# Linear Systems (034032) lecture no. 9

#### Leonid Mirkin

Faculty of Mechanical Engineering Technion—IIT



# Previously on Linear Systems . . .

Let G be a stable continuous-time LTI system with the impulse response g. Its frequency response  $G(j\omega) = (\mathfrak{F}\{g\})(j\omega)$  or

$$G(j\omega) = G(s)|_{s=j\omega} = (\mathfrak{L}{g})(j\omega).$$

In the discrete-time case, the frequency response  $G(e^{j\theta}) = (\mathfrak{F}\{g\})(e^{j\theta})$  or

$$G(e^{j\theta}) = G(z)|_{z=e^{j\theta}} = (\Im\{g\})(e^{j\theta}).$$

The frequency response shapes

- the response to harmonic inputs
- the response to periodic inputs
- the steady-state response to test sine wave inpute

Systems as filters II

Outline

Systems as filters I

Frequency response plots

Systems as filters II

Systems as filters II

Outline

Systems as filters I

Frequency response plots

Systems as filters II

## Frequency-domain response of LTI systems

By the convolution property of the Fourier transform,

 $y(t) = (Gu)(t) \iff Y(j\omega) = G(j\omega)U(j\omega)$ 

whenever the corresponding Fourier transforms exist.

This multiplication property

- facilitates the use of LTI system as filters,

whose task is to shape the spectrum of signals of interest (to pass "desired" components and to block "unwanted" ones).

#### Frequency-domain response of LTI systems

By the convolution property of the Fourier transform,

$$y(t) = (Gu)(t) \iff Y(j\omega) = G(j\omega)U(j\omega)$$

whenever the corresponding Fourier transforms exist. Hence, the frequency response of G just scales every harmonic component of the input, so that

- harmonics with frequencies  $\omega$  at which  $|G(j\omega)| > 1$  are amplified
- $-\,$  harmonics with frequencies  $\omega$  at which  $|{\cal G}({\rm j}\omega)|<1$  are attenuated
- harmonics with frequencies  $\omega$  at which  $|G(j\omega)| < 1/\sqrt{2}$  do not pass this is a convention, facilitating categorical conclusions; take it with a grain of salt

#### This multiplication property

#### - facilitates the use of LTI system as filters,

whose task is to shape the spectrum of signals of interest (to pass "desired" components and to block "unwanted" ones).

#### Frequency-domain response of LTI systems

By the convolution property of the Fourier transform,

$$y(t) = (Gu)(t) \iff Y(j\omega) = G(j\omega)U(j\omega)$$

whenever the corresponding Fourier transforms exist. Hence, the frequency response of G just scales every harmonic component of the input, so that

- harmonics with frequencies  $\omega$  at which  $|G(j\omega)| > 1$  are amplified
- harmonics with frequencies  $\omega$  at which  $|G(j\omega)| < 1$  are attenuated
- harmonics with frequencies  $\omega$  at which  $|G(j\omega)| < 1/\sqrt{2}$  do not pass this is a convention, facilitating categorical conclusions; take it with a grain of salt

This multiplication property

- facilitates the use of LTI system as filters,

whose task is to shape the spectrum of signals of interest (to pass "desired" components and to block "unwanted" ones).

#### Kinneret water level h from Sep 1993 to Sep 2004



If processed by the finite-memory integrator, so that  $h_{\rm a}=G_{{\rm fmi},1}h$  or

$$h_{\mathsf{a}}(t) = \int_{t-1}^{t} h(s) \mathrm{d}s \iff H_{\mathsf{a}}(s) = \frac{1 - \mathrm{e}^{-s}}{s} H(s)$$

(average over the last year), we end up with



## Example: frequency-domain insight

The amplitude spectrum of h (with  $h_{red,up}$  taken as zero) is

$$-\frac{1}{2\pi}$$
  $0$   $2\pi$   $\omega$  [rad/year]

The frequency response magnitude of  $G_{fmi,1}$ ,

$$|G_{\mathsf{fmi},1}(\mathsf{j}\omega)| = \left|\frac{1-\mathsf{e}^{-\mathsf{j}\omega}}{\mathsf{j}\omega}\right| = \left|\mathsf{sinc}\left(\frac{\omega}{2}\right)\right| = \int_{0}^{1} \int_{2\pi}^{2\pi} \frac{4\pi}{4\pi} \frac{\omega}{\omega},$$

is zero at  $\omega=2\pi$  , so the peaks at  $\omega=\pm 2\pi \; [{\rm rad/year}]$  are filtered out,



eliminating the effect of annual cycles.

