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Frequency vs. step responses



Frequency vs. step responses

Magnitude frequency response of low-pass filters

20 log M,
/\ Resonant peak, M,
0

N\

Bandwidth, wy

|G(jo)] (dB)

wy
 (rad/sec)

where
— bandwidth is the largest wy, such that |G(jo)| > 1/v/2 for all o < wy,
— resonance peak M, := max,|G(jw)| > 1

and we assume that |G(0)| = 1.



Frequency vs. step responses

1-order systems: bandwidth vs. raise time

Magnitude (dB)
Step response, y(t)
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showing that

— wider w, = shorter t, (faster transients)



Frequency vs. step responses

2-order systems: bandwidth vs. raise time

If )

w
G(s) = -
() $2 + 2Lwns + w?

then with £ =1 and w, € {0.25,1,4},

se, y(t)

Magnitude (dB)
espon:

Step r

showing that

— wider w, = shorter t, (faster transients)



Frequency vs. step responses

2-order systems: resonance vs. overshoot

If )

w
G(s) = .
() $2 + 2Lwns + w?

then with ¢ € {0.5,1/3,0.2} and w, =1,

Magnitude (dB)

Step res;

showing that
— larger M, = larger OS

— wider w, = shorter t, (faster transients)



Frequency vs. step responses

3-order systems with zeros

G(s) = Ota)ns+a)§
(s/2+1)(s? + 2Lwns + w?)
then with { =1, w, =1, and « € {2, 3,5},

Magnitude (dB)

Time (sec)

showing that
— larger M, = larger OS

— wider w, = shorter t, (faster transients)



Frequency vs. step responses

3-order systems with zeros (contd)

G(s) = Ota)ns+a)§
(s/2+1)(s? + 2Lwns + w?)
then with ¢ =1, w, =1, and « € {2, -3, -5},

Magnitude (dB)

'
@

Frequency (rad/sec) Time (sec)

showing that
— larger M, = larger US

— wider w, = faster leap (transients)



Frequency vs. step responses

Rules of thumb

In general, we may expect that

— The higher M, is, the larger the OS /US might be
typically,
— narrow peaks indicate oscillatory responses, with oscillation frequencies close to
frequencies of peak on the Bode magnitude plot
— wide peaks indicate overshoot / undershoot without oscillations



Frequency vs. step responses

Rules of thumb

In general, we may expect that

— The higher M, is, the larger the OS /US might be
typically,
— narrow peaks indicate oscillatory responses, with oscillation frequencies close to
frequencies of peak on the Bode magnitude plot
— wide peaks indicate overshoot / undershoot without oscillations
— The larger wy, is, the faster time response is
think of the Fourier transform frequency scaling property, F{Pcy} = é P (5{y})
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State-space representation
Example 1: mass-spring-damper 1
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Can be described by the second-order ODE my(t) + cy(t) + ky(t) = u(t).
If we introduce the vector
y(t) ]
x(t) = |". s
(t) [y(t)

the system can be described by the first-order matrix ODE

x(t) = [ko/m . ] x(£) + [1/0m] u(t)

y(t)=1[1 0]x(t)



State-space representation

Example 2: Fibonacci series

The Fibonacci series can be described as the impulse response of the system
G : u > y described by the second-order difference equation

ylt+2] —y[t+ 1] — y[t] = u[t + 1]

. If we introduce the vector

x[t] = [y[t +y1[]t]— ult] ] ’

the system can be described by the first-order matrix difference equation

X[t +1] = H Hx[rH“]u[t]

yltl=[1 0]x[t]



State-space representation

Example 3: mass-spring-damper 3
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Assuming zero spring and dashpot forces at y; =0 and y» =& > 0,
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State-space representation

Example 3: mass-spring-damper 3 (contd)

Define
50 | |
_ | xelt) | | yelt
W= 1) | = ()
xa(t) ya(t)

The dynamics of the system can be written as the first-order matrix ODE?

- -1

10 0 O X3
X(t) 01 0 O X4
100 m O C2(X4 — X3) — C1x3 + k2(X2 — X1 — S) — kixy
(00 0 mp c(x3 — xq) + ka(x1 — x2 + &) + u(t)
r fmsd3(x’u)
Xl(t)
t) =
\y( ) %o (t)

'The time argument of x;(t) in the right-hand side is dropped due to space limitations.



