Linear Systems (034032) lecture no. 8

Leonid Mirkin

Faculty of Mechanical Engineering
Technion—IIT

Outline

Stability and characteristic polynomials

Hurwitz polynomials

Schur polynomials

Frequency-domain analysis of LTI systems

Outline

Stability and characteristic polynomials

Hurwitz polynomials

Schur polynomial:

Frequency-domain analysis of LTI systems

Reminder: I/O stability via transfer functions

Let G be a system, whose transfer function G(s) is rational, i.e.

$$G(s) = \frac{N_G(s)}{D_G(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \cdots + b_1 s + b_0}{s^n + a_{m-1} s^{m-1} + \cdots + a_1 s + a_0}, \quad b_m \neq 0.$$

It is said to be proper if $n \ge m$. If $N_G(s)$ and $D_G(s)$ have no common roots (i.e. are *coprime*), then the poles of G(s) are the roots of $D_G(s)$.

Theorem

If the transfer function G(s) of a continuous-time LTI system G is rational, then G is causal and I/O stable iff

- G(s) is proper and has no poles in $\bar{\mathbb{C}}_0 := \{s \in \mathbb{C} \mid \operatorname{\mathsf{Re}} s \geq 0\}$

Theorem

If the transfer function G(z) of a discrete-time LTI system G is rational, then

- G is causal iff G(z) is proper and
- G is I/O stable iff G(z) has no poles in $\mathbb{C}\setminus\mathbb{D}_1=\{z\in\mathbb{C}\mid |z|\geq 1\}$

While properness is easy to check, finding roots of polynomials may not be, especially if coefficients depend on some parameters of interest. Try it for

$$- D_2(s) = s^2 + ks + 1 - k^3$$

$$- D_3(s) = s^3 + 2s^2 + ks + k^2$$

$$- D_4(s) = s^4 - ks^3 + 2s^2 + s + 3k$$

$$- D_5(s) = s^5 + 2s^4 + (k+2)s^3 + 3s^2 + ks + 1$$

or

$$- \bar{D}_2(z) = z^2 + kz + 0.75/k$$

$$-\bar{D}_3(s) = z^3 + (1-k)z^2 + z + k$$

$$- \bar{D}_4(s) = z^4 - z^3 - kz^2 + 2kz - 1$$

I/O stability: key question

While properness is easy to check, finding roots of polynomials may not be, especially if coefficients depend on some parameters of interest. Try it for

$$- D_2(s) = s^2 + ks + 1 - k^3$$

$$- D_3(s) = s^3 + 2s^2 + ks + k^2$$

$$- D_4(s) = s^4 - ks^3 + 2s^2 + s + 3k$$

$$- D_5(s) = s^5 + 2s^4 + (k+2)s^3 + 3s^2 + ks + 1$$

or

$$- \bar{D}_2(z) = z^2 + kz + 0.75/k$$

$$- \bar{D}_3(s) = z^3 + (1-k)z^2 + z + k$$

$$- \bar{D}_4(s) = z^4 - z^3 - kz^2 + 2kz - 1$$

But we do not really need root locations. All we need to know is whether

- all roots are in a "good" area of the complex plane.

The latter task may be simpler, as we shall see soon . . .

Background on polynomials

Terminology: a polynomial is said to be

- Hurwitz if all its roots are in the open left-half plane $\mathbb{C}\setminus \bar{\mathbb{C}}_0$
- Schur if all its roots are in the open unit disk $\mathbb{D}_1 := \{z \in \mathbb{C} \mid |z| < 1\}$

A polynomial is said to be monic if its leading coefficient is equal to 1.

Basics: by the fundamental theorem of algebra,

- a polynomial of degree n has exactly n roots, counting multiplicities.

Every degree-n monic polynomial D(s) can be written as

$$D(s) = s^n + a_{n-1}s^{n-1} + \cdots + a_1s + a_0 = (s - \lambda_1)(s - \lambda_2) \cdots (s - \lambda_n)$$

where λ_i are roots of D(s). Moreover, if all coefficients of a polynomial are real and λ_i with $\operatorname{Im} \lambda_i \neq 0$ is its root, then so is $\overline{\lambda_i} = \operatorname{Re} \lambda_i - \operatorname{j} \operatorname{Im} \lambda_i$ and

$$(s - \lambda_i)(s - \overline{\lambda_i}) = s^2 - 2\operatorname{Re}\lambda_i s + |\lambda_i|^2$$

so D(s) can be factored into 1- and 2-order factors with real coefficients.