# Classification

Depending on their purpose, filters may be categorized as

- $\begin{array}{l} \quad \text{low-pass filters allow only harmonics with } \omega \leq \omega_b \text{ to pass} \\ \text{i.e. } |G(j\omega)| \geq \frac{1}{\sqrt{2}} \iff \omega \leq \omega_b \text{, which is known as the bandwidth of } G \end{array}$
- $\ \ \, high-pass filters allow only harmonics with ω ≥ ω<sub>c</sub> to pass i.e. |G(jω)| ≥ \frac{1}{\sqrt{2}} \iff ω ≥ ω<sub>c</sub>, which is known as the cutoff frequency of G$
- − band-pass filters allow only harmonics with  $ω_1 \le ω \le ω_2$  to pass i.e.  $|G(jω)| \ge \frac{1}{\sqrt{2}} \iff ω \in [ω_1, ω_2]$
- − band-stop filters allow only harmonics with  $ω \le ω_1$  and  $ω \ge ω_2$  to pass i.e.  $|G(jω)| \ge \frac{1}{\sqrt{2}} \iff ω \notin (ω_1, ω_2)$ , which is known as the stopband of *G*

The question is

— what are systems, whose frequency responses are such filters?

# Classification

Depending on their purpose, filters may be categorized as

- $\begin{array}{l} \quad \text{low-pass filters allow only harmonics with } \omega \leq \omega_b \text{ to pass} \\ \text{i.e. } |G(j\omega)| \geq \frac{1}{\sqrt{2}} \iff \omega \leq \omega_b \text{, which is known as the bandwidth of } G \end{array}$
- $\ \ \, high-pass filters allow only harmonics with ω ≥ ω<sub>c</sub> to pass i.e. |G(jω)| ≥ \frac{1}{\sqrt{2}} \iff ω ≥ ω<sub>c</sub>, which is known as the cutoff frequency of G$
- − band-pass filters allow only harmonics with  $ω_1 \le ω \le ω_2$  to pass i.e.  $|G(jω)| \ge \frac{1}{\sqrt{2}} \iff ω \in [ω_1, ω_2]$
- − band-stop filters allow only harmonics with  $ω \le ω_1$  and  $ω \ge ω_2$  to pass i.e.  $|G(jω)| \ge \frac{1}{\sqrt{2}} \iff ω \notin (ω_1, ω_2)$ , which is known as the stopband of *G*

The question is

- what are systems, whose frequency responses are such filters?

# Ideal filters

ideal low-pass has

$$F_{\mathsf{ilp},\omega_{\mathsf{b}}}(\mathsf{j}\omega) = \mathsf{rect}_{2\omega_{\mathsf{b}}}(\omega) \iff f_{\mathsf{ilp},\omega_{\mathsf{b}}}(t) = \frac{\omega_{\mathsf{b}}}{\pi}\mathsf{sinc}(\omega_{\mathsf{b}}t)$$

(see Lect. 3, Slide 37) and is non-causal and even BIBO *un*stable<sup>1</sup>, for  $f_{i|p,\omega_b} \notin L_1$ . Hence, not quite practical.

- ideal high-pass  $F_{ihp,\omega_c} = 1 - F_{ilp,\omega_c}$  and  $f_{inp,\omega_b}(t) = \delta(t) - \frac{\omega_b}{\pi} \operatorname{sinc}(\omega_b t)$ - ideal band-pass has

 $\mathcal{F}_{ ext{ibp},[\omega_1,\omega_2]}( ext{j}\omega) = ext{rect}_{2\omega_2}(\omega) - ext{rect}_{2\omega_1}(\omega)$ 

 $f_{\text{ibp},[\omega_1,\omega_2]}(t) = \frac{\omega_2}{\pi} \operatorname{sinc}(\omega_2 t) - \frac{\omega_1}{\pi} \operatorname{sinc}(\omega_1 t) = 0$ 

<sup>&</sup>lt;sup>1</sup>But, strangely enough, it is  $L_2$ -stable, try to prove it with the material of Lects. 3 & 6.

# Ideal filters

ideal low-pass has

$$F_{\mathsf{ilp},\omega_{\mathsf{b}}}(\mathsf{j}\omega) = \mathsf{rect}_{2\omega_{\mathsf{b}}}(\omega) \iff f_{\mathsf{ilp},\omega_{\mathsf{b}}}(t) = \frac{\omega_{\mathsf{b}}}{\pi}\operatorname{sinc}(\omega_{\mathsf{b}}t)$$

(see Lect. 3, Slide 37) and is non-causal and even BIBO *un*stable<sup>1</sup>, for  $f_{i|p,\omega_b} \notin L_1$ . Hence, not quite practical.

