools in the analysis
- are readily extendible to MIMO systems
- are extendible to time-varying / nonlinear systems
in the form $\dot{x}(t)=f(x, u, t)$ and $y(t)=h(x, u, t)$ for some functions g and h
Yet to understand basic properties of systems in state space
- we need linear algebra background.

Linear algebra, notation and terminology

A matrix $A \in \mathbb{R}^{n \times m}$ is an $n \times m$ table of real numbers,

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 m} \\
a_{21} & a_{22} & \cdots & a_{1 m} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n m}
\end{array}\right]:=\left[a_{i j}\right],
$$

accompanied by their manipulation rules (addition, multiplication, etc). The number of linearly independent rows (or columns) in A is called its rank and denoted rank A. A matrix $A \in \mathbb{R}^{n \times m}$ is said to

- have full row (column) rank if rank $A=n($ rank $A=m)$
- be square if $n=m$, tall if $n>m$, and fat if $n<m$
- be diagonal $\left(A=\operatorname{diag}\left\{a_{i}\right\}\right)$ if it is square and $a_{i j}=0$ whenever $i \neq j$
- be lower (upper) triangular if $a_{i j}=0$ whenever $i>j(i<j)$
- be symmetric if $A=A^{\prime}$, where the transpose $A^{\prime}:=\left[a_{j i}\right]$

The identity matrix $I_{n}:=\operatorname{diag}\{1\} \in \mathbb{R}^{n \times n}$ (if the dimension is clear, just I).

Outline

Math background: linear algebra

Linear algebra, notation and terminology (contd)

Let $A \in \mathbb{R}^{n \times n}$ (square). Its

- determinant, $\operatorname{det}(A) \quad$ definition is long, but you shall know it already
- $\operatorname{trace} \operatorname{tr}(A):=\sum_{i=1}^{n} a_{i i}$
- inverse, A^{-1} such that $A^{-1} A=I$; exists iff $\operatorname{det}(A) \neq 0 ;\left(A^{-1}\right)^{-1}=A$
- power, $A^{k}:=A \cdot A \cdot \ldots \cdot A$ for every $k \in \mathbb{N}$ and $A^{0}=I$ whenever $A \neq 0$

Power properties: k times

- $A^{k} A^{r}=A^{k+r}$
- if A is diagonal, then $A^{k}=\left[a_{i}^{k}\right]$ is diagonal as well
- if A is triangular, then A^{k} is triangular as well, with $a_{i i}^{k}$ on the diagonal Also,
- A is said to be nilpotent if $\exists k \in \mathbb{N}$ such that $A^{k}=0$
- $A_{1}, A_{2} \in \mathbb{R}^{n \times n}$ are said to commute if $A_{1} A_{2}=A_{2} A_{1}$ αl_{n} for $\alpha \in \mathbb{R}$ commutes with every $n \times n$ matrix; A^{k} and A^{\prime} commute $\forall k, l \in \mathbb{Z}$
- $A_{1}, A_{2} \in \mathbb{R}^{n \times n}$ are said to be similar if there is a nonsingular $T \in \mathbb{R}^{n \times n}$ such that $A_{1}=T A_{2} T^{-1}$ or, equivalently, $A_{1} T=T A_{2}$

Eigenvalues

Given a square matrix $A \in \mathbb{R}^{n \times n}$, its eigenvalues are the solutions $\lambda \in \mathbb{C}$ to

$$
\chi_{A}(\lambda):=\operatorname{det}(\lambda I-A)=\lambda^{n}+\chi_{n-1} \lambda^{n-1}+\cdots+\chi_{1} \lambda+\chi_{0}=0
$$

(characteristic equation). The set of all eigenvalues of a matrix A is dubbed its spectrum, $\operatorname{spec}(A)$. The spectral radius $\rho(A):=\max _{\lambda \in \operatorname{spec}(A)}|\lambda|$.
Some facts:

