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Previously on Linear Systems . . .

Let G be a stable continuous-time LTI system with the impulse response g .
Its frequency response G (j!) = (F{g})(j!) or

G (j!) = G (s)|s=j! = (L{g})(j!):

In the discrete-time case, the frequency response G (ej� ) = (F{g})(ej� ) or

G (ej� ) = G (z)|z=ej� = (Z{g})(ej� ):

The frequency response shapes

− the response to harmonic inputs

− the response to periodic inputs

− the steady-state response to test sine wave inpute
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Frequency-domain response of LTI systems

By the convolution property of the Fourier transform,

y(t) = (Gu)(t) ⇐⇒ Y (j!) = G (j!)U(j!)

whenever the corresponding Fourier transforms exist. Hence, the frequency
response of G just scales every harmonic component of the input, so that

− harmonics with frequencies ! at which |G (j!)| > 1 are amplified

− harmonics with frequencies ! at which |G (j!)| < 1 are attenuated

− harmonics with frequencies ! at which |G (j!)| < 1=
√
2 do not pass

this is a convention, facilitating categorical conclusions; take it with a grain of salt

This multiplication property

− facilitates the use of LTI system as filters,

whose task is to shape the spectrum of signals of interest (to pass “desired”
components and to block “unwanted” ones).
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Example

Kinneret water level h from Sep 1993 to Sep 2004

t
hblack

hred,low

hred,up

1994 1996 1998 2000 2002 2004

If processed by the finite-memory integrator, so that ha = Gfmi;1h or

ha(t) =

∫ t

t−1
h(s)ds ⇐⇒ Ha(s) =

1− e−s

s
H(s)

(average over the last year), we end up with

t
hblack

hred,low

hred,up

1994 1996 1998 2000 2002 2004
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Example: frequency-domain insight

The amplitude spectrum of h (with hred,up taken as zero) is

! [rad/year]−2� 0 2�

The frequency response magnitude of Gfmi;1,

|Gfmi;1(j!)| =
∣∣∣∣1− e−j!

j!

∣∣∣∣ = ∣∣∣sinc(!
2

)∣∣∣ =
!0 2� 4�

1

;

is zero at ! = 2� , so the peaks at ! = ±2� [rad/year] are filtered out,

! [rad/year]−2� 0 2�

eliminating the effect of annual cycles.
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Classification

Depending on their purpose, filters may be categorized as

− low-pass filters allow only harmonics with ! ≤ !b to pass
i.e. |G(j!)| ≥ 1√

2
⇐⇒ ! ≤ !b, which is known as the bandwidth of G

− high-pass filters allow only harmonics with ! ≥ !c to pass
i.e. |G(j!)| ≥ 1√

2
⇐⇒ ! ≥ !c, which is known as the cutoff frequency of G

− band-pass filters allow only harmonics with !1 ≤ ! ≤ !2 to pass
i.e. |G(j!)| ≥ 1√

2
⇐⇒ ! ∈ [!1; !2]

− band-stop filters allow only harmonics with ! ≤ !1 and ! ≥ !2 to pass
i.e. |G(j!)| ≥ 1√

2
⇐⇒ ! ̸∈ (!1; !2), which is known as the stopband of G

The question is

− what are systems, whose frequency responses are such filters ?
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Ideal filters

− ideal low-pass has

Filp;!b
(j!) = rect2!b

(!) ⇐⇒ filp;!b
(t) =

!b

�
sinc(!bt)

(see Lect. 3, Slide 37) and is non-causal and even BIBO unstable1, for
filp;!b

̸∈ L1. Hence, not quite practical.

− ideal high-pass Fihp;!c = 1−Filp;!c and fihp;!b
(t) = ı(t)− !b

� sinc(!bt)

− ideal band-pass has

Fibp;[!1;!2](j!) = rect2!2(!)− rect2!1(!)

⇕

fibp;[!1;!2](t) =
!2

�
sinc(!2t)−

!1

�
sinc(!1t) =

t0 �=!2 �=!1

(!2 − !1)=�

− ideal band-stop Fibs;[!1;!2] = 1− Fibp;[!1;!2]

1But, strangely enough, it is L2-stable, try to prove it with the material of Lects. 3 & 6.
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Decibels

Decibel (dB) is a unit of measurement expressing the ratio of two values of
a root-power quantity on a logarithmic scale. Applying to |G (j!)|, it is

|G (j!)|(dB) ··= 20 log10|G (j!)|

Useful properties:

− |G1(j!)G2(j!)|(dB) = |G1(j!)|(dB) + |G2(j!)|(dB)
− |[G (j!)]n|(dB) = n|G (j!)|(dB) for all n ∈ R

−
∣∣∣∣ 1

G (j!)

