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Reminder: I/O stability via transfer functions

Let G be a system, whose transfer function G (s) is rational, i.e.

G (s) =
NG (s)

DG (s)
=

bms
m + bm−1s

m−1 + · · ·+ b1s + b0
sn + an−1sn−1 + · · ·+ a1s + a0

; bm ̸= 0:

It is said to be proper if n ≥ m. If NG (s) and DG (s) have no common roots
(i.e. are coprime), then the poles of G (s) are the roots of DG (s).

Theorem
If the transfer function G (s) of a continuous-time LTI system G is rational,
then G is causal and I/O stable iff

− G (s) is proper and has no poles in C̄0 ··= {s ∈ C | Re s ≥ 0}

Theorem
If the transfer function G (z) of a discrete-time LTI system G is rational, then

− G is causal iff G (z) is proper and

− G is I/O stable iff G (z) has no poles in C \ D1 = {z ∈ C | |z | ≥ 1}
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I/O stability: key question

While properness is easy to check, finding roots of polynomials may not be,
especially if coefficients depend on some parameters of interest. Try it for

− D2(s) = s2 + ks + 1− k3

− D3(s) = s3 + 2s2 + ks + k2

− D4(s) = s4 − ks3 + 2s2 + s + 3k

− D5(s) = s5 + 2s4 + (k + 2)s3 + 3s2 + ks + 1

or

− D̄2(z) = z2 + kz + 0:75=k

− D̄3(s) = z3 + (1− k)z2 + z + k

− D̄4(s) = z4 − z3 − kz2 + 2kz − 1

But we do not really need root locations. All we need to know is whether

− all roots are in a “good” area of the complex plane.

The latter task may be simpler, as we shall see soon . . .
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Background on polynomials

Terminology: a polynomial is said to be

− Hurwitz if all its roots are in the open left-half plane C \ C̄0

− Schur if all its roots are in the open unit disk D1 ··= {z ∈ C | |z | < 1}
A polynomial is said to be monic if its leading coefficient is equal to 1.

Basics: by the fundamental theorem of algebra,

− a polynomial of degree n has exactly n roots, counting multiplicities.

Every degree-n monic polynomial D(s) can be written as

D(s) = sn + an−1s
n−1 + · · ·+ a1s + a0 = (s − �1)(s − �2) · · · (s − �n)

where �i are roots of D(s). Moreover, if all coefficients of a polynomial are
real and �i with Im�i ̸= 0 is its root, then so is �i = Re�i − j Im�i and

(s − �i )(s − �i ) = s2 − 2Re�i s + |�i |2;

so D(s) can be factored into 1- and 2-order factors with real coefficients.
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Hurwitz polynomials: the necessary condition

If D(s) is Hurwitz, then its real factors,

s + (−�i ) and s2 + (−2Re�j)s + |�j |2;

have only strictly positive coefficients. This implies that

− a monic D(s) is Hurwitz only if all its coefficients are positive,

If the monic assumption is dropped, then the condition can be stated as

− D(s) is Hurwitz only if all its coefficients are nonzero and of the same
sign.

Example: D4(s) = s4 − ks3 + 2s2 + s + 3k has all its coefficients positive iff
(−k > 0) ∧ (3k > 0) = ∅, i.e. it is Hurwitz for no k.

This condition is not sufficient though. For example, s3 + s2 + 4s + 30 has
roots in {−3; 1± j3}, i.e. two of them are in the right-half plane.
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Routh table

Associate with the polynomial ans
n + an−1s

n−1 + · · ·+ a1s + a0 the table

0 r0;1 = an r0;2 = an−2 r0;3 = an−4 · · ·
1 r1;1 = an−1 r1;2 = an−3 r1;3 = an−5 · · ·
2 r2;1 r2;2 r2;3 · · ·
...