- ideal high-pass  $F_{ihp,\omega_c} = 1 - F_{ilp,\omega_c}$  and  $f_{ihp,\omega_b}(t) = \delta(t) - \frac{\omega_b}{\pi} \operatorname{sinc}(\omega_b t)$ 

 $F_{\text{ibp},[\omega_1,\omega_2]}(j\omega) = \operatorname{rect}_{2\omega_2}(\omega) - \operatorname{rect}_{2\omega_1}(\omega)$  $\hat{\downarrow}$  $p_{p,[\omega_1,\omega_2]}(t) = \frac{\omega_2}{\pi}\operatorname{sinc}(\omega_2 t) - \frac{\omega_1}{\pi}\operatorname{sinc}(\omega_1 t) =$ 

<sup>&</sup>lt;sup>1</sup>But, strangely enough, it is  $L_2$ -stable, try to prove it with the material of Lects. 3 & 6.

# Ideal filters

ideal low-pass has

$$F_{\mathsf{ilp},\omega_{\mathsf{b}}}(\mathsf{j}\omega) = \mathsf{rect}_{2\omega_{\mathsf{b}}}(\omega) \iff f_{\mathsf{ilp},\omega_{\mathsf{b}}}(t) = \frac{\omega_{\mathsf{b}}}{\pi}\mathsf{sinc}(\omega_{\mathsf{b}}t)$$

(see Lect. 3, Slide 37) and is non-causal and even BIBO *un*stable<sup>1</sup>, for  $f_{ilp,\omega_b} \notin L_1$ . Hence, not quite practical.

- ideal high-pass  $F_{ihp,\omega_c} = 1 F_{ilp,\omega_c}$  and  $f_{ihp,\omega_b}(t) = \delta(t) \frac{\omega_b}{\pi} \operatorname{sinc}(\omega_b t)$
- ideal band-pass has

$$F_{\mathrm{ibp},[\omega_1,\omega_2]}(\mathrm{j}\omega) = \mathrm{rect}_{2\omega_2}(\omega) - \mathrm{rect}_{2\omega_1}(\omega)$$

$$f_{\mathrm{ibp},[\omega_1,\omega_2]}(t) = \frac{\omega_2}{\pi}\operatorname{sinc}(\omega_2 t) - \frac{\omega_1}{\pi}\operatorname{sinc}(\omega_1 t) = \underbrace{(\omega_2 - \omega_1)/\pi}_{0 \pi/\omega_2 \pi/\omega_1 - t}$$

<sup>&</sup>lt;sup>1</sup>But, strangely enough, it is  $L_2$ -stable, try to prove it with the material of Lects. 3 & 6.

i

# Ideal filters

ideal low-pass has

$$F_{\mathsf{ilp},\omega_{\mathsf{b}}}(\mathsf{j}\omega) = \mathsf{rect}_{2\omega_{\mathsf{b}}}(\omega) \iff f_{\mathsf{ilp},\omega_{\mathsf{b}}}(t) = \frac{\omega_{\mathsf{b}}}{\pi}\mathsf{sinc}(\omega_{\mathsf{b}}t)$$

(see Lect. 3, Slide 37) and is non-causal and even BIBO *un*stable<sup>1</sup>, for  $f_{ilp,\omega_b} \notin L_1$ . Hence, not quite practical.

- ideal high-pass  $F_{ihp,\omega_c} = 1 F_{ilp,\omega_c}$  and  $f_{ihp,\omega_b}(t) = \delta(t) \frac{\omega_b}{\pi} \operatorname{sinc}(\omega_b t)$
- ideal band-pass has

$$F_{ibp,[\omega_1,\omega_2]}(j\omega) = \operatorname{rect}_{2\omega_2}(\omega) - \operatorname{rect}_{2\omega_1}(\omega)$$

$$f_{ibp,[\omega_1,\omega_2]}(t) = \frac{\omega_2}{\pi}\operatorname{sinc}(\omega_2 t) - \frac{\omega_1}{\pi}\operatorname{sinc}(\omega_1 t) = \underbrace{(\omega_2 - \omega_1)/\pi}_{0 \pi/\omega_2 \pi/\omega_1 - t}$$
deal band-stop  $F_{ibs,[\omega_1,\omega_2]} = 1 - F_{ibp,[\omega_1,\omega_2]}$ 

<sup>1</sup>But, strangely enough, it is  $L_2$ -stable, try to prove it with the material of Lects. 3 & 6.