∣∣∣∣
(dB)

= −|G (j!)|(dB)

−
∣∣∣∣G1(j!)

G2(j!)

∣∣∣∣
(dB)

= |G1(j!)|(dB) − |G2(j!)|(dB)

Some common values2 (memorize those in blue):

gain 1
√
2 2 4 5 10 25 50 100 1000

dB 0 ≈ 3 ≈ 6 ≈ 12 ≈ 14 20 ≈ 28 ≈ 34 40 60

2The mag2db and db2mag commands of Matlab are handy.
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Bode plot

Consists of

− Bode magnitude plot of |G (j!)| (in dB) vs. ! (in logarithmic scale)

− Bode phase plot of arg(G (j!)) (in deg) vs. ! (in logarithmic scale)

In the logarithmic scale the distance between !0 and N!0 does not depend
on !0 for a given N ∈ R+ (N = 2 is an octave, N = 10 is a decade).

Example: For Gtherm(s) = 1=(�s + 1),

Gtherm(j!) =
1√

1 + �2!2
e−j arctan(�!)

with the magnitude and phase as

!0 1=�
0

1√
2

1

and
!0 1=�

0◦

−45◦

−90◦

respectively. The same on the Bode plot:
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Bode plot: advantages

− factors add up on both magnitude and phase plots, meaning the Bode
plots of systems with real-rational transfer functions, like

G (s) =
bm

∏
i (s − zi )

∏
j(s

2 + 2�z;i!z;i s + !
2
z;i )∏

i (s − pi )
∏

i (s
2 + 2�p;i!p;i s + !2

p;i )

can be built by superposing frequency responses of 3 basic blocks3

0. static gain, like k for k ∈ R \ {0}
1. first-order factor, like s + a, for a ∈ R

2. second-order factor, like s2+2�!ns+!
2
n , for � ∈ (−1; 1) & !n > 0

− very large magnitudes are not that large in dB

− logarithmic frequency scale facilitates viewing wider frequency ranges

3If they are in denominators, then both their magnitude (dB) and phase change sign.
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Basic blocks: static gain

If G (s) = k , then

G (j!) = k = |k|
{
ej0 if k > 0

e−j� if k < 0

and both magnitude and phase plots are horizontal lines:

if k > 0 if k < 0
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Basic blocks: 1-order factor, a = 0

If G (s) = s, then
G (j!) = j! = !ej�=2

and

− the Bode magnitude plot is a straight line with the +20 dB/dec slope,
passing through the 0 dB level at ! = 1 rad/sec

− the Bode phase plot is a horizontal line
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Basic blocks: 1-order factor, a ̸= 0

If a ̸= 0, then it is convenient to normalize the static gain of s + a. Hence,
the basic block is G (s) = �s + 1 for � = 1=a ̸= 0, for which

G (j!) = 1 + j�! =
√

1 + �2!2 ej arctan(�!)

The magnitude can be approximated as

|G (j!)| =
√

1 + �2!2 ≈
{
1 if |� |! < 1

|� |! if |� |! > 1

which corresponds to straight lines (the frequency ! = 1=� is known as the
corner frequency). The phase can be approximated as

arg(G (j!)) = arctan(�!) ≈ sign �


0◦ if |� |! < 1

10

45◦(1 + log10 !) if 1
10 ≤ |� |! ≤ 10

90◦ if |� |! > 10

(error within ±5:711◦), which corresponds to straight lines too for log !.
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Basic blocks: 1-order factor, a ̸= 0 (contd)

Thus, precise (solid) and approximate (dashed) Bode plots are

if � > 0 if � < 0

− drawing precise Bode is easy nowadays (e.g. bode in Matlab)

− approximate Bode is still useful for a quick mental grasping
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Basic blocks: 2-order factor, � ̸= 0

If G (s) = (s=!n)
2 + 2�(s=!n) + 1 (with the normalized static gain), then

G (j!) = 1− !2

!2
n

+ j 2�
!

!n
=

√(
1− !2

!2
n

)2
+ 4�2

!2

!2
n

ej arg(G(j!));

where, assuming arctan� ∈ [−�=2; �=2],

arg(G (j!)) = arctan
2�!=!n

1− !2=!2
n

+


0 if ! ≤ !n

� if ! ≥ !n ∧ � > 0

−� if ! ≥ !n ∧ � < 0

which is a continuous and monotonic function of ! (increasing if � > 0 and
decreasing if � < 0). Both the magnitude and phase may be approximated
by piecewise linear functions, but this is accurate only around |�| = 1=

√
2.
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Basic blocks: 2-order factor, � ̸= 0 (contd)

The derivative of the magnitude

|G (j!)|
d!