Stability and characteristic polynomials

Hurwitz polynomials

Schur polynomials

Frequency-domain analysis of LTI systems

Hurwitz polynomials: the necessary condition

If D(s) is Hurwitz, then its real factors,

$$s + (-\lambda_i)$$
 and $s^2 + (-2 \operatorname{Re} \lambda_j) s + |\lambda_j|^2$,

have only strictly positive coefficients. This implies that

a monic D(s) is Hurwitz only if all its coefficients are positive,

Hurwitz polynomials: the necessary condition

If D(s) is Hurwitz, then its real factors,

$$s + (-\lambda_i)$$
 and $s^2 + (-2 \operatorname{Re} \lambda_j)s + |\lambda_j|^2$,

have only strictly positive coefficients. This implies that

- a monic D(s) is Hurwitz only if all its coefficients are positive, If the monic assumption is dropped, then the condition can be stated as
 - -D(s) is Hurwitz only if all its coefficients are nonzero and of the same sign.

If D(s) is Hurwitz, then its real factors,

$$s + (-\lambda_i)$$
 and $s^2 + (-2 \operatorname{Re} \lambda_j) s + |\lambda_j|^2$,

have only strictly positive coefficients. This implies that

- a monic D(s) is Hurwitz only if all its coefficients are positive, If the monic assumption is dropped, then the condition can be stated as
 - -D(s) is Hurwitz only if all its coefficients are nonzero and of the same sign.

Example: $D_4(s) = s^4 - ks^3 + 2s^2 + s + 3k$ has all its coefficients positive iff $(-k > 0) \land (3k > 0) = \emptyset$, i.e. it is Hurwitz for no k.

This condition is not sufficient though. For example, $s^2 + s^2 + 4s + 30$ has costs in $J = 3, 1, \pm, 13$, i.e. two of them are in the right-half plane.

Hurwitz polynomials: the necessary condition

If D(s) is Hurwitz, then its real factors,

$$s + (-\lambda_i)$$
 and $s^2 + (-2 \operatorname{Re} \lambda_j) s + |\lambda_j|^2$,

have only strictly positive coefficients. This implies that

- a monic D(s) is Hurwitz only if all its coefficients are positive, If the monic assumption is dropped, then the condition can be stated as
 - -D(s) is Hurwitz only if all its coefficients are nonzero and of the same sign.

Example: $D_4(s) = s^4 - ks^3 + 2s^2 + s + 3k$ has all its coefficients positive iff $(-k > 0) \wedge (3k > 0) = \emptyset$, i.e. it is Hurwitz for no k.

This condition is not sufficient though. For example, $s^3 + s^2 + 4s + 30$ has roots in $\{-3, 1 \pm i3\}$, i.e. two of them are in the right-half plane.

Routh table

Associate with the polynomial $a_n s^n + a_{n-1} s^{n-1} + \cdots + a_1 s + a_0$ the table

where for each $i \in \mathbb{Z}_{2..n}$

$$[r_{i,1} \quad r_{i,2} \quad \cdots] = [r_{i-2,2} \quad r_{i-2,3} \quad \cdots] - \frac{r_{i-2,1}}{r_{i-1,1}} [r_{i-1,2} \quad r_{i-1,3} \quad \cdots]$$

and if the last required column of an involved row is empty, 0 is taken. It is called regular if all $r_{i,1} \neq 0$. Otherwise, it is singular (cannot be completed).

Routh-Hurwitz criterion

Theorem

Let D(s) be a polynomial of degree n.

- 1. D(s) is Hurwitz iff the associated Routh table is regular and all n + 1 elements of its first column have the same sign.
- 2. If the associated Routh table is regular, then D(s) has no roots in $j\mathbb{R}$ and the number of its roots in \mathbb{C}_0 equals the number of sign changes in the first column of the table.