Systems as filters II

# Outline

Systems as filters I

Frequency response plots

Systems as filters II

# Decibels

Decibel (dB) is a unit of measurement expressing the ratio of two values of a root-power quantity on a logarithmic scale. Applying to  $|G(j\omega)|$ , it is

 $|G(j\omega)|_{(dB)} := 20 \log_{10} |G(j\omega)|$ 

Useful properties:

$$- |G_{1}(j\omega)G_{2}(j\omega)|_{(dB)} = |G_{1}(j\omega)|_{(dB)} + |G_{2}(j\omega)|_{(dB)}$$
$$- |[G(j\omega)]^{n}|_{(dB)} = n|G(j\omega)|_{(dB)} \text{ for all } n \in \mathbb{R}$$
$$- \left|\frac{1}{G(j\omega)}\right|_{(dB)} = -|G(j\omega)|_{(dB)}$$
$$- \left|\frac{G_{1}(j\omega)}{G_{2}(j\omega)}\right|_{(dB)} = |G_{1}(j\omega)|_{(dB)} - |G_{2}(j\omega)|_{(dB)}$$

Some common values<sup>2</sup> (memorize those in blue):

<sup>&</sup>lt;sup>2</sup>The mag2db and db2mag commands of Matlab are handy.

# Bode plot

Consists of

- Bode magnitude plot of  $|G(j\omega)|$  (in dB) vs.  $\omega$  (in logarithmic scale)
- Bode phase plot of  $\arg(G(j\omega))$  (in deg) vs.  $\omega$  (in logarithmic scale)

In the logarithmic scale the distance between  $\omega_0$  and  $N\omega_0$  does *not* depend on  $\omega_0$  for a given  $N \in \mathbb{R}_+$  (N = 2 is an octave, N = 10 is a decade).

#### Example: For $G_{ ext{therm}}(s) = 1/( au s + 1)$

$$G_{\text{therm}}(j\omega) = \frac{1}{\sqrt{1 + \tau^2 \omega^2}} e^{-j \arctan(\tau \omega)}$$

with the magnitude and phase as

respectively. The same on the Bode plot:

# Bode plot

#### Consists of

- Bode magnitude plot of  $|G(j\omega)|$  (in dB) vs.  $\omega$  (in logarithmic scale)
- Bode phase plot of  $\arg(G(j\omega))$  (in deg) vs.  $\omega$  (in logarithmic scale)

In the logarithmic scale the distance between  $\omega_0$  and  $N\omega_0$  does *not* depend on  $\omega_0$  for a given  $N \in \mathbb{R}_+$  (N = 2 is an octave, N = 10 is a decade).

Example: For 
$$G_{\text{therm}}(s) = 1/(\tau s + 1)$$
,  
 $G_{\text{therm}}(j\omega) = \frac{1}{\sqrt{1 + \tau^2 \omega^2}} e^{-j \arctan(\tau \omega)}$   
with the magnitude and phase as  
 $\frac{1}{\sqrt{\tau^2}} \int_{0}^{0} \frac{1}{\sqrt{\tau}} \int_{0}^{0} \frac{1}{\sqrt{\tau^2}} \int_{0}^{0} \frac{\tau^2}} \int_{0}^{0} \frac{1}{$ 

respectively. The same on the Bode plot:



#### Bode plot: advantages

 factors add up on both magnitude and phase plots, meaning the Bode plots of systems with real-rational transfer functions, like

$$G(s) = \frac{b_m \prod_i (s - z_i) \prod_j (s^2 + 2\zeta_{z,i}\omega_{z,i}s + \omega_{z,i}^2)}{\prod_i (s - p_i) \prod_i (s^2 + 2\zeta_{p,i}\omega_{p,i}s + \omega_{p,i}^2)}$$

- can be built by superposing frequency responses of 3 basic blocks<sup>3</sup> 0. static gain, like k for  $k \in \mathbb{R} \setminus \{0\}$ 
  - 1. first-order factor, like s + a, for  $a \in \mathbb{R}$
  - 2. second-order factor, like  $s^2 + 2\zeta \omega_n s + \omega_n^2$ , for  $\zeta \in (-1, 1)$  &  $\omega_n > 0$
- very large magnitudes are not that large in dB
- logarithmic frequency scale facilitates viewing wider frequency ranges

 $<sup>^{3}\</sup>mbox{If}$  they are in denominators, then both their magnitude (dB) and phase change sign.