=
2

|G (j!)|
!

!n︸ ︷︷ ︸
>0; ∀!>0

(!2

!2
n

+ 2�2 − 1
)
:

Hence,

− if |�| ≥ 1√
2
, then |G (j!)| is monotonically increasing

− if |�| < 1√
2
, then |G (j!)|

− monotonically decreases for ! <
√
1− 2�2!n

− monotonically increases for ! >
√
1− 2�2!n

− has
min
!

|G (j!)| = 2�
√
1− �2 =

�0 1=
√
2

0

1

attainable at ! =
√
1− 2�2!n < !n
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Basic blocks: 2-order factor, � ̸= 0 (contd)

Thus, precise (solid) and approximate (dashed) Bode plots are

if � > 0 if � < 0

If � is “far” from 1=
√
2, the

− approximate Bode plots are not quite accurate around ! = !n
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Basic blocks: 2-order factor, � = 0

If G (s) = (s=!n)
2 + 1 (the static gain is again normalized), then

G (j!) = 1− !2

!2
n

=
∣∣∣1− !2

!2
n

∣∣∣{ej0 if ! < !n

ej� if ! > !n

resulting in
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Example 1

If

G1(s) =
−s + 1

s + 1

then

=⇒

and the high-frequency gain is G1(∞) = 1 = 0 dB.
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Example 2

If

G2(s) =
4s2 + s=2 + 1

s2 + s + 1

then

=⇒

and the high-frequency gain is G2(∞) = 4 ≈ 12 dB.
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Example 3

If

G3(s) =
0:9

(2s + 1)2

then

=⇒

and the magnitude decays at high frequencies with a slope of −40 dB/dec.
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Example 4

If

G (s) = G1(s)G2(s)G3(s) =
0:9(−s + 1)(4s2 + s=2 + 1)

(s + 1)(2s + 1)2(s2 + s + 1)

then

=⇒
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Asymptotic properties of Bode plots: magnitude

At low frequencies:

− every zero at the origin contributes a slope of +20 dB/dec

− every integrator (pole at the origin) contributes a slope of −20 dB/dec

− if no poles/zeros at the origin, starts as a horizontal line at |G (0)|(dB)

At high frequencies:

− every zero adds a slope of +20 dB/dec

− every pole adds a slope of −20 dB/dec

− if G (s) is bi-proper, ends as a horizontal line at |G (∞)|(dB)
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Asymptotic properties of Bode plots: phase

At low frequencies:

− every zero at the origin contributes a phase lead of +90◦

− every integrator (pole at the origin) contributes a phase lag of −90◦

At high frequencies:

− every zero in C \ C0 = {s ∈ C | Re s ≤ 0} adds a phase lead of 90◦

− every pole in C \ C0 = {s ∈ C | Re s ≤ 0} adds a phase lag of −90◦

− every zero in C0 = {s ∈ C | Re s > 0} adds a phase lag of −90◦

− every pole in C0 = {s ∈ C | Re s > 0} adds a phase lead of 90◦
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Bode for non-rational transfer functions

If
G (s) = D̄� (s) = e−�s ; � > 0

then G (j!) = e−j�! , so that |G (j!)| = 1 and arg(G (j!)) = −�! [rad]. We
therefore have
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Bode for non-rational transfer functions (contd)

If

G (s) = Gfmi;�(s) =
1− e−�s

s
; � > 0

then

G (j!) =
1− e−j�!

j!
= �

ej�!=2 − e−j�!=2

j2�!=2
e−j�!=2 = � sinc

(�!
2

)
e−j�!=2

and we have
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Polar plot

Shows ImG (j!) vs. ReG (j!) as the frequency ! grows from 0 to ∞, with
an arrow indicating the growth direction of !.

Example 4:

G (s) =
0:9(−s + 1)(4s2 + s=2 + 1)

(s + 1)(2s + 1)2(s2 + s + 1)
=⇒

Re

Im

0 0.9

! = 0! = ∞

! = !1 = 0.1

|G (j!
1 )|

arg(G (j!
1))

Polar plots are

− less informative than Bode the frequency is hidden

− harder to draw manually than Bode no superposition rules hold

− produced by the nyquist command of Matlab
Draws the plot for −∞ < ! <∞ (aka the Nyquist diagram). To produce the plain

polar plot, use setoptions(nyquistplot(G),’ShowFullContour’,’off’)

− very important in feedback control applications (the Nyquist criterion)
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|G (j!
1 )|

arg(G (j!
1))

Polar plots are

− less informative than Bode the frequency is hidden

− harder to draw manually than Bode no superposition rules hold

− produced by the nyquist command of Matlab
Draws the plot for −∞ < ! <∞ (aka the Nyquist diagram). To produce the plain

polar plot, use setoptions(nyquistplot(G),’ShowFullContour’,’off’)

− very important in feedback control applications (the Nyquist criterion)
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Some polar plots

Re

Im

0 0.5 1

−0.5

! = 0

! = 1
2�!