State-space representation

Example 4: pendulum on cart

Can be described by the ODE (see Tutorial 1)

{(/vz + m)ye(t) + (mlcos 6(t))0(t) — mI6?(t)sin O(t) = u(t)
(ml cos 0(t))ye(t) + (J + mI?)0(t) + mglsinO(t) = 0

where
— M and m are cart and pendulum masses, respectively
— J is the moment of inertial of the pendulum about its center of mass
— [ is the distance from the pendulum center of mass to its pivot point

— g is the standard gravity



State-space representation

Example 4: pendulum on cart (contd)

Define
x1(t) yc((t))
o X2(t) . o(t
=) |7 [ seld)
x4(t) 0(t)

The dynamics of the system can be written as the first-order matrix ODE

. -1

10 0 0 x3(t)
W01 o 0 xa(t)
{00 M+4+m mlcosxy(t) mix3(t)sin xa(t) + u(t)
|0 0 mlcosxa(t) J+ mi? —mlg sin xx(t)
r foend (X, u)
x(t) Pene
t) =
\)/( ) _Xz(t)

with the inverse well defined? for all x3 = 6.

2The determinant of the matrix to be inverted is J(M + m) + (M + msin®x3)m/? > 0.



State-space representation

State-space equations

Equations of a system G : u+— y of the form

~

x(t) = Ax(t) + Bu(t) or x[t 4+ 1] = Ax[t] + Bult]
y(t) = Cx(t) + Du(t) y[t] = Cx[t] + Dult]

are known as the state-space representations of G and the internal signal x
is called its state vector.



State-space representation

State-space equations

Equations of a system G : u+— y of the form

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

~

or x[t + 1] = Ax[t] + Bult]
y[t] = Cx[t] + Dult]

are known as the state-space representations of G and the internal signal x
is called its state vector.

State-space representations are widely used because they
— facilitate the use of powerful numerical tools in the analysis
— are readily extendible to MIMO systems

— are extendible to time-varying / nonlinear systems
in the form x(t) = f(x, u, t) and y(t) = h(x, u, t) for some functions g and h



State-space representation

State-space equations

Equations of a system G : u+— y of the form

x(t) = Ax(t) + Bu(t) or x[t 4+ 1] = Ax[t] + Bult]
y(t) = Cx(t) + Du(t) y[t] = Cx[t] + Dult]

are known as the state-space representations of G and the internal signal x
is called its state vector.

State-space representations are widely used because they
— facilitate the use of powerful numerical tools in the analysis
— are readily extendible to MIMO systems
— are extendible to time-varying / nonlinear systems
in the form x(t) = f(x, u, t) and y(t) = h(x, u, t) for some functions g and h
Yet to understand basic properties of systems in state space

— we need linear algebra background.
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Math background: linear algebra



Math background: linear algebra

Linear algebra, notation and terminology

A matrix A € R™™ is an n x m table of real numbers,

dil d12 -+ aim
d21 a2 -+ dim

A= | T 7 = ails
dnl an2 -°° danm

accompanied by their manipulation rules (addition, multiplication, etc). The
number of linearly independent rows (or columns) in A is called its rank and
denoted rank A. A matrix A € R™*™ is said to

have full row (column) rank if rank A = n (rank A = m)

be square if n=m, tall if n> m, and fatif n < m

be diagonal (A = diag{a,}) if it is square and a;; = 0 whenever j # j
be lower (upper) triangular if ajj = 0 whenever i > j (i < j)

be symmetric if A= A’, where the transpose A’ := [aj;]

The identity matrix /, := diag{1} € R"*" (if the dimension is clear, just /).



Math background: linear algebra

Linear algebra, notation and terminology (contd)

Let A € R"™" (square). lts

— determinant, det(A)  definition is long, but you shall know it already

— trace, tr(A) := > aii

— inverse, A1 such that A71A = /; exists iff det(A) #0; (A"1)"1 = A

— power, Ak := A-A- ... Aforevery k € N and A® = | whenever A # 0
Power properties: k times

_ AKAT — Ak

— if Ais diagonal, then AK = [a¥] is diagonal as well

— if A'is triangular, then AX is triangular as well, with af-} on the diagonal
Also,