# Basic blocks: static gain

If G(s) = k, then

$$G(j\omega) = k = |k| \begin{cases} e^{j0} & \text{if } k > 0\\ e^{-j\pi} & \text{if } k < 0 \end{cases}$$

and both magnitude and phase plots are horizontal lines:



## Basic blocks: 1-order factor, a = 0

If G(s) = s, then

$$G(j\omega) = j\omega = \omega e^{j\pi/2}$$

and

- $-\,$  the Bode magnitude plot is a straight line with the  $+20~{\rm dB/dec}$  slope, passing through the 0 dB level at  $\omega=1\,{\rm rad/sec}$
- the Bode phase plot is a horizontal line



#### Basic blocks: 1-order factor, $a \neq 0$

If  $a \neq 0$ , then it is convenient to normalize the static gain of s + a. Hence, the basic block is  $G(s) = \tau s + 1$  for  $\tau = 1/a \neq 0$ , for which

$$G(j\omega) = 1 + j\tau\omega = \sqrt{1 + \tau^2\omega^2} e^{j \arctan(\tau\omega)}$$

The magnitude can be approximated as

$$|G(j\omega)| = \sqrt{1 + \tau^2 \omega^2} \approx \begin{cases} 1 & \text{if } |\mathbf{r}|\omega < 1 \\ |\mathbf{r}|\omega & \text{if } |\mathbf{r}|\omega > 1 \end{cases}$$

which corresponds to straight lines (the frequency  $\omega=1/ au$  is known as the corner frequency). The phase can be approximated as

$$\frac{1}{2n} \ge \omega_1 z$$
 [  $\beta = 0^{-2}$ ]  
 $(\omega_1) \ge \omega_1 z$ ]  $\beta = (\omega_{0,1} z ol + 1)^{-2} b$ }  $\tau z z c \approx (\omega \tau) a t z \tau m = ((\omega_1) O) z \tau m = (0, 0) O z \tau m = (0, 0) O$ 

(error within  $\pm 5.711^{\circ}$ ), which corresponds to straight lines too for log  $\omega$ .

### Basic blocks: 1-order factor, $a \neq 0$

If  $a \neq 0$ , then it is convenient to normalize the static gain of s + a. Hence, the basic block is  $G(s) = \tau s + 1$  for  $\tau = 1/a \neq 0$ , for which

$$G(j\omega) = 1 + j\tau\omega = \sqrt{1 + \tau^2\omega^2} e^{j \arctan(\tau\omega)}$$

The magnitude can be approximated as

$$|G(j\omega)| = \sqrt{1 + \tau^2 \omega^2} pprox egin{cases} 1 & ext{if } | au|\omega < 1 \ | au|\omega & ext{if } | au|\omega > 1 \end{cases}$$

which corresponds to straight lines (the frequency  $\omega = 1/\tau$  is known as the corner frequency). The phase can be approximated as

$$\arg(G(j\omega)) = \arctan(\tau\omega) \approx \operatorname{sign} \tau \begin{cases} 0^{\circ} & \text{if } |\tau|\omega < \frac{1}{10} \\ 45^{\circ}(1 + \log_{10}\omega) & \text{if } \frac{1}{10} \le |\tau|\omega \le 10 \\ 90^{\circ} & \text{if } |\tau|\omega > 10 \end{cases}$$

(error within  $\pm 5.711^{\circ}$ ), which corresponds to straight lines too for log  $\omega$ .

#### Basic blocks: 1-order factor, $a \neq 0$ (contd)

Thus, precise (solid) and approximate (dashed) Bode plots are



- drawing precise Bode is easy nowadays (e.g. bode in Matlab)
- approximate Bode is still useful for a quick mental grasping

## Basic blocks: 2-order factor, $\zeta \neq 0$

If  $G(s) = (s/\omega_n)^2 + 2\zeta(s/\omega_n) + 1$  (with the normalized static gain), then

$$G(j\omega) = 1 - \frac{\omega^2}{\omega_n^2} + j 2\zeta \frac{\omega}{\omega_n} = \sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + 4\zeta^2 \frac{\omega^2}{\omega_n^2}} e^{j \arg(G(j\omega))},$$

where, assuming  $\arctan\phi\in [-\pi/2,\pi/2]$ ,

$$\arg(G(j\omega)) = \arctan \frac{2\zeta \omega / \omega_{n}}{1 - \omega^{2} / \omega_{n}^{2}} + \begin{cases} 0 & \text{if } \omega \leq \omega_{n} \\ \pi & \text{if } \omega \geq \omega_{n} \wedge \zeta > 0 \\ -\pi & \text{if } \omega \geq \omega_{n} \wedge \zeta < 0 \end{cases}$$

which is a continuous and monotonic function of  $\omega$  (increasing if  $\zeta > 0$  and decreasing if  $\zeta < 0$ ). Both the magnitude and phase may be approximated by piecewise linear functions, but this is accurate only around  $|\zeta| = 1/\sqrt{2}$ .