- every $n \times n$ matrix A has n (not necessarily distinct) eigenvalues
- if $\lambda_{i} \in \operatorname{spec}(A)$ is such that $\operatorname{Im} \lambda_{i} \neq 0$, then $\overline{\lambda_{i}} \in \operatorname{spec}(A)$ as well
$-\lambda_{i} \in \operatorname{spec}(A) \Longrightarrow \lambda_{i} t \in \operatorname{spec}(A t), \forall t \in \mathbb{R}$
$-\lambda_{i} \in \operatorname{spec}(A) \Longrightarrow \lambda_{i} \in \operatorname{spec}\left(T A T^{-1}\right), \forall T$ such that $\operatorname{det}(T) \neq 0$
$-\prod_{i=1}^{n} \lambda_{i}=\operatorname{det}(A)$
$-\sum_{i=1}^{n} \lambda_{i}=\operatorname{tr}(A)$
If A is diagonal or triangular, then
- its eigenvalues equal the diagonal elements, i.e. $\lambda_{i}=a_{i i}$

Eigenvectors

Right and left eigenvectors associated with $\lambda_{i} \in \operatorname{spec}(A)$ are nonzero vectors η_{i} and $\tilde{\eta}_{i}$, respectively, such that

$$
\left(\lambda_{i} I-A\right) \eta_{i}=0 \quad \text { and } \quad \tilde{\eta}_{i}^{\prime}\left(\lambda_{i} I-A\right)=0
$$

If η_{i} and $\tilde{\eta}_{j}$ are right and left eigenvectors associated with $\lambda_{i} \neq \lambda_{j}$, then

$$
\tilde{\eta}_{j}^{\prime} A \eta_{i}=\lambda_{i} \tilde{\eta}_{j}^{\prime} \eta_{i}=\lambda_{j} \tilde{\eta}_{j}^{\prime} \eta_{i} \Longleftrightarrow\left(\lambda_{i}-\lambda_{j}\right) \tilde{\eta}_{j}^{\prime} \eta_{i}=0 \Longleftrightarrow \tilde{\eta}_{j}^{\prime} \eta_{i}=0
$$

i.e. right and left eigenvectors associated with distinct eigenvalues must be orthogonal (orthonormal, if they are normalized).

Eigenvalues: multiplicity

Given $A \in \mathbb{R}^{n \times n}$ and $\lambda_{i} \in \operatorname{spec}(A)$,

- algebraic multiplicity of λ_{i} is its multiplicity in $\chi_{A}(\lambda)$
- geometric multiplicity of λ_{i} is $n-\operatorname{rank}\left(\lambda_{i} I-A\right)$

They need not coincide. If $\exists \lambda_{i} \in \operatorname{spec}(A)$ such that its algebraic multiplicity is larger than geometric one, then A is said to be defective.

Example 1: if $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then $\chi_{A}(s)=(s-1)^{2}$ and

$$
n-\operatorname{rank}\left(\lambda_{i} I-A\right)=2-\operatorname{rank}\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right)=2
$$

i.e. both algebraic and geometric multiplicity of $\lambda_{i}=1$ are 2 .

Example 2: if $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, then $\chi_{A}(s)=(s-1)^{2}$ as well, but

$$
n-\operatorname{rank}\left(\lambda_{i} I-A\right)=2-\operatorname{rank}\left(\left[\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right]\right)=1
$$

i.e. the algebraic multiplicity of $\lambda_{i}=1$ is 2 , whereas the geometric one is 1 . Hence, this matrix is defective.

Diagonalization

If A is not defective, then it has n linearly independent eigenvectors and

$$
A=\left[\begin{array}{lll}
\eta_{1} & \cdots & \eta_{n}
\end{array}\right]\left[\begin{array}{lll}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right]\left[\begin{array}{lll}
\eta_{1} & \cdots & \eta_{n}
\end{array}\right]^{-1}=T \Lambda_{A} T^{-1}
$$

or

$$
A=\left[\begin{array}{c}
\tilde{\eta}_{1}^{\prime} \\
\vdots \\
\tilde{\eta}_{n}^{\prime}
\end{array}\right]^{-1}\left[\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
\tilde{\eta}_{1}^{\prime} \\
\vdots \\
\tilde{\eta}_{n}^{\prime}
\end{array}\right]=\tilde{T}^{-1} \Lambda_{A} \tilde{T}
$$

Thus, non-defective matrices are diagonalizable by similarity transformation. If all λ_{i} are distinct, then A is not defective and

$$
A=\left[\begin{array}{lll}
\eta_{1} & \cdots & \eta_{n}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
\tilde{\eta}_{1}^{\prime} \\
\vdots \\
\tilde{\eta}_{n}^{\prime}
\end{array}\right]=T \Lambda_{A} \tilde{T}
$$

assuming that all eigenvectors are normalized.