=
1

�!
=

2
�

! =
5
�

! = ∞

G (s) =
1

�s + 1

Re

Im

0 1

!
=

!n

!
=

!n

!
=

!n

!
=

!n

! = 0! = ∞

� = 2
� = 1=

√
2

� = 0.4
� = 0.3

G (s) =
1

s2=!2
n + 2�s=!n + 1
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Some polar plots (contd)

Re

Im

−1

! = ∞

! = k
G (s) =

k

s
, k > 0

Re

Im−k� −k�=2

−k�=2

! = ∞

! = 1
�

G (s) =
k

s(�s + 1)
, k > 0
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Some polar plots (contd)

Re

Im

1−1

! = 0

G (s) = e−�s

or

G (s) =
(−�s + 1

�s + 1

)2

Re

Im

�

! = ∞ ! = 0

!
=

�
�

G (s) =
1− e−�s

s
, � > 0
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Outline

Systems as filters I

Frequency response plots

Systems as filters II
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Butterworth polynomials

The Butterworth polynomial of degree n, Bn(s), is the Hurwitz polynomials
such that

|Bn(j!)|2 = 1 + !2n

Its general form is (depending on whether n is even or odd)

Bn(s) =
n=2∏
i=1

(s2 + 2�i s + 1) or Bn(s) = (s + 1)
(n−1)=2∏

i=1

(s2 + 2�i s + 1)

where

�i ··= sin
(2i − 1

2n
�
)
∈ (0; 1); i ∈ Z1::⌊n=2⌋

Roots of Bn(s) are at equally-spaced points in {s ∈ C | Re s < 0∧ |s| = 1}.
Particular cases:

B1(s) = s + 1; B2(s) = s2 +
√
2s + 1; B3(s) = (s + 1)(s2 + s + 1):
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Low-pass Butterworth filter

The n-order low-pass filter

F (s) =
1

Bn(s=!b)
=⇒ |F (j!)| = 1√

1 + (!=!b)2n

is monotonically decreasing with |F (j!b)| = 1√
2
(i.e. !b is its bandwidth):
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High-pass Butterworth filter

The n-order high-pass filter

F (s) =
(s=!c)

n

Bn(s=!c)
=⇒ |F (j!)| = (!=!c)

n√
1 + (!=!c)2n

is monotonically increasing with |F (j!c)| = 1√
2
(i.e. !c is its cut-off freq.):
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Example from Lect. 3

yym
n

The question was

− how signal (y) can be recovered from its corrupt measurements (ym) ?

This might appear a tough task, for there is no way we can separate y from
n in the time domain . . . But in the frequency domain these signals are well
separated,

YYm N

suggesting that the frequency-domain viewpoint is valuable.
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Example from Lect. 3 (contd)

If we process the measurement by a low-pass filter (4-order Butterworth in
this case), then the result,

YNYmYf

separates the slow signal y from fast noise n. In the time domain,

y
n

ymyf

although with certain phase lag . . .
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Example from Lect. 3 (contd)

If we process the measurement by a low-pass filter (4-order Butterworth in
this case), then the result,

YNYmYf

separates the slow signal y from fast noise n. In the time domain,

y
n

ymyf

although with certain phase lag . . .
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Notch filter

Is a narrow stopband band-stop filter of the form

F (s) =
s2 + !2

0

s2 + 2�!0s + !2
0

=⇒ |F (j!)| =
√

(!2 − !2
0)

2

(!2 − !2
0)

2 + 4�2!2
0!

2

is

− monotonically decreasing in ! < !0

− monotonically increasing in ! > !0

with

|F (j!)| = 1√
2

⇐⇒ ! =

{
!1 ··= (

√
1 + �2 − �)!0 < !0

!2 ··= (
√

1 + �2 + �)!0 > !0 = 1=!1

i.e. (!1; !2) is its stopband (a decade if � = 0:45
√
10 ≈ 1:423).
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Notch filter

with stopbands (!0=
√
10;

√
10!0) (decade), (0:5!0; 2!0), (!0=

√
2;
√
2!0)

(octave), and (0:9!0; !0=0:9).
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