...
...

n − 2 rn−2;1 rn−2;2 rn−2;2

n − 1 rn−1;1 rn−1;2

n rn;1

where for each i ∈ Z2::n[
ri ;1 ri ;2 · · ·

]
=

[
ri−2;2 ri−2;3 · · ·

]
− ri−2;1

ri−1;1

[
ri−1;2 ri−1;3 · · ·

]
and if the last required column of an involved row is empty, 0 is taken. It is
called regular if all ri ;1 ̸= 0. Otherwise, it is singular (cannot be completed).
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Routh–Hurwitz criterion

Theorem
Let D(s) be a polynomial of degree n.

1. D(s) is Hurwitz iff the associated Routh table is regular and all n + 1
elements of its first column have the same sign.

2. If the associated Routh table is regular, then D(s) has no roots in jR
and the number of its roots in C0 equals the number of sign changes
in the first column of the table.
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Routh–Hurwitz criterion: degree-2 polynomials

If n = 2, i.e. D(s) = a2s
2 + a1s + a0 for a2 ̸= 0, the Routh table is

0 a2 a0
1 a1 0
2 a0

and we conclude that a degree-2 polynomial is

− Hurwitz iff all its coefficients are nonzero and have the same sign

(do memorize this condition). In other words, the necessary condition is also
sufficient in this case.
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Routh–Hurwitz criterion: degree-3 polynomials

If n = 3, i.e. D(s) = a3s
3 + a2s

2 + a1s + a0 for a3 ̸= 0, the Routh table is

0 a3 a1
1 a2 a0
2 a1 − a0a3=a2 0
3 a0

All elements of its first column have the same sign iff

a2
a3
> 0;

a1
a3

− a0
a2
> 0; and

a0
a3
> 0:

The second inequality is equivalent to a1=a3 > (a0=a3)=(a2=a3) > 0. Thus,
we conclude that a degree-3 polynomial is

− Hurwitz iff all its coefficients are nonzero, have the same sign, and, in
addition, a1a2 > a0a3.

Memorize this condition as well.
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Routh–Hurwitz criterion: degree-4 polynomials

If n = 4, i.e. D(s) = a4s
4 + a3s

3 + a2s
2 + a1s + a0 for a4 ̸= 0, the table is

0 a4 a2 a0
1 a3 a1 0
2 a2 − a1a4=a3 a0
3 a1 − a0a

2
3=(a2a3 − a1a4) 0

4 a0

All elements of its first column have the same sign iff

a3
a4
> 0;

a2
a4

− a1
a3
> 0;

a1
a4

− a0a
2
3

a4(a2a3 − a1a4)
> 0; and

a0
a4
> 0

and it can be shown that a degree-4 polynomial is

− Hurwitz iff all its coefficients are nonzero, have the same sign, and, in
addition, a1a2 > a0a3 + a21 a4=a3

(try to prove that, don’t need to memorize).
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Routh–Hurwitz criterion: examples

D2(s) = s2 + ks + 1− k3 is Hurwitz iff

(k > 0) ∧ (1− k3 > 0) ⇐⇒ 0 < k < 1

D3(s) = s3 + 2s2 + ks + k2 is Hurwitz iff

(k > 0) ∧ (2k > k2) ⇐⇒ (k > 0) ∧ (0 < k < 2) ⇐⇒ 0 < k < 2

If D5(s) = s5 + 2s4 + (k + 2)s3 + 3s2 + ks + 1, then the Routh table is

0 1 2 + k k
1 2 3 1
2 k + 1=2 k − 1=2 0
3 (2k + 5)=(2k + 1) 1
4 (2k − 3)=(2k + 5) 0
5 1

and the polynomial is Hurwitz iff k >
3

2
(show that).
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Jury table

Associate with the polynomial anz
n + an−1z

n−1 + · · ·+ a1z + a0 the table

0 j0;1 = an j0;2 = an−1 · · · j0;n = a1 j0;n+1 = a0
j0;n+1 = a0 j0;n = a1 · · · j0;2 = an−1 j0;1 = an

1 j1;1 j1;2 · · · j1;n
j1;n j1;n−1 · · · j1;1

...
...