Matrix functions

Let $f(x)=\sum_{j=0}^{\infty} f_{j} x^{j}$ be analytic. Its matrix version $f(A)$ is defined as

$$
f(A):=\sum_{j=0}^{\infty} f_{j} A^{j}
$$

The matrices A and $f(A)$ always commute.
If $\lambda_{i} \in \operatorname{spec}(A)$ with the right eigenvector η_{i}, then for all $j \in \mathbb{N}$

$$
A^{j} \eta_{i}=\eta_{i} \lambda_{i}^{j} \quad \Longrightarrow \quad f(A) \eta_{i}=\sum_{j=0}^{\infty} f_{j} A^{j} \eta_{i}=\eta_{i} \sum_{j=0}^{\infty} f_{j} \lambda_{i}^{j}=\eta_{i} f\left(\lambda_{i}\right)
$$

i.e. $f\left(\lambda_{i}\right) \in \operatorname{spec}(f(A))$ and η_{i} is the corresponding right eigenvector. In the same vein, we can see that a left eigenvector of A is that of $f(A)$. Also,

$$
\left(T A T^{-1}\right)^{j}=T A^{j} T^{-1} \quad \Longrightarrow \quad f\left(T A T^{-1}\right)=T f(A) T^{-1}
$$

for every analytic f.

Matrix functions via diagonalization

If $A=\operatorname{diag}\left\{a_{i}\right\}$, then $A^{j}=\operatorname{diag}\left\{a_{i}^{j}\right\}$ and

$$
f(A)=\operatorname{diag}\left\{\sum_{j=0}^{\infty} f_{j} a_{i}^{j}\right\}=\operatorname{diag}\left\{f\left(a_{i}\right)\right\}=\left[\begin{array}{ccc}
f\left(a_{1}\right) & & 0 \\
& \ddots & \\
0 & & f\left(a_{n}\right)
\end{array}\right]
$$

A special case of $A=\alpha /$ yields $f(A)=f(\alpha) /$ then.

Hence, if A is diagonalizable, i.e. there is T such that $A=T \Lambda_{A} T^{-1}$, then

$$
f(A)=\operatorname{Tf}\left(\Lambda_{A}\right) T^{-1}=T\left[\begin{array}{ccc}
f\left(\lambda_{1}\right) & & 0 \\
& \ddots & \\
0 & & f\left(\lambda_{n}\right)
\end{array}\right] T^{-1}
$$

Example

Let

$$
f(x)=\sin x=\sum_{j=0}^{\infty} \frac{(-1)^{j}}{(2 j+1)!} x^{2 j+1} \quad \text { and } \quad A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

In this case

$$
A^{2}=\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right]=2 A, \quad A^{3}=\left[\begin{array}{ll}
4 & 4 \\
4 & 4
\end{array}\right]=4 A \quad \ldots \quad A^{j}=2^{j-1} A
$$

so that

$$
\begin{aligned}
f(A) & =\sum_{j=0}^{\infty} \frac{(-1)^{j}}{(2 j+1)!} A^{2 j+1}=\frac{1}{2} \sum_{j=0}^{\infty} \frac{(-1)^{j}}{(2 j+1)!} 2^{2 j+1} A=\frac{\sin 2}{2} A \\
& =\frac{\sin 2}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \neq \sin 1\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
f(1) & f(1) \\
f(1) & f(1)
\end{array}\right]
\end{aligned}
$$

Example (contd)

Now note that

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]^{-1}
$$

where the eigenvalues are $\lambda_{1}=2$ and $\lambda_{2}=0$ and

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]^{-1}=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

Hence,

$$
\sin (A)=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\sin 2 & 0 \\
0 & \sin 0
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]=\frac{\sin 2}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

exactly as we had before.