Routh-Hurwitz criterion: degree-2 polynomials

If
$$n = 2$$
, i.e. $D(s) = a_2s^2 + a_1s + a_0$ for $a_2 \neq 0$, the Routh table is

$$\begin{array}{c|cccc}
0 & a_2 & a_0 \\
1 & a_1 & 0 \\
2 & a_0
\end{array}$$

and we conclude that a degree-2 polynomial is

Hurwitz iff all its coefficients are nonzero and have the same sign (do memorize this condition). In other words, the necessary condition is also sufficient in this case.

Routh-Hurwitz criterion: degree-3 polynomials

If n = 3, i.e. $D(s) = a_3 s^3 + a_2 s^2 + a_1 s + a_0$ for $a_3 \neq 0$, the Routh table is

$$\begin{array}{c|cccc}
0 & a_3 & a_1 \\
1 & a_2 & a_0 \\
2 & a_1 - a_0 a_3 / a_2 & 0 \\
3 & a_0 & & & \\
\end{array}$$

All elements of its first column have the same sign iff

$$\frac{a_2}{a_3} > 0$$
, $\frac{a_1}{a_3} - \frac{a_0}{a_2} > 0$, and $\frac{a_0}{a_3} > 0$.

The second inequality is equivalent to $a_1/a_3 > (a_0/a_3)/(a_2/a_3) > 0$. Thus, we conclude that a degree-3 polynomial is

Hurwitz iff all its coefficients are nonzero, have the same sign, and, in addition, $a_1 a_2 > a_0 a_3$.

Memorize this condition as well.

If n = 4, i.e. $D(s) = a_4 s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0$ for $a_4 \neq 0$, the table is

All elements of its first column have the same sign iff

$$\frac{a_3}{a_4} > 0$$
, $\frac{a_2}{a_4} - \frac{a_1}{a_3} > 0$, $\frac{a_1}{a_4} - \frac{a_0 a_3^2}{a_4 (a_2 a_3 - a_1 a_4)} > 0$, and $\frac{a_0}{a_4} > 0$

and it can be shown that a degree-4 polynomial is

- Hurwitz iff all its coefficients are nonzero, have the same sign, and, in addition, $a_1a_2 > a_0a_3 + a_1^2 a_4/a_3$

(try to prove that, don't need to memorize).

Routh-Hurwitz criterion: examples

$$D_2(s) = s^2 + ks + 1 - k^3$$
 is Hurwitz iff

$$(k > 0) \wedge (1 - k^3 > 0) \iff 0 < k < 1$$

$$D_2(s) = s^2 + ks + 1 - k^3$$
 is Hurwitz iff

$$(k > 0) \wedge (1 - k^3 > 0) \iff 0 < k < 1$$

$$D_3(s) = s^3 + 2s^2 + ks + k^2$$
 is Hurwitz iff

$$(k > 0) \land (2k > k^2) \iff (k > 0) \land (0 < k < 2) \iff 0 < k < 2$$

Routh-Hurwitz criterion: examples

$$D_2(s) = s^2 + ks + 1 - k^3$$
 is Hurwitz iff

$$(k > 0) \wedge (1 - k^3 > 0) \iff 0 < k < 1$$

$$D_3(s) = s^3 + 2s^2 + ks + k^2$$
 is Hurwitz iff

$$(k > 0) \land (2k > k^2) \iff (k > 0) \land (0 < k < 2) \iff 0 < k < 2$$

If $D_5(s) = s^5 + 2s^4 + (k+2)s^3 + 3s^2 + ks + 1$, then the Routh table is

and the polynomial is Hurwitz iff $k > \frac{3}{2}$ (show that).

Outline

Schur polynomials

Jury table

Associate with the polynomial $a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$ the table

where for each $i \in \mathbb{Z}_{1..n}$

$$[j_{i,1}\cdots j_{i,n+1-i}] = [j_{i-1,1}\cdots j_{i-1,n+1-i}] - \frac{j_{i-1,n+2-i}}{j_{i-1,1}} [j_{i-1,n+2-i}\cdots j_{i-1,2}]$$

(the *i*th row has n+1-i elements). The Jury table is said to be *regular* if all $j_{i,1} \neq 0$. Otherwise, it is singular.

Jury criterion

Theorem

Let D(z) be a polynomial of degree n with $a_n > 0$.

- 1. D(z) is Schur iff the associated Jury table is regular and $j_{i,1} > 0$ for all $i \in \mathbb{Z}_{1}$ n.
- 2. If the Jury table is regular, then D(z) has no roots in $\{z \in \mathbb{C} \mid |z| = 1\}$ and the number of its roots in $\{z \in \mathbb{C} \mid |z| > 1\}$ equals the number of negative elements among j_{i,1}.