...
n − 1 jn−1;1 jn−1;2

jn−1;2 jn−1;1

n jn;1

where for each i ∈ Z1::n[
ji ;1 · · · ji ;n+1−i

]
=

[
ji−1;1 · · · ji−1;n+1−i

]
− ji−1;n+2−i

ji−1;1

[
ji−1;n+2−i · · · ji−1;2

]
(the ith row has n+ 1− i elements). The Jury table is said to be regular if
all ji ;1 ̸= 0. Otherwise, it is singular.
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Jury criterion

Theorem
Let D(z) be a polynomial of degree n with an > 0.

1. D(z) is Schur iff the associated Jury table is regular and ji ;1 > 0 for all
i ∈ Z1::n.

2. If the Jury table is regular, then D(z) has no roots in {z ∈ C | |z | = 1}
and the number of its roots in {z ∈ C | |z | > 1} equals the number of
negative elements among ji ;1.

It can be shown that if ji ;1 > 0 for all i ∈ Z0::n−1, then jn;1 > 0 iff

− D(1) > 0 and (−1)nD(−1) > 0

which is an easy-to-check necessary condition for D(z) to be Schur (again,
assuming that an > 0).

Example: If D̄4(z) = z4 − z3 − kz2 + 2kz − 1, then D̄4(1) = k − 1 > 0 iff
k > 1 and D̄4(−1) = 1− 3k > 0 iff k < 1=3. Thus, it is Schur for no k .
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Jury criterion: degree-2 polynomials

If n = 2 and D(z) is monic, i.e. D(z) = z2 + a1z + a0, the Jury table is

0 1 a1 a0
a0 a1 1

1 1− a20 a1(1− a0)
a1(1− a0) (1 + a0)(1− a0)

2 1− a20 − a21(1− a0)=(1 + a0)

and we conclude that a degree-2 polynomial is Schur iff

{
|a0| < 1

|a1| < 1 + a0
⇐⇒

a0

a1−2 −1 1 2

−1

1

(more complex than in the continuous-time case).
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Jury criterion: examples

D̄2(z) = z2 + kz + 0:75=k is Schur iff

(|0:75=k | < 1) ∧ (|k | < 1 + 0:75=k) ⇐⇒ 3

4
< k <

3

2

If D̄3(z) = z3 + (1− k)z2 + z + k , then the Jury table is

0 1 1− k 1 k
k 1 1− k 1

1 1− k2 1− 2k 1− k + k2

1− k + k2 1− 2k 1− k2

2 (2−k)
1−k2 k(1− 2k) k(1−2k)2

1−k2

k(1−2k)2

1−k2
(2−k)k(1−2k)

1−k2

3 k(1−2k)
(1−k2)(2−k2)

(7− 3k − k2)

from which the polynomial is Schur iff 0 < k <
1

2
(show that).
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Bilinear transformation

Consider the mapping

z → 1 + s

1− s
=

1 + Re s + j Im s

1− Re s − j Im s
⇐⇒ s → z − 1

z + 1

between the z and s complex planes. In this case

|z |2 = (1 + Re s)2 + (Im s)2

(1− Re s)2 + (Im s)2
= 1 +

4Re s

(1− Re s)2 + (Im s)2

so that

|z | < 1 ⇐⇒ Re s < 0; |z | > 1 ⇐⇒ Re s > 0; |z | = 1 ⇐⇒ Re s = 0

i.e.
z → 1+s

1−s

s → z−1
z+1

Im s

Re s

Im z

Re z
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Bilinear transformation and Schur polynomials

If D(z) = anz
n + · · ·+ a1z + a0 for an ̸= 0, then

D(z)
∣∣
z=(1+s)=(1−s)

= an
(1 + s)n

(1− s)n
+ an−1

(1 + s)n−1

(1− s)n−1
+ · · ·+ a1

1 + s

1− s
+ a0

=
D̃(s)