# Basic blocks: 2-order factor, $\zeta \neq 0$ (contd)

The derivative of the magnitude

$$\frac{|G(j\omega)|}{d\omega} = \underbrace{\frac{2}{|G(j\omega)|} \frac{\omega}{\omega_{n}}}_{>0, \forall \omega > 0} \left(\frac{\omega^{2}}{\omega_{n}^{2}} + 2\zeta^{2} - 1\right).$$

Hence,

- $\begin{array}{l} \quad \text{if } |\zeta| \geq \frac{1}{\sqrt{2}}, \text{ then } |G(j\omega)| \text{ is monotonically increasing} \\ \quad \text{if } |\zeta| < \frac{1}{\sqrt{2}}, \text{ then } |G(j\omega)| \end{array}$ 
  - monotonically decreases for  $\omega < \sqrt{1-2\zeta^2}\omega_{\rm n}$
  - monotonically increases for  $\omega > \sqrt{1-2\zeta^2}\omega_n$
  - has

$$\min_{\omega}|G(j\omega)| = 2\zeta\sqrt{1-\zeta^2} = \int_{0}^{1} \int_{1/\sqrt{2}-\zeta}^{1/\sqrt{2}-\zeta}$$

attainable at  $\omega=\sqrt{1-2\zeta^2}\omega_{\rm n}<\omega_{\rm n}$ 

#### Basic blocks: 2-order factor, $\zeta \neq 0$ (contd)

Thus, precise (solid) and approximate (dashed) Bode plots are



If  $\zeta$  is "far" from  $1/\sqrt{2}$ , the

– approximate Bode plots are not quite accurate around  $\omega=\omega_{\mathsf{n}}$ 

## Basic blocks: 2-order factor, $\zeta = 0$

If  $G(s) = (s/\omega_n)^2 + 1$  (the static gain is again normalized), then

$$G(j\omega) = 1 - \frac{\omega^2}{\omega_n^2} = \left| 1 - \frac{\omega^2}{\omega_n^2} \right| \begin{cases} e^{j0} & \text{if } \omega < \omega_n \\ e^{j\pi} & \text{if } \omega > \omega_n \end{cases}$$

resulting in



lf

# Example 1





and the high-frequency gain is  $G_1(\infty) = 1 = 0 \, dB$ .



$$G_2(s) = rac{4s^2 + s/2 + 1}{s^2 + s + 1}$$

#### then



and the high-frequency gain is  $G_2(\infty) = 4 \approx 12 \, \text{dB}.$ 

# $G_3(s) = rac{0.9}{(2s+1)^2}$



lf



and the magnitude decays at high frequencies with a slope of  $-40\,d\text{B}/\text{dec.}$ 

lf

$$G(s) = G_1(s)G_2(s)G_3(s) = rac{0.9(-s+1)(4s^2+s/2+1)}{(s+1)(2s+1)^2(s^2+s+1)}$$

#### then



## Asymptotic properties of Bode plots: magnitude

- At low frequencies:
  - $-\,$  every zero at the origin contributes a slope of  $+20\,dB/dec$
  - every integrator (pole at the origin) contributes a slope of  $-20\,\mathrm{dB/dec}$
  - if no poles/zeros at the origin, starts as a horizontal line at  $|G(0)|_{(dB)}$

- every zero adds a slope of  $+20 \, dB/dec$
- every pole adds a slope of  $-20 \, \text{dB/dec}$
- if G(s) is bi-proper, ends as a horizontal line at  $|G(\infty)|_{(dB)}$

# Asymptotic properties of Bode plots: magnitude

- At low frequencies:
  - $-\,$  every zero at the origin contributes a slope of  $+20\,dB/dec$
  - every integrator (pole at the origin) contributes a slope of  $-20\,\mathrm{dB/dec}$
  - if no poles/zeros at the origin, starts as a horizontal line at  $|G(0)|_{(dB)}$

- every zero adds a slope of  $+20 \, dB/dec$
- every pole adds a slope of  $-20 \, dB/dec$
- if G(s) is bi-proper, ends as a horizontal line at  $|G(\infty)|_{(dB)}$

### Asymptotic properties of Bode plots: phase

At low frequencies:

- $-\,$  every zero at the origin contributes a phase lead of  $+90^\circ$
- $-\,$  every integrator (pole at the origin) contributes a phase lag of  $-90^\circ$