It can be shown that if $j_{i,1} > 0$ for all $i \in \mathbb{Z}_{0..n-1}$, then $j_{n,1} > 0$ iff

-D(1)>0 and $(-1)^nD(-1)>0$

which is an easy-to-check necessary condition for D(z) to be Schur (again, assuming that $a_n > 0$).

Theorem

Let D(z) be a polynomial of degree n with $a_n > 0$.

- 1. D(z) is Schur iff the associated Jury table is regular and $j_{i,1} > 0$ for all $i \in \mathbb{Z}_{1}$ n.
- 2. If the Jury table is regular, then D(z) has no roots in $\{z \in \mathbb{C} \mid |z| = 1\}$ and the number of its roots in $\{z \in \mathbb{C} \mid |z| > 1\}$ equals the number of negative elements among j_{i,1}.

It can be shown that if $j_{i,1} > 0$ for all $i \in \mathbb{Z}_{0..n-1}$, then $j_{n,1} > 0$ iff

-D(1)>0 and $(-1)^nD(-1)>0$

which is an easy-to-check necessary condition for D(z) to be Schur (again, assuming that $a_n > 0$).

Example: If $\bar{D}_4(z) = z^4 - z^3 - kz^2 + 2kz - 1$, then $\bar{D}_4(1) = k - 1 > 0$ iff k > 1 and $\bar{D}_4(-1) = 1 - 3k > 0$ iff k < 1/3. Thus, it is Schur for no k.

Jury criterion: degree-2 polynomials

If n = 2 and D(z) is monic, i.e. $D(z) = z^2 + a_1z + a_0$, the Jury table is

and we conclude that a degree-2 polynomial is Schur iff

$$\begin{cases} |a_0| < 1 \\ |a_1| < 1 + a_0 \end{cases} \iff \frac{a_0}{1}$$

(more complex than in the continuous-time case).

Jury criterion: examples

$$\bar{D}_2(z) = z^2 + kz + 0.75/k$$
 is Schur iff

$$(|0.75/k| < 1) \land (|k| < 1 + 0.75/k) \iff \frac{3}{4} < k < \frac{3}{2}$$

Jury criterion: examples

$$\bar{D}_2(z)=z^2+kz+0.75/k$$
 is Schur iff

$$(|0.75/k| < 1) \land (|k| < 1 + 0.75/k) \iff \frac{3}{4} < k < \frac{3}{2}$$

If
$$\bar{D}_3(z) = z^3 + (1-k)z^2 + z + k$$
, then the Jury table is

from which the polynomial is Schur iff $0 < k < \frac{1}{2}$ (show that).

Bilinear transformation

Consider the mapping

$$z
ightarrow rac{1+s}{1-s} = rac{1+\operatorname{Re} s + \operatorname{j} \operatorname{Im} s}{1-\operatorname{Re} s - \operatorname{j} \operatorname{Im} s} \quad \iff \quad s
ightarrow rac{z-1}{z+1}$$

between the z and s complex planes. In this case

$$|z|^2 = \frac{(1 + \operatorname{Re} s)^2 + (\operatorname{Im} s)^2}{(1 - \operatorname{Re} s)^2 + (\operatorname{Im} s)^2} = 1 + \frac{4 \operatorname{Re} s}{(1 - \operatorname{Re} s)^2 + (\operatorname{Im} s)^2}$$

Bilinear transformation

Consider the mapping

$$z \rightarrow \frac{1+s}{1-s} = \frac{1+\operatorname{Re} s + \operatorname{j} \operatorname{Im} s}{1-\operatorname{Re} s - \operatorname{j} \operatorname{Im} s} \quad \Longleftrightarrow \quad s \rightarrow \frac{z-1}{z+1}$$

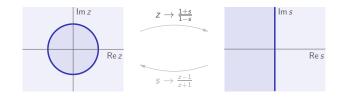
between the z and s complex planes. In this case

$$|z|^2 = \frac{(1 + \operatorname{Re} s)^2 + (\operatorname{Im} s)^2}{(1 - \operatorname{Re} s)^2 + (\operatorname{Im} s)^2} = 1 + \frac{4 \operatorname{Re} s}{(1 - \operatorname{Re} s)^2 + (\operatorname{Im} s)^2}$$

so that

$$|z| < 1 \iff \operatorname{Re} s < 0, \quad |z| > 1 \iff \operatorname{Re} s > 0, \quad |z| = 1 \iff \operatorname{Re} s = 0$$

i.e.