Cayley-Hamilton

In essence: every square matrix satisfies its own characteristic equation:

$$
\chi_{A}(A):=A^{n}+\chi_{n-1} A^{n-1}+\cdots+\chi_{1} A+\chi_{0} I_{n}=0
$$

Important consequences:

$-A^{k}$ for all $k \geq n$ is a linear combination of $A^{i}, i \in \mathbb{Z}_{0 . . n-1}$, like

$$
\begin{aligned}
A^{n} & =-\chi_{n-1} A^{n-1}-\cdots-\chi_{1} A-\chi_{0} I_{n} \\
A^{n+1} & =-\chi_{n-1} A^{n}-\cdots-\chi_{1} A^{2}-\chi_{0} A \\
& =\chi_{n-1}\left(\chi_{n-1} A^{n-1}+\cdots+\chi_{1} A+\chi_{0} I_{n}\right)-\cdots-\chi_{1} A^{2}-\chi_{0} A \\
& =\left(\chi_{n-1}^{2}-\chi_{n-2}\right) A^{n-1}+\cdots+\left(\chi_{n-1} \chi_{1}-\chi_{0}\right) A+\chi_{n-1} \chi_{0} I_{n}
\end{aligned}
$$

$-A^{-1}$, if exists, is also a linear combination of $A^{i}, i \in \mathbb{Z}_{0 . . n-1}$:

$$
A^{-1}=-\frac{1}{\chi_{0}}\left(\chi_{1} I+\cdots+\chi_{n-1} A^{n-2}+A^{n-1}\right)
$$

Matrix functions via Cayley-Hamilton (contd)

If all eigenvalues of A are simple, then we have exactly n equations

$$
\begin{aligned}
& {\left[\begin{array}{lll}
f\left(\lambda_{1}\right) f\left(\lambda_{2}\right) \cdots & f\left(\lambda_{n}\right)
\end{array}\right] } \\
&=\left[\begin{array}{llll}
g_{0} & g_{1} & \cdots & g_{n-1}
\end{array}\right]
\end{aligned} \overbrace{\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{n} \\
\vdots & \vdots & & \vdots \\
\lambda_{1}^{n-1} & \lambda_{2}^{n-1} & \cdots & \lambda_{n}^{n-1}
\end{array}\right]}^{\text {Vandermonde matrix, } v}
$$

with det $V=\prod_{1 \leq i<j \leq n}\left(\lambda_{j}-\lambda_{i}\right) \neq 0$. Hence,

$$
\left[\begin{array}{llll}
g_{0} & g_{1} & \cdots & g_{n-1}
\end{array}\right]=\left[\begin{array}{llll}
f\left(\lambda_{1}\right) & f\left(\lambda_{2}\right) & \cdots & f\left(\lambda_{n}\right)
\end{array}\right] V^{-1}
$$

which does not require to calculate eigenvectors.

Matrix functions via Cayley-Hamilton

By CH,

$$
f(A)=\sum_{j=0}^{\infty} f_{j} A^{j}=\sum_{j=0}^{n-1} g_{j} A^{j}
$$

for some $g_{j}, j \in \mathbb{Z}_{0 . . n-1}$. To find those g_{i}, define

$$
g(x):=\sum_{j=0}^{n-1} g_{j} x^{j} \quad \text { so that } f(A)=g(A)
$$

Although $g(x) \neq f(x)$ for every x,

$$
f(A) \eta_{i}=g(A) \eta_{i} \Longleftrightarrow f\left(\lambda_{i}\right) \eta_{i}=g\left(\lambda_{i}\right) \eta_{i} \Longleftrightarrow f\left(\lambda_{i}\right)=g\left(\lambda_{i}\right)
$$

for each eigenvalue-eigenvector pair. Hence,

$$
f\left(\lambda_{i}\right)=\sum_{j=0}^{n-1} g_{j} \lambda_{i}^{j}=\left[\begin{array}{llll}
g_{0} & g_{1} & \cdots & g_{n-1}
\end{array}\right]\left[\begin{array}{c}
1 \\
\lambda_{i} \\
\vdots \\
\lambda_{i}^{n-1}
\end{array}\right]
$$

Example (contd)