(1− s)n
;

where

D̃(s) = an(1 + s)n + an−1(1 + s)n−1(1− s) + · · ·
+ a1(1 + s)(1− s)n−1 + a0(1− s)n

is a degree-n polynomial such that D̃(1) = 2nan ̸= 0. Thus,

− s0 is a root of D̃(s) iff z0 = (1 + s0)=(1− s0) is a root of D(z)

and

− D(z) is Schur iff D̃(s) is Hurwitz

(because |z | < 1 ⇐⇒ Re z−1
z+1 < 0). This yields an algorithm of checking if

a polynomial is Schur via checking if another polynomial is Hurwitz.
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Reminder: harmonic signal

Signal a expj! : R → C,

aej!t = |a|ej(!t+arg(a)) =

for a ∈ C and ! ∈ R is called harmonic signal with frequency !, amplitude
|a|, and initial phase arg(a). Via Euler’s formula we can derive that

sin(!t + �) = aej!t + ae−j!t ; a = 0:5ej(�−�=2)

(harmonics with ! and −! come together in real-valued signals). Its power

Pa expj!
··= lim

M→∞
1

M

∫ M=2

−M=2
|aej!t |2dt = 1

T

∫ T

0
|aej!t |2dt = |a|2:

22/32

Reminder: Fourier transform

The Fourier transform F{x} of a signal x is the signal X : R → C such that

X (j!) = (F{x})(j!) ··=
∫

R

x(t)e−j!t dt

It is well defined if x ∈ L1 (plus some mild technical assumptions) and then

x(t) =
1

2�

∫
R

X (j!)ej!t d! =·· (F−1{X})(t)

at every t (the inverse Fourier transform). The later means that

− every transformable signal is a superposition of elementary harmonics

and also that

− harmonics with largest |X (j!)| dominate x .
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Response of LTI systems to harmonic signals

Let G : u 7→ y be LTI and BIBO stable. If u = a exp! , then the response

y(t) =

∫
R

g(s)aej!(t−s)ds =

∫
R

g(s)e−j!s dsaej!t = G (j!)aej!t ;

where G (j!) is the Fourier transform of the impulse response g of G , which
is well defined because g ∈ L1. Thus, an LTI system merely

− scales the amplitude of a harmonic input by |G (j!)| and
− shifts the phase of a harmonic input by arg(G (j!))

but does not change its frequency.

If u is harmonic, then

|G (j!)|2 = Py

Pu
:

We say that a harmonic input

− u = a exp! passes G if Py ≥ Pu

2
, which amounts to |G (j!)| ≥ 1√

2
.
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Frequency response

Given a stable LTI system G , the function G = F{g} : R → C is known as
its frequency response. For stable systems, G (j!) = G (s)|s=j! , i.e.

− the frequency response at ! equals the value of the transfer function at
the pure imaginary point s = j!

(always in the RoC of transfer functions of BIBO stable systems).

Remark: For stable discrete systems, the frequency response G(ej� ) = G(z)|z=e j� .

The convention of defining the frequency response as the transfer function
at the imaginary axis applies to unstable systems as well1. For example, the

− frequency response of an integrator, whose gint = 1, is Gint(j!) =
1

j!
rather than (F{1})(j!) = 1=(j!) + �ı(!).

1Convenient, because unstable systems can be stabilized via feedback interconnections.
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Response of LTI systems to periodic signals

Let G : u 7→ y be LTI and BIBO stable. If u is T -periodic, then

u(t) =
∑
k∈Z

U[k]ej!0kt ; !0 =
2�

T

where

U[k] =
1

T

∫ T=2

−T=2
u(t)e−j!0kt dt

are the Fourier coefficients. By linearity,

y(t) =
∑
k∈Z

G (j!0k)U[k]ej!0kt ;

is also T -periodic, with the Fourier coefficients

Y [k] = G (j!0k)U[k]:

The frequency response of G shapes the changes in Fourier coefficients
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Response of LTI systems to sine wave test signals

Let G : u 7→ y be LTI, have a real-rational transfer function G (s), and be
stable. If u(t) = sin(!t + �)1(t), then

Y (s) = G (s)
s sin� + ! cos�

s2 + !2
= Gtr(s) +

Res(Y ; j!)

s − j!
+

Res(Y ;−j!)

s + j!

for a proper Gtr(s) having the same poles as G (s) (all in C \ C̄0). Now,

Res(Y ; j!) = G (j!)
j! sin� + ! cos�

j2!
= |G (j!)| e

j�y

2j
and

Res(Y ;−j!) = G (−j!)
−j! sin� + ! cos�

−j2!
= −|G (j!)| e

−j�y

2j

where �y ··= � + arg(G (j!)) and the facts that

|G (−j!)| = |G (j!)| and arg(G (−j!)) = − arg(G (j!))