Bilinear transformation and Schur polynomials

If $D(z) = a_n z^n + \cdots + a_1 z + a_0$ for $a_n \neq 0$, then

$$D(z)\big|_{z=(1+s)/(1-s)} = a_n \frac{(1+s)^n}{(1-s)^n} + a_{n-1} \frac{(1+s)^{n-1}}{(1-s)^{n-1}} + \dots + a_1 \frac{1+s}{1-s} + a_0$$
$$= \frac{\tilde{D}(s)}{(1-s)^n},$$

where

$$ilde{D}(s) = a_n (1+s)^n + a_{n-1} (1+s)^{n-1} (1-s) + \cdots \ + a_1 (1+s) (1-s)^{n-1} + a_0 (1-s)^n$$

is a degree-n polynomial such that $\tilde{D}(1) = 2^n a_n \neq 0$.

If $D(z) = a_n z^n + \cdots + a_1 z + a_0$ for $a_n \neq 0$, then

$$D(z)\big|_{z=(1+s)/(1-s)} = a_n \frac{(1+s)^n}{(1-s)^n} + a_{n-1} \frac{(1+s)^{n-1}}{(1-s)^{n-1}} + \dots + a_1 \frac{1+s}{1-s} + a_0$$
$$= \frac{\tilde{D}(s)}{(1-s)^n},$$

where

$$ilde{D}(s) = a_n(1+s)^n + a_{n-1}(1+s)^{n-1}(1-s) + \cdots \\ + a_1(1+s)(1-s)^{n-1} + a_0(1-s)^n$$

- is a degree-n polynomial such that $\tilde{D}(1) = 2^n a_n \neq 0$. Thus,
- s_0 is a root of $\tilde{D}(s)$ iff $z_0 = (1+s_0)/(1-s_0)$ is a root of D(z)and
- D(z) is Schur iff $\tilde{D}(s)$ is Hurwitz

(because $|z| < 1 \iff \text{Re } \frac{z-1}{z+1} < 0$). This yields an algorithm of checking if a polynomial is Schur via checking if another polynomial is Hurwitz.

Outline

Stability and characteristic polynomials

Hurwitz polynomials

Schur polynomials

Frequency-domain analysis of LTI systems

Reminder: harmonic signal

Signal $a \exp_{i\omega} : \mathbb{R} \to \mathbb{C}$,

$$ae^{j\omega t} = |a|e^{j(\omega t + arg(a))} = \sqrt{\frac{1}{7}}$$

for $a \in \mathbb{C}$ and $\omega \in \mathbb{R}$ is called harmonic signal with frequency ω , amplitude |a|, and initial phase $\arg(a)$. Via Euler's formula we can derive that

$$\sin(\omega t + \phi) = ae^{j\omega t} + \overline{a}e^{-j\omega t}, \quad a = 0.5e^{j(\phi - \pi/2)}$$

(harmonics with ω and $-\omega$ come together in real-valued signals). Its power

$$P_{\mathsf{a}\exp_{\mathsf{j}\omega}} := \lim_{M \to \infty} \frac{1}{M} \int_{-M/2}^{M/2} |\mathsf{a}\mathsf{e}^{\mathsf{j}\omega t}|^2 \mathsf{d}t = \frac{1}{T} \int_{0}^{T} |\mathsf{a}\mathsf{e}^{\mathsf{j}\omega t}|^2 \mathsf{d}t = |\mathsf{a}|^2.$$

Reminder: Fourier transform

The Fourier transform $\mathfrak{F}\{x\}$ of a signal x is the signal $X:\mathbb{R}\to\mathbb{C}$ such that

$$X(\mathrm{j}\omega)=(\mathfrak{F}\{x\})(\mathrm{j}\omega):=\int_{\mathbb{R}}x(t)\mathrm{e}^{-\mathrm{j}\omega t}\mathrm{d}t$$

It is well defined if $x \in L_1$ (plus some mild technical assumptions) and then

$$x(t) = \frac{1}{2\pi} \int_{\mathbb{R}} X(j\omega) e^{j\omega t} d\omega =: (\mathfrak{F}^{-1}\{X\})(t)$$

at every t (the inverse Fourier transform). The later means that

- every transformable signal is a superposition of elementary harmonics and also that
 - harmonics with largest $|X(j\omega)|$ dominate x.