— Ais said to be nilpotent if 3k € N such that AK =0

— A1, Ay € R™" gre said to commute if AjAr, = ArA;

al, for @ € R commutes with every n X n matrix; A* and A' commute Vk,l € Z

— A1, Ay € R™" are said to be similar if there is a nonsingular T € R™*"
such that A; = TA>T 1 or, equivalently, A;T = TA,



Math background: linear algebra

Eigenvalues

Given a square matrix A € R™" its eigenvalues are the solutions A € C to
xa(A) ;==det(Al — A) = A" + yn 1 A" 4 i+ 20 =0

(characteristic equation). The set of all eigenvalues of a matrix A is dubbed
its spectrum, spec(A). The spectral radius p(A) := max) ¢ spec(a) |-
Some facts:
— every n X n matrix A has n (not necessarily distinct) eigenvalues
— if A; € spec(A) is such that Im A; # 0, then 4; € spec(A) as well
— Aj € spec(A) = A;t € spec(At), Vt € R
— A €spec(A) = A; € spec(TAT 1), VT such that det(T) # 0
I A = det(A)
= Xt i = tr(A)



Math background: linear algebra

Eigenvalues

Given a square matrix A € R™" its eigenvalues are the solutions A € C to
xa(A) ;==det(Al — A) = A" + yn 1 A" 4 i+ 20 =0

(characteristic equation). The set of all eigenvalues of a matrix A is dubbed
its spectrum, spec(A). The spectral radius p(A) := max) ¢ spec(a) |-
Some facts:
— every n X n matrix A has n (not necessarily distinct) eigenvalues
— if A; € spec(A) is such that Im A; # 0, then 4; € spec(A) as well
— Aj € spec(A) = A;t € spec(At), Vt € R
A)

— A €spec(A) = A; € spec(TAT 1), VT such that det(T) # 0
— TIi Ai = det(A)
= Xt i = tr(A)

If A is diagonal or triangular, then
— its eigenvalues equal the diagonal elements, i.e. A; = a;;



Math background: linear algebra
Eigenvalues: multiplicity
Given A € R™*" and A; € spec(A),
— algebraic multiplicity of A; is its multiplicity in ya(1)
— geometric multiplicity of A; is n — rank(A;/ — A)

They need not coincide. If 3A; € spec(A) such that its algebraic multiplicity
is larger than geometric one, then A is said to be defective.



Math background: linear algebra
Eigenvalues: multiplicity

Given A € R"*" and A; € spec(A),

— algebraic multiplicity of A; is its multiplicity in ya(1)

— geometric multiplicity of A; is n — rank(A;/ — A)
They need not coincide. If 3A; € spec(A) such that its algebraic multiplicity
is larger than geometric one, then A is said to be defective.

Example 1: if A= [} 9], then xa(s) = (s — 1)? and
n—rank(A;l — A) =2 —rank([33]) =2

i.e. both algebraic and geometric multiplicity of A; = 1 are 2.

Example 2: if A= [§1], then ya(s) = (s — 1)? as well, but
n—rank(A;l — A) =2 —rank([ Jt]) =1

i.e. the algebraic multiplicity of A; = 1 is 2, whereas the geometric one is 1.
Hence, this matrix is defective.



Math background: linear algebra

Eigenvectors

Right and left eigenvectors associated with A; € spec(A) are nonzero vectors
n; and fj;, respectively, such that

(Ail =A)n; =0 and (Al - A) =0,
If n; and 7j; are right and left eigenvectors associated with A; # A;, then
AN = Aifini = i <= (A — A))fimi =0 <= fin; =0

i.e. right and left eigenvectors associated with distinct eigenvalues must be
orthogonal (orthonormal, if they are normalized).



Math background: linear algebra

Diagonalization

If Ais not defective, then it has n linearly independent eigenvectors and

AL 0 1
A= - 1] [ o ma | =TAAT!
0 A,
or
J o
M A1 0 M y y
A= | : D = TIALT
i, 0 An | LT,

Thus, non-defective matrices are diagonalizable by similarity transformation.
If all A; are distinct, then A is not defective and

Al 0 i )
A=[m - 1] Co| = TAAT
0 An il

assuming that all eigenvectors are normalized.



Math background: linear algebra

Matrix functions

Let f(x) = Y72, fix/ be analytic. Its matrix version f(A) is defined as
f(A) = ZﬂAj
j=0

The matrices A and 7(A) always commute.