(remember, g : R → R =⇒ G (−j!) = G (j!), Lect. 3, Slide 31) are used.
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Response of LTI systems to sine wave test signals (contd)

Thus,

Y (s) = Gtr(s) + |G (j!)|s sin�y + ! cos�y
s2 + !2

or, in the time domain,

y(t) = ytr(t) + |G (j!)| sin(!t + �y )

where ytr decays. The signal

yss(t) = |G (j!)| sin
(
!t + � + arg(G (j!))

)
is the steady-state response of G to a sine wave test input and the system

− scales the amplitude of the input by |G (j!)| and
− shifts the phase of the input by arg(G (j!))

in steady state, but does not alter its frequency, again.

28/32



Example 1

A mercury thermometer, , Gtherm : �amb 7→ � has the transfer function

Gtherm(s) =
1

�s + 1

for some time constant � > 0. Its frequency response

Gtherm(j!) =
1

j�! + 1
=

1− j�!

1 + �2!2
=

1√
1 + �2!2

e−j arctan(�!)

Its response to a sine wave test signal is (here �! ··= � − arctan(�!))

Θ(s) =
1

�s + 1

s sin� + ! cos�

s2 + !2

= − sin�!√
1 + �2!2

1

s + 1=�
+

1√
1 + �2!2

s sin�! + ! cos�!
s2 + !2

and

�(t) =

(decaying) transients︷ ︸︸ ︷
− sin�!√

1 + �2!2
e−t=�1(t) +

steady state︷ ︸︸ ︷
1√

1 + �2!2
sin(!t + �!)1(t)
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Example 1 (contd)

Scaling amplitude and shifting phase,

1√
1 + �2!2

=
!0 1=�

0

1√
2

1

and − arctan(�!) =

!0 1=�
0◦

−45◦

−90◦

;

have a negligible effect on the steady-state response only if �! ≪ 1. But if
�! > 1, then the steady-state response is quite different from the input. In
other words,

− thermometer could reliably measure a harmonic environment only if its
time constant is small enough relatively to the signal frequency.

For example,

!0

0.995

and
!0

0.447

for �! = 0:1 and �! = 2, respectively (the red thin lineis �amb).
30/32

Example 2

Consider a mass-spring-damper system, m

k

c
x

f , Gmsd : f 7→ x with

Gmsd(s) =
1

ms2 + cs + k
=

kst!
2
n

s2 + 2�!ns + !2
n

;

where !n =
√

k
m , � = c

2
√
km

, & kst =
1
k > 0. Its frequency response

Gmsd(j!) =
kst!

2
n

!2
n − !2 + j2�!n!

=
kst√

(1− !2=!2
n)

2 + 4�2!2=!2
n

e−j�2(!);

where �2(!) is the unique value in the range [−�; 0] satisfying

tan�2(!) = − 2�!=!n

1− !2=!2
n

=⇒ �2(!) =

!0 !n
0◦

−90◦

−180◦

� = 2
� = 1=

√
2

� = 0.25

which is how the phase of an input sine wave signal is shifted in this case.
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Example 2 (contd)

Magnitude of the input is then scaled as

|Gmsd(j!)| =
kst√

(1− !2=!2
n)

2 + 4�2!2=!2
n

=

!0 !n
0

kst

kst
2� � = 2

� = 1=
√
2

� = 0.25

and Gmsd can amplify inputs at certain frequencies if � is small enough. For
example,

!0

1
0.707

and
!0

1

2

for � = 1√
2
and � = 0:25, respectively, and ! = !n (the red thin line is f ).
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