Let $G: u \mapsto y$ be LTI and BIBO stable. If $u = a \exp_{\omega}$, then the response

$$y(t) = \int_{\mathbb{R}} g(s) a e^{j\omega(t-s)} ds = \int_{\mathbb{R}} g(s) e^{-j\omega s} ds a e^{j\omega t} = G(j\omega) a e^{j\omega t},$$

where $G(j\omega)$ is the Fourier transform of the impulse response g of G, which is well defined because $g \in L_1$. Thus, an LTI system merely

- $-\,$ scales the amplitude of a harmonic input by $|G(\mathrm{j}\omega)|$ and
- shifts the phase of a harmonic input by $arg(G(j\omega))$ but does not change its frequency.

Let $G: u \mapsto y$ be LTI and BIBO stable. If $u = a \exp_{\omega}$, then the response

$$y(t) = \int_{\mathbb{R}} g(s) a e^{j\omega(t-s)} ds = \int_{\mathbb{R}} g(s) e^{-j\omega s} ds a e^{j\omega t} = G(j\omega) a e^{j\omega t},$$

where $G(j\omega)$ is the Fourier transform of the impulse response g of G, which is well defined because $g \in L_1$. Thus, an LTI system merely

- scales the amplitude of a harmonic input by $|G(j\omega)|$ and
- shifts the phase of a harmonic input by $arg(G(j\omega))$ but does not change its frequency.

If u is harmonic, then

$$|G(j\omega)|^2 = \frac{P_y}{P_u}.$$

We say that a harmonic input

 $-u = a \exp_{\omega}$ passes G if $P_y \ge \frac{P_u}{2}$, which amounts to $|G(j\omega)| \ge \frac{1}{\sqrt{2}}$.

Frequency response

Given a stable LTI system G, the function $G = \mathfrak{F}\{g\} : \mathbb{R} \to \mathbb{C}$ is known as its frequency response. For stable systems, $G(j\omega) = G(s)|_{s=j\omega}$, i.e.

— the frequency response at ω equals the value of the transfer function at the pure imaginary point $s=\mathrm{j}\omega$

(always in the RoC of transfer functions of BIBO stable systems).

Remark: For stable discrete systems, the frequency response $G(e^{j\theta}) = G(z)|_{z=e^{j\theta}}$.

The convention of defining the frequency response as the transfer function at the imaginary axis applies to unstable systems as well. For example, the frequency response of an integrator, whose $g_{\rm int}=1$, is $G_{\rm int}(j\omega)=\frac{1}{j\omega}$

Given a stable LTI system G, the function $G = \mathfrak{F}\{g\} : \mathbb{R} \to \mathbb{C}$ is known as its frequency response. For stable systems, $G(j\omega) = G(s)|_{s=j\omega}$, i.e.

— the frequency response at ω equals the value of the transfer function at the pure imaginary point $s=\mathrm{j}\omega$

(always in the RoC of transfer functions of BIBO stable systems).

Remark: For stable discrete systems, the frequency response $G(e^{j\theta}) = G(z)|_{z=e^{j\theta}}$.

The convention of defining the frequency response as the transfer function at the imaginary axis applies to unstable systems as well¹. For example, the

- frequency response of an integrator, whose $g_{\text{int}} = \mathbb{I}$, is $G_{\text{int}}(j\omega) = \frac{1}{j\omega}$ rather than $(\mathfrak{F}\{\mathbb{I}\})(j\omega) = 1/(j\omega) + \pi\delta(\omega)$.

¹Convenient, because unstable systems can be stabilized via feedback interconnections.