If A; € spec(A) with the right eigenvector 7;, then for all j € N

A=k = (A= (A =0y M = nif(4)
j=0 Jj=0

i.e. f(A;) € spec(f(A)) and n; is the corresponding right eigenvector. In the
same vein, we can see that a left eigenvector of A is that of f(A).



Math background: linear algebra

Matrix functions

Let f(x) = Y72, fix/ be analytic. Its matrix version f(A) is defined as
f(A) = ZﬂAj
j=0

The matrices A and 7(A) always commute.

If A; € spec(A) with the right eigenvector 7;, then for all j € N

A=k = (A= (A =0y M = nif(4)
j=0 Jj=0

i.e. f(A;) € spec(f(A)) and n; is the corresponding right eigenvector. In the
same vein, we can see that a left eigenvector of A is that of f(A). Also,

(TAT WY = TAT ! —  f(TAT ) =TF(A)T!

for every analytic f.



Math background: linear algebra

Example
Let _
e (Y oy 11
f(X)_SInX_;Wl)!X and A— 11 .
In this case
A2:B§]:2A, A3:Hﬂ:4A A =271A
so that
o (1Y I (1Y sin2
f(A) = S Ay AR SR St A 1 Wl
(4) ;(2j+1)! 2;(%—1—1)! 2

11
11

sin 2

2

)



Math background: linear algebra

Matrix functions via diagonalization
If A= diag{a;}, then A/ = diag{a{:} and

© f(a1) 0
f(A) = diag{ 63{} = diag{f(ai)} = ; o
Jj=0 3

A special case of A= «a/ yields f(A) = f(«)/ then.

Hence, if A is diagonalizable, i.e. there is T such that A= TAyL T-1, then

f(A1) 0
f(A) = TF(ANA)T * =T { ] 7!
0 f(An)



Math background: linear algebra

Example (contd)

Now note that

A [ 1]_fr -1][2 0]t 1]
B T A O I | 00 1 1 ’
where the eigenvalues are A1 =2 and A = 0 and
111t 11t
1 1] T 2[-11]
Hence,

sin(A) = 1 —1|[sin2 0 |1[1 1] _ sin2[11
M=t 1o sin0f2| 11" 2 |11]°

exactly as we had before.




Math background: linear algebra
Cayley—Hamilton
In essence: every square matrix satisfies its own characteristic equation:
xa(A) = A"+ xn 1 A" U 1A+ xoln = 0.

Important consequences:
— Ak for all k > nis a linear combination of A’, i € Zg_,_1, like

A" = _Xn—lAni1 — XIA_ XO/n
An+l - 7)(!771/4“ o X1A2 - )(OA
— anl(anlAnil + - XlA“‘V XO/n) I X1A2 - XOA

= (Xa_1— xn—2)A"""+ 4 (Xn-121 — X0)A+ Xn-1X0ln

— ALl if exists, is also a linear combination of A’, i € Zg p_1:

1
(xal+---+ An-1A"2 + A"_l).

Al=_—
X0



Math background: linear algebra

Matrix functions via Cayley—Hamilton
By CH,

o0 n—1
FA) =) A =D gh
j=0 j=0

for some gj, j € Zg..n—1. To find those gj, define
n—1 ]
g(x) := Zgjxf so that f(A) = g(A)
j=0

Although g(x) # f(x) for every x,
F(A)ni = g(Ani <= f(Ai)ni = g(Ai)ni <= f(%i) = g(%)

for each eigenvalue-eigenvector pair. Hence, 1
n—1 A,
[ 1
FA)=> gX =1[g & - &n1]
j=0

n—1
)Li



Math background: linear algebra

Matrix functions via Cayley—Hamilton (contd)

If all eigenvalues of A are simple, then we have exactly n equations

[f(kl) f(AQ) f(kn)] Vandermonde matrix, V
11 -1

A Ao - Ap

e oaal| ,

n—1 n—1 n—1
Al A2 e kn

with det V' =[], ., ;,(4; — A;) # 0. Hence,

(g0 g1 - goo1 ] =[f(A1) f(R2) -+ f(A,) ]V,

which does not require to calculate eigenvectors.



Math background: linear algebra

Example (contd)

We already saw that

wel[1 1)) -0 = v-[13]- 5]

0 05
1 -05

and

(g0 g1 ] =[sin2 sino}[ }:[0 0.5sin2 .

