<section-header><section-header><section-header><section-header><section-header><section-header><text>

LTI systems response: from time to Laplace / z domain

We know that if $G: u \mapsto y$ is LTI (linear time invariant), then

y = g * u

where $g = G\delta$ is the impulse response of G, i.e. its response to δ applied at t = 0. By the convolution property of the Laplace / z transform,

Y(s) = G(s)U(s) or Y(z) = G(z)U(z),

In other words, (dynamic) LTI systems in the Laplace / z domain act as the (static) multiplication of the transformed impulse response and input. The function

 $G(s) = (\mathfrak{L}\lbrace g \rbrace)(s)$ or $G(z) = (\mathfrak{Z}\lbrace g \rbrace)(z)$

is called the transfer function of G. Transfer function may also be viewed as - the ratio of the Laplace / z transforms of the output and input signals,

$$G(s) = rac{Y(s)}{U(s)}$$
 or $G(z) = rac{Y(z)}{U(z)}$

Outline

Transfer functions of LTI systems

LTI systems with rational transfer functions

Steady-state and transient responses

Step responses of stable 1-order systems

Step responses of stable 2-order systems

Transfer functions: examples

Gain: its impulse response $g = k\delta$, so G(s) = k and G(z) = k.

Delay: its impulse response $g = \int_{-\tau} \delta$, so $G(s) = e^{-\tau s}$ and $G(z) = z^{-\tau}$.

Integrator: its impulse response $g_{int} = 1$, so

$$G_{ ext{int}}(s) = rac{1}{s} \quad ext{and} \quad G_{ ext{int}}(z) = rac{z}{z-1}.$$

has a single pole at s = 0 and z = 1, respectively.

Finite-memory integrator: its impulse response $g_{fmi,\mu} = S_{-\mu/2} \operatorname{rect}_{\mu}$, so

$$G_{\mathsf{fmi},\mu}(s) = \frac{1 - \mathrm{e}^{-\mu s}}{s} = \int_0^{\mu} \mathrm{e}^{-st} \mathrm{d}t$$

is an entire function.

Transfer function description

The fact that dynamic LTI systems can be described by algebraic relations,

Y(s) = G(s)U(s) or Y(z) = G(z)U(z),

is a handy property, having a potential of greatly simplifying the analysis. It has no counterparts in the realm of general time-varying/nonlinear systems, making the class of LTI systems so special and sought after.

Still, we yet to know how to

 express properties of LTI systems in terms of their transfer functions, without which algebraic relations are not more than a curiosity.

Causality via transfer functions: discrete systems

Theorem

Let G be an LTI discrete-time system, whose transfer function G(z) has its $RoC \subset \{z \in \mathbb{C} \mid |z| > \alpha_g\}$ for some $\alpha_g \in \mathbb{R}_+$. Such G is causal iff

$$\limsup_{|z|\to\infty}|G(z)|<\infty.$$

Proof (outline): G is causal iff supp $(g) \subset \mathbb{Z}_+$. The transfer function

$$G(z) = (\Im\{g\})(z) = \sum_{t \in \mathbb{Z}} g[t] z^{-t} = \sum_{t = -\infty}^{-1} g[t] z^{-t} + \sum_{t = 0}^{\infty} g[t] z^{-t}$$

If $|z| \to \infty$, then $|z^{-t}| \to \infty$ for every $t \in \mathbb{Z} \setminus \mathbb{Z}_+$ as well and the first term above remains bounded only if $\operatorname{supp}(g) \subset \mathbb{Z}_+$. If $\operatorname{supp}(g) \subset \mathbb{Z}_+$, then the second term is in the RoC, so |G(z)| is bounded, if |z| is large enough. \Box

Remark: There is no similar result for continuous-time systems. For example, se^{-s} is not bounded if $\text{Re } s \to +\infty$, but it corresponds to the causal system acting as $y(t) = \dot{u}(t-1)$.