Response of LTI systems to periodic signals

Let $G: u \mapsto y$ be LTI and BIBO stable. If u is T-periodic, then

$$u(t) = \sum_{k \in \mathbb{Z}} U[k] e^{j\omega_0 kt}, \quad \omega_0 = \frac{2\pi}{T}$$

where

$$U[k] = \frac{1}{T} \int_{-T/2}^{T/2} u(t) e^{-j\omega_0 kt} dt$$

are the Fourier coefficients. By linearity,

$$y(t) = \sum_{k \in \mathbb{Z}} G(j\omega_0 k) U[k] e^{j\omega_0 kt},$$

is also T-periodic, with the Fourier coefficients

$$Y[k] = G(j\omega_0 k)U[k].$$

The frequency response of G shapes the changes in Fourier coefficients

Response of LTI systems to sine wave test signals

Let $G: u \mapsto y$ be LTI, have a real-rational transfer function G(s), and be stable. If $u(t) = \sin(\omega t + \phi)\mathbb{1}(t)$, then

$$Y(s) = G(s) rac{s\sin\phi + \omega\cos\phi}{s^2 + \omega^2} = G_{ ext{tr}}(s) + rac{ ext{Res}(Y, j\omega)}{s - j\omega} + rac{ ext{Res}(Y, -j\omega)}{s + j\omega}$$

for a proper $G_{\mathsf{tr}}(s)$ having the same poles as G(s) (all in $\mathbb{C}\setminus \bar{\mathbb{C}}_0$). Now,

$$\operatorname{Res}(Y, j\omega) = G(j\omega) \frac{j\omega \sin \phi + \omega \cos \phi}{j2\omega} = |G(j\omega)| \frac{e^{j\phi_y}}{2j}$$

and

$$\operatorname{Res}(Y, -j\omega) = G(-j\omega) \frac{-j\omega \sin \phi + \omega \cos \phi}{-j2\omega} = -|G(j\omega)| \frac{\mathrm{e}^{-j\phi_y}}{2j}$$

where $\phi_{\scriptscriptstyle Y} := \phi + \arg(G(\mathrm{j}\omega))$ and the facts that

$$|G(-\mathsf{j}\omega)| = |G(\mathsf{j}\omega)|$$
 and $\mathsf{arg}(G(-\mathsf{j}\omega)) = -\mathsf{arg}(G(\mathsf{j}\omega))$

(remember, $g: \mathbb{R} \to \mathbb{R} \implies G(-j\omega) = \overline{G(j\omega)}$, Lect. 3, Slide 31) are used.

Response of LTI systems to sine wave test signals (contd)

Thus,

$$Y(s) = G_{tr}(s) + |G(j\omega)| \frac{s \sin \phi_y + \omega \cos \phi_y}{s^2 + \omega^2}$$

or, in the time domain,

$$y(t) = y_{tr}(t) + |G(j\omega)| \sin(\omega t + \phi_y)$$

where y_{tr} decays. The signal

$$y_{ss}(t) = |G(j\omega)| \sin(\omega t + \phi + \arg(G(j\omega)))$$

is the steady-state response of G to a sine wave test input and the system

- scales the amplitude of the input by $|G(j\omega)|$ and
- shifts the phase of the input by $arg(G(j\omega))$

in steady state, but does not alter its frequency, again.

A mercury thermometer, $G_{therm}: \theta_{amb} \mapsto \theta$ has the transfer function

$$G_{\mathsf{therm}}(s) = \frac{1}{\tau s + 1}$$

for some time constant $\tau > 0$. Its frequency response

$$G_{\mathsf{therm}}(\mathsf{j}\omega) = rac{1}{\mathsf{j} au\omega + 1} = rac{1 - \mathsf{j} au\omega}{1 + au^2\omega^2} = rac{1}{\sqrt{1 + au^2\omega^2}} \mathrm{e}^{-\mathsf{j}\,\mathsf{arctan}(au\omega)}$$

Its response to a sine wave test signal is (here $\phi_{\omega} := \phi - \arctan(\tau \omega)$)

$$\Theta(s) = \frac{1}{\tau s + 1} \frac{s \sin \phi + \omega \cos \phi}{s^2 + \omega^2}$$