Hence,
. sin2 sin2 |1 1
S'”(A)—g°’2+g1“—2“—z[1 1]’

exactly as we had before, again.



Math background: linear algebra

What if there are eigenvalues with higher multiplicity?

Diagonalization is impossible for defective matrices. Rather, every matrix is
similar to a block-diagonal form with n; x n; Jordan blocks

Ai 10 -2 0 010 -.---0
0O A1 --- 0 0o01-.---0
. :Ailn;‘i‘ ::/\i/n,-'f‘JO,n,-
0 00 --- 1 000 -.--1
0 00 A 000 0

where Jo,n, € R"*" is nilpotent, Jg, = 0.



Math background: linear algebra

What if there are eigenvalues with higher multiplicity?

Diagonalization is impossible for defective matrices. Rather, every matrix is
similar to a block-diagonal form with n; x n; Jordan blocks

Ai 10 - 0 010 -.---0
0O A1 -+ 0 0o01-.---0
. :Ailn;‘i‘ ::/\i/n,-'f‘JO,n,-
0 00 --- 1 000 -.--1
0 00 A 000 0

where Jo,n, € R"*" is nilpotent, Jg, = 0.

If A; € spec(A) has the multiplicity p;, then Cayley—Hamilton-based results
based on f(A;) = g(A;) shall be complemented with the conditions

&/ f(x) dg(x) )
. = - , Vi=1,...,u;—1
dx/ x=A; dx/ x=A; / *




Math background: linear algebra

Matrix exponential

The matrix exponential is defined (here t € R, we shall need it later on) as
exp(At) = et == | + At + — (At) l(At)3 +

Properties:
_ (eAt)/ — At

— et is nonsingular for every A, with (e#

efithot _ e(A1+A2)t

t)—l — e—At

iff A; and Ay commute

in particular, e*te® = ePMHA gnd A 4 A = Alrth)

— if Ais diagonal / triangular, then so is e, with diagonal elements e?it
1t t2/20 - t"71/(n—1)!
01 t - t"2/(n=2)!
— eA+don)t — At Do : :
o0 o .- t
oo o .- 1

— Laplace transform (£{e**1})(s) = (s/ — A)~!, with RoC = C .y Re 2,



Math background: linear algebra

Example
. . |
A:[O “’]:[_JJHJO) OH—JJ]
—» 0 1 1 0 —jw 11
Its exponential
_]C()t O 1 J 1
e7lot | \2]|—j 1

“= 17
B } { ert Te —jwt 7J(ejwt o ejwt)}
2

Let

ert e Jwt) eja)t+efja)t

sin(wt) ]

sin a)t) cos(wt)



Math background: linear algebra

Example
. . |
=15 e = []E S]]
—» 0 11 0 —jw 11
Its exponential
elot 0 1(; 1
e~ lot 5 —j 1

“= 17
B } { ert+ e —jwt 7J(ejwt o ejwt)}
2

Let

ert e Ja)t) eja)t+efja)t
sin(wt) ]

sin a)t) cos(wt)

Hence, exp({_gw c;) ] t) = et [_CZTrEZQ) z;ns((z))l;)) }

(ol+A)t ot At

where the equality e = e%te™ is used.



Math background: linear algebra

Matrix calculus
The derivative of a matrix A(t) by a scalar t € R is done component-wise,

A(t) = [a;(t)] = %A(t) - [daclﬁt)]

Some useful rules:
— S (AL(D)A(1)) = (55 A1) Ax(t) + A (t) (e A(1))
— AT = AT () (EAMm)AT(D)

— %(At)k = Ak(ktk71) = %eAt = Aeft = MA



Math background: linear algebra

Matrix calculus

The derivative of a matrix A(t) by a scalar t € R is done component-wise,

Alt) =la5(1)] = A= [dasi)]

Some useful rules:

— g (A(D)A2(1) = (A1) Ax(t) + A1) (G Aa(1))

— LA (t) = —ATH (1) (SA()ATL()

— S(An)k = Ak(kthTl) = LMt = At = MA
The derivative of f : R™ — R” by its vector argument x € R™,

I (x) _ [af,-(x>

0x 0x;

} € R™™  for every x

i.e. it is a matrix-valued function, R™ — R"™*™M of x.
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