- every zero in  $\mathbb{C} \setminus \mathbb{C}_0 = \{s \in \mathbb{C} \mid \operatorname{Re} s \leq 0\}$  adds a phase lead of 90°
- every pole in  $\mathbb{C}\setminus\mathbb{C}_0=\{s\in\mathbb{C}\mid {\sf Re}\,s\leq 0\}$  adds a phase lag of  $-90^\circ$
- every zero in  $\mathbb{C}_0 = \{s \in \mathbb{C} \mid \text{Re} s > 0\}$  adds a phase lag of  $-90^\circ$
- every pole in  $\mathbb{C}_0 = \{s \in \mathbb{C} \mid \text{Re} s > 0\}$  adds a phase lead of 90°

## Asymptotic properties of Bode plots: phase

At low frequencies:

- $-\,$  every zero at the origin contributes a phase lead of  $+90^\circ$
- $-\,$  every integrator (pole at the origin) contributes a phase lag of  $-90^\circ$

- $\ \, \text{every zero in } \mathbb{C} \setminus \mathbb{C}_0 = \{s \in \mathbb{C} \ | \ \text{Re} \, s \leq 0\} \text{ adds a phase lead of } 90^\circ$
- $\ \, {\rm every \ pole \ in \ } \mathbb{C} \setminus \mathbb{C}_0 = \{s \in \mathbb{C} \ | \ \, {\rm Re} \, s \leq 0\} \ \, {\rm adds \ a \ phase \ lag \ of \ } -90^\circ$
- every zero in  $\mathbb{C}_0 = \{s \in \mathbb{C} \mid \operatorname{Re} s > 0\}$  adds a phase lag of  $-90^\circ$
- -~ every pole in  $\mathbb{C}_0=\{s\in\mathbb{C}\mid {\sf Re}\,s>0\}$  adds a phase lead of  $90^\circ$

### Bode for non-rational transfer functions

lf

$$G(s) = \overline{D}_{\tau}(s) = e^{-\tau s}, \quad \tau > 0$$

then  $G(j\omega) = e^{-j\tau\omega}$ , so that  $|G(j\omega)| = 1$  and  $\arg(G(j\omega)) = -\tau\omega$  [rad]. We therefore have



# Bode for non-rational transfer functions (contd)

lf

$$G(s)=G_{{\sf fmi},\mu}(s)=rac{1-{\sf e}^{-\mu s}}{s},\quad \mu>0$$

#### then

$$G(j\omega) = \frac{1 - e^{-j\mu\omega}}{j\omega} = \mu \frac{e^{j\mu\omega/2} - e^{-j\mu\omega/2}}{j^2 \mu\omega/2} e^{-j\mu\omega/2} = \mu \operatorname{sinc}\left(\frac{\mu\omega}{2}\right) e^{-j\mu\omega/2}$$

and we have



# Polar plot

Shows Im  $G(j\omega)$  vs. Re  $G(j\omega)$  as the frequency  $\omega$  grows from 0 to  $\infty$ , with an arrow indicating the growth direction of  $\omega$ .

# $G(s) = rac{0.9(-s+1)(4s^2+s/2+1)}{(s+1)(2s+1)^2(s^2+s+1)} \quad \Longrightarrow$

Polar plots are

- less informative than Bode
   the frequency is hidden
- harder to draw manually than Bode \_\_\_\_\_ no superposition rules hold
- produced by the avguist command of Matlab Draws the plot for  $-\infty < \omega < \infty$  (aka the Nyquist diagram). To produce the plain polar plot, use set options (nyquist plot (6), 'ShowFullContour', 'off')
- very important in feedback control applications (the Nyquist criterion)

# Polar plot

Shows Im  $G(j\omega)$  vs. Re  $G(j\omega)$  as the frequency  $\omega$  grows from 0 to  $\infty$ , with an arrow indicating the growth direction of  $\omega$ .

Example 4:

$$G(s) = \frac{0.9(-s+1)(4s^2+s/2+1)}{(s+1)(2s+1)^2(s^2+s+1)}$$



Polar plots are

- less informative than Bode
- harder to draw manually than Bode no superposition rules hold
- produced by the nyquist command of Matlab Draws the plot for  $-\infty < \omega < \infty$  (aka the Nyquist diagram). To produce the plain polar plot, use setoptions(nyquistplot(G),'ShowFullContour','off?)
- very important in feedback control applications (the Nyquist criterion)

# Polar plot

Shows Im  $G(j\omega)$  vs. Re  $G(j\omega)$  as the frequency  $\omega$  grows from 0 to  $\infty$ , with an arrow indicating the growth direction of  $\omega$ .