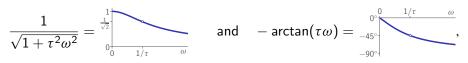
$$= -\frac{\sin \phi_{\omega}}{\sqrt{1 + \tau^2 \omega^2}} \frac{1}{s + 1/\tau} + \frac{1}{\sqrt{1 + \tau^2 \omega^2}} \frac{s \sin \phi_{\omega} + \omega \cos \phi_{\omega}}{s^2 + \omega^2}$$

and (decaying) transients steady state

$$\theta(t) = -\frac{\sin\phi_{\omega}}{\sqrt{1+\tau^2\omega^2}} e^{-t/\tau} \mathbb{1}(t) + \frac{1}{\sqrt{1+\tau^2\omega^2}} \sin(\omega t + \phi_{\omega}) \mathbb{1}(t)$$

Example 1 (contd)

Scaling amplitude and shifting phase,



have a negligible effect on the steady-state response only if $\tau\omega\ll 1$. But if $\tau\omega>1$, then the steady-state response is quite different from the input. In other words,

 thermometer could reliably measure a harmonic environment only if its time constant is small enough relatively to the signal frequency.

Example 1 (contd)

Scaling amplitude and shifting phase,

$$rac{1}{\sqrt{1+ au^2\omega^2}}=rac{\frac{1}{\sqrt{2}}}{0}$$
 and $-\arctan(au\omega)=rac{0^{\circ}}{-45^{\circ}}$,

have a negligible effect on the steady-state response only if $\tau\omega\ll 1$. But if $\tau\omega>1$, then the steady-state response is quite different from the input. In other words,

 thermometer could reliably measure a harmonic environment only if its time constant is small enough relatively to the signal frequency.

For example,

for $\tau \omega = 0.1$ and $\tau \omega = 2$, respectively (the red thin line θ_{amb}).

Example 2

Consider a mass-spring-damper system, $G_{msd}: f \mapsto x$ with

$$G_{\text{msd}}(s) = \frac{1}{ms^2 + cs + k} = \frac{k_{\text{st}}\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2},$$

where $\omega_{\rm n}=\sqrt{\frac{k}{m}}$, $\zeta=\frac{c}{2\sqrt{km}}$, & $k_{\rm st}=\frac{1}{k}>0$. Its frequency response

$$G_{\text{msd}}(j\omega) = \frac{k_{\text{st}}\omega_{\text{n}}^2}{\omega_{\text{n}}^2 - \omega^2 + j2\zeta\omega_{\text{n}}\omega} = \frac{k_{\text{st}}}{\sqrt{(1 - \omega^2/\omega_{\text{n}}^2)^2 + 4\zeta^2\omega^2/\omega_{\text{n}}^2}} e^{-j\phi_2(\omega)},$$

where $\phi_2(\omega)$ is the unique value in the range $[-\pi,0]$ satisfying

$$\tan\phi_2(\omega) = -\frac{2\zeta\omega/\omega_{\mathsf{n}}}{1-\omega^2/\omega_{\mathsf{n}}^2} \quad \Longrightarrow \quad \phi_2(\omega) = \frac{0^{\circ}}{1-30^{\circ}} \quad \Longrightarrow \quad \phi_2(\omega) = \frac{0^{\circ}}{1-3$$

which is how the phase of an input sine wave signal is shifted in this case.

Example 2 (contd)

Magnitude of the input is then scaled as

$$|G_{\mathsf{msd}}(\mathsf{j}\omega)| = \frac{k_{\mathsf{st}}}{\sqrt{(1-\omega^2/\omega_{\mathsf{n}}^2)^2 + 4\zeta^2\omega^2/\omega_{\mathsf{n}}^2}} = k_{\mathsf{st}}$$

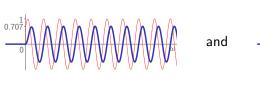
and G_{msd} can amplify inputs at certain frequencies if ζ is small enough.

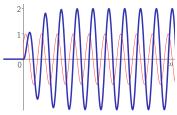
Example 2 (contd)

Magnitude of the input is then scaled as

$$|G_{\mathsf{msd}}(\mathsf{j}\omega)| = \frac{k_{\mathsf{st}}}{\sqrt{(1-\omega^2/\omega_{\mathsf{n}}^2)^2 + 4\zeta^2\omega^2/\omega_{\mathsf{n}}^2}} = k_{\mathsf{st}}$$

and $G_{\rm msd}$ can amplify inputs at certain frequencies if ζ is small enough. For example,





for $\zeta = \frac{1}{\sqrt{2}}$ and $\zeta = 0.25$, respectively, and $\omega = \omega_n$ (the red thin line is f).