We already saw that

$$
\operatorname{spec}\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right)=\{2,0\} \Longrightarrow V=\left[\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & 0.5 \\
1 & -0.5
\end{array}\right]^{-1}
$$

and

$$
\left[\begin{array}{ll}
g_{0} & g_{1}
\end{array}\right]=\left[\begin{array}{ll}
\sin 2 & \sin 0
\end{array}\right]\left[\begin{array}{cc}
0 & 0.5 \\
1 & -0.5
\end{array}\right]=\left[\begin{array}{ll}
0 & 0.5 \sin 2
\end{array}\right] .
$$

Hence,

$$
\sin (A)=g_{0} l_{2}+g_{1} A=\frac{\sin 2}{2} A=\frac{\sin 2}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

exactly as we had before, again.

What if there are eigenvalues with higher multiplicity?

Diagonalization is impossible for defective matrices. Rather, every matrix is similar to a block-diagonal form with $n_{i} \times n_{i}$ Jordan blocks

$$
\left[\begin{array}{ccccc}
\lambda_{i} & 1 & 0 & \cdots & 0 \\
0 & \lambda_{i} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & \lambda_{i}
\end{array}\right]=\lambda_{i} I_{n_{i}}+\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{array}\right]=: \lambda_{i} I_{n_{i}}+J_{0, n_{i}}
$$

where $J_{0, n_{i}} \in \mathbb{R}^{n_{i} \times n_{i}}$ is nilpotent, $J_{0, n_{i}}^{n_{i}}=0$.
If $\lambda_{i} \in \operatorname{spec}(A)$ has the multiplicity μ_{i}, then Cayley-Hamilton-based results based on $f\left(\lambda_{i}\right)=g\left(\lambda_{i}\right)$ shall be complemented with the conditions

$$
\left.\frac{\mathrm{d}^{j} f(x)}{\mathrm{d} x^{j}}\right|_{x=\lambda_{i}}=\left.\frac{\mathrm{d}^{j} g(x)}{\mathrm{d} x^{j}}\right|_{x=\lambda_{i}}, \quad \forall j=1, \ldots, \mu_{i}-1
$$

Example

Let

$$
A=\left[\begin{array}{cc}
0 & \omega \\
-\omega & 0
\end{array}\right]=\left[\begin{array}{cc}
-\mathrm{j} & \mathrm{j} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\mathrm{j} \omega & 0 \\
0 & -\mathrm{j} \omega
\end{array}\right]\left[\begin{array}{cc}
-\mathrm{j} & \mathrm{j} \\
1 & 1
\end{array}\right]^{-1}
$$

Its exponential

$$
\begin{aligned}
\mathrm{e}^{A t} & =\left[\begin{array}{cc}
-\mathrm{j} & \mathrm{j} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\mathrm{e}^{\mathrm{j} \omega t} & 0 \\
0 & \mathrm{e}^{-\mathrm{j} \omega t}
\end{array}\right]\left(\frac{1}{2}\left[\begin{array}{cc}
\mathrm{j} & 1 \\
-\mathrm{j} & 1
\end{array}\right]\right) \\
& =\frac{1}{2}\left[\begin{array}{cc}
\mathrm{e}^{\mathrm{j} \omega t}+\mathrm{e}^{-\mathrm{j} \omega t} & -\mathrm{j}\left(\mathrm{e}^{\mathrm{j} \omega t}-\mathrm{e}^{-\mathrm{j} \omega t}\right) \\
\mathrm{j}\left(\mathrm{e}^{\mathrm{j} \omega t}-\mathrm{e}^{-\mathrm{j} \omega t}\right) & \mathrm{e}^{\mathrm{j} \omega t}+\mathrm{e}^{-\mathrm{j} \omega t}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos (\omega t) & \sin (\omega t) \\
-\sin (\omega t) & \cos (\omega t)
\end{array}\right]
\end{aligned}
$$

Hence,

$$
\exp \left(\left[\begin{array}{cc}
\sigma & \omega \\
-\omega & \sigma
\end{array}\right] t\right)=\mathrm{e}^{\sigma t}\left[\begin{array}{cc}
\cos (\omega t) & \sin (\omega t) \\
-\sin (\omega t) & \cos (\omega t)
\end{array}\right]
$$

where the equality $\mathrm{e}^{(\sigma I+A) t}=\mathrm{e}^{\sigma t} \mathrm{e}^{A t}$ is used.