Example 4:

$$G(s) = \frac{0.9(-s+1)(4s^2+s/2+1)}{(s+1)(2s+1)^2(s^2+s+1)}$$



Polar plots are

- less informative than Bode

the frequency is hidden

- harder to draw manually than Bode no superposition rules hold
- produced by the nyquist command of Matlab Draws the plot for  $-\infty < \omega < \infty$  (aka the Nyquist diagram). To produce the plain polar plot, use setoptions(nyquistplot(G),'ShowFullContour','off')
- very important in feedback control applications (the Nyquist criterion)

# Some polar plots



#### Some polar plots (contd)



# Some polar plots (contd)



Systems as filters II

Outline

Systems as filters I

Frequency response plots

Systems as filters II

#### Butterworth polynomials

The Butterworth polynomial of degree n,  $B_n(s)$ , is the Hurwitz polynomials such that

$$|B_n(j\omega)|^2 = 1 + \omega^{2r}$$

Its general form is (depending on whether *n* is even or odd)

$$B_n(s) = \prod_{i=1}^{n/2} (s^2 + 2\zeta_i s + 1)$$
 or  $B_n(s) = (s+1) \prod_{i=1}^{(n-1)/2} (s^2 + 2\zeta_i s + 1)$ 

where

$$\zeta_i := \sin\left(\frac{2i-1}{2n}\pi\right) \in (0,1), \quad i \in \mathbb{Z}_{1..\lfloor n/2 \rfloor}$$

Roots of  $B_n(s)$  are at equally-spaced points in  $\{s \in \mathbb{C} \mid \text{Re} s < 0 \land |s| = 1\}$ . Particular cases:

$$B_1(s) = s + 1, \quad B_2(s) = s^2 + \sqrt{2}s + 1, \quad B_3(s) = (s + 1)(s^2 + s + 1).$$

# Low-pass Butterworth filter

The *n*-order low-pass filter

$$F(s) = rac{1}{B_n(s/\omega_{
m b})} \implies |F(j\omega)| = rac{1}{\sqrt{1 + (\omega/\omega_{
m b})^{2n}}}$$

is monotonically decreasing with  $|F(j\omega_b)| = \frac{1}{\sqrt{2}}$  (i.e.  $\omega_b$  is its bandwidth):



# High-pass Butterworth filter

The *n*-order high-pass filter

$$F(s) = \frac{(s/\omega_{\rm c})^n}{B_n(s/\omega_{\rm c})} \implies |F(j\omega)| = \frac{(\omega/\omega_{\rm c})^n}{\sqrt{1 + (\omega/\omega_{\rm c})^{2n}}}$$

is monotonically increasing with  $|F(j\omega_c)| = \frac{1}{\sqrt{2}}$  (i.e.  $\omega_c$  is its cut-off freq.):



Frequency response plots

Systems as filters II

#### Example from Lect. 3



The question was

- how signal (y) can be recovered from its corrupt measurements  $(y_m)$ ?

This might appear a tough task, for there is no way we can separate y from n in the time domain... But in the frequency domain these signals are well separated,



suggesting that the frequency-domain viewpoint is valuable.

## Example from Lect. 3 (contd)

If we process the measurement by a low-pass filter (4-order Butterworth in this case), then the result,



separates the slow signal y from fast noise n.

although with certain phase lag . . .

# Example from Lect. 3 (contd)

If we process the measurement by a low-pass filter (4-order Butterworth in this case), then the result,



separates the slow signal y from fast noise n. In the time domain,



although with certain phase lag ...

# Notch filter

Is a narrow stopband band-stop filter of the form

$$F(s) = \frac{s^2 + \omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2} \implies |F(j\omega)| = \sqrt{\frac{(\omega^2 - \omega_0^2)^2}{(\omega^2 - \omega_0^2)^2 + 4\zeta^2\omega_0^2\omega^2}}$$

is

- monotonically decreasing in  $\omega < \omega_0$ 

- monotonically increasing in  $\omega > \omega_0$ 

with

$$|F(j\omega)| = \frac{1}{\sqrt{2}} \iff \omega = \begin{cases} \omega_1 := (\sqrt{1+\zeta^2}-\zeta)\omega_0 < \omega_0\\ \omega_2 := (\sqrt{1+\zeta^2}+\zeta)\omega_0 > \omega_0 = 1/\omega_1 \end{cases}$$

i.e.  $(\omega_1, \omega_2)$  is its stopband (a decade if  $\zeta = 0.45\sqrt{10} \approx 1.423$ ).

#### Notch filter



with stopbands  $(\omega_0/\sqrt{10}, \sqrt{10}\omega_0)$  (decade),  $(0.5\omega_0, 2\omega_0)$ ,  $(\omega_0/\sqrt{2}, \sqrt{2}\omega_0)$  (octave), and  $(0.9\omega_0, \omega_0/0.9)$ .