Matrix exponential

The matrix exponential is defined (here $t \in \mathbb{R}$, we shall need it later on) as

$$
\exp (A t)=\mathrm{e}^{A t}:=I+A t+\frac{1}{2!}(A t)^{2}+\frac{1}{3!}(A t)^{3}+\cdots
$$

Properties:
$-\left(\mathrm{e}^{A t}\right)^{\prime}=\mathrm{e}^{A^{\prime} t}$

- $\mathrm{e}^{A t}$ is nonsingular for every A, with $\left(\mathrm{e}^{A t}\right)^{-1}=\mathrm{e}^{-A t}$
$-\mathrm{e}^{A_{1} t} \mathrm{e}^{A_{2} t}=\mathrm{e}^{\left(A_{1}+A_{2}\right) t}$ iff A_{1} and A_{2} commute
in particular, $\mathrm{e}^{\lambda t} \mathrm{e}^{A t}=\mathrm{e}^{(\lambda 1+A) t}$ and $\mathrm{e}^{A t_{1}}+\mathrm{e}^{A t_{2}}=\mathrm{e}^{A\left(t_{1}+t_{2}\right)}$
- if A is diagonal / triangular, then so is $\mathrm{e}^{A t}$, with diagonal elements $\mathrm{e}^{\mathrm{aij}^{i t}}$
$-\mathrm{e}^{\left(\lambda I+J_{0, n}\right) t}=\mathrm{e}^{\lambda t}\left[\begin{array}{ccccc}1 & t & t^{2} / 2! & \cdots & t^{n-1} /(n-1)! \\ 0 & 1 & t & \cdots & t^{n-2} /(n-2)! \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & t \\ 0 & 0 & 0 & \cdots & 1\end{array}\right]$
- Laplace transform $\left(\mathfrak{L}\left\{\mathrm{e}^{A t} \mathbb{1}\right\}\right)(s)=(s l-A)^{-1}$, with $\operatorname{RoC}=\mathbb{C}_{\text {max }_{i}} \operatorname{Re} \lambda_{i}$

Matrix calculus

The derivative of a matrix $A(t)$ by a scalar $t \in \mathbb{R}$ is done component-wise,

$$
A(t)=\left[a_{i j}(t)\right] \quad \Longrightarrow \quad \frac{\mathrm{d}}{\mathrm{~d} t} A(t)=\left[\frac{\mathrm{d} a_{i j}(t)}{\mathrm{d} t}\right]
$$

Some useful rules:
$-\frac{\mathrm{d}}{\mathrm{d} t}\left(A_{1}(t) A_{2}(t)\right)=\left(\frac{\mathrm{d}}{\mathrm{d} t} A_{1}(t)\right) A_{2}(t)+A_{1}(t)\left(\frac{\mathrm{d}}{\mathrm{d} t} A_{2}(t)\right)$
$-\frac{\mathrm{d}}{\mathrm{d} t} A^{-1}(t)=-A^{-1}(t)\left(\frac{\mathrm{d}}{\mathrm{d} t} A(t)\right) A^{-1}(t)$
$-\frac{\mathrm{d}}{\mathrm{d} t}(A t)^{k}=A^{k}\left(k t^{k-1}\right) \quad \Longrightarrow \quad \frac{\mathrm{d}}{\mathrm{d} t} \mathrm{e}^{A t}=A \mathrm{e}^{A t}=\mathrm{e}^{A t} A$
The derivative of $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ by its vector argument $x \in \mathbb{R}^{m}$,

$$
\frac{\partial f(x)}{\partial x}=\left[\frac{\partial f_{i}(x)}{\partial x_{j}}\right] \in \mathbb{R}^{n \times m} \quad \text { for every } x
$$

i.e. it is a matrix-valued function, $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n \times m}$, of x.

[^0]: ${ }^{1}$ The time argument of $x_{i}(t)$ in the right-hand side is dropped due to space limitations.