System interconnections via transfer functions

Parallel: If
$$G = \underbrace{\downarrow}_{G_2} \underbrace{\downarrow}_{G_2} \underbrace{\downarrow}_{G_2} \underbrace{\downarrow}_{G_2} \underbrace{\downarrow}_{G_2} \underbrace{\downarrow}_{G_2} \underbrace{\downarrow}_{G_1} \underbrace{\downarrow}_{G_2} \underbrace{\downarrow}_{G_1} \underbrace{\downarrow}_{G_2} \underbrace{\downarrow}_{G_1} \underbrace{\downarrow}_{G_2} \underbrace{\downarrow}_{G_1} \underbrace{\downarrow}_{G_2} \underbrace{\downarrow}_{G_2} \underbrace{\downarrow}_{G_1} \underbrace{\downarrow}_{G_2} \underbrace{\downarrow$$

L_2 / ℓ_2 stability via transfer functions

Theorem

A continuous-time LTI system is causal and L₂-stable iff its transfer function is holomorphic and bounded in $\mathbb{C}_0 := \{s \in \mathbb{C} \mid \text{Re} s > 0\}.$

Theorem

A discrete-time LTI system is causal and ℓ_2 -stable iff its transfer function is holomorphic and bounded in $\{z \in \mathbb{C} \mid |z| > 1\}$.

Example 1: we know that $G_{\mathsf{fmi},\mu}(s) = \int_0^\mu \mathrm{e}^{-st} \mathrm{d}t$, which is entire. Now,

$$|G_{\mathsf{fmi},\mu}(s)| = \left| \int_0^{\mu} e^{-st} dt \right| \le \int_0^{\mu} |e^{-st}| dt = \int_0^{\mu} e^{-\operatorname{Re} s t} dt < \int_0^{\mu} dt = \mu$$

for all Re s > 0. Thus, $G_{\text{fmi},\mu}(s)$ is not only holomorphic, but also bounded in \mathbb{C}_0 , meaning that $G_{\text{fmi},\mu}$ is L_2 -stable.

Example 2: Consider $G : u \mapsto y$ acting as $y(t) = \dot{u}(t)$. Its transfer function G(s) = s is entire, but not bounded in \mathbb{C}_0 , meaning that G is not L_2 -stable.

Outline

Transfer functions of LTI systems

LTI systems with rational transfer functions

Steady-state and transient responses

Step responses of stable 1-order systems

Step responses of stable 2-order systems

LTI systems described by difference equations

Let $G: u \mapsto y$ be a discrete LTI system described as

$$y[t+n] + a_{n-1}y[t+n-1] + \dots + a_1y[t+1] + a_0y[t]$$

= $b_m[t+m] + b_{m-1}u[t+m-1] + \dots + b_1u[t+1] + b_0u[t]$

for some $a_i, b_i \in \mathbb{R}$. In the Laplace domain this relation reads

$$Y(z) = \frac{b_m z^m + b_{m-1} z^{m-1} + \dots + b_1 z + b_0}{z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0} U(z)$$

Hence, the transfer function of this system is

$$G(z) = \frac{b_m z^m + b_{m-1} z^{m-1} + \dots + b_1 z + b_0}{z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0}$$

again real-rational.

LTI systems described by ODE

Let $G: u \mapsto y$ be an analog LTI system described as

$$y^{(n)}(t) + a_{n-1}y^{(n-1)}(t) + \dots + a_1\dot{y}(t) + a_0y(t)$$

= $b_m u^{(m)}(t) + b_{m-1}u^{(m-1)}(t) + \dots + b_1\dot{u}(t) + b_0u(t)$

for some $a_i, b_i \in \mathbb{R}$. In the Laplace domain this relation reads

$$Y(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0} U(s).$$

Hence, the transfer function of this system is

$$G(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$

In other words,

 transfer functions of LTI systems described by ODE are always rational (actually, real-rational if the coefficients are real).

Interconnections

lf

$$G_1(s)=rac{N_1(s)}{D_1(s)} \quad ext{and} \quad G_2(s)=rac{N_2(s)}{D_2(s)},$$

then

$$\begin{split} G_1(s) + G_2(s) &= \frac{N_1(s)}{D_1(s)} + \frac{N_2(s)}{D_2(s)} = \frac{N_1(s)D_2(s) + N_2(s)D_1(s)}{D_1(s)D_2(s)} \\ G_2(s)G_1(s) &= \frac{N_2(s)}{D_2(s)}\frac{N_1(s)}{D_1(s)} = \frac{N_2(s)N_1(s)}{D_2(s)D_1(s)} \\ \frac{G_1(s)}{1 \mp G_1(s)G_2(s)} &= \frac{\frac{N_1(s)}{D_1(s)}\frac{N_2(s)}{D_2(s)}}{1 \mp \frac{N_1(s)}{D_1(s)}\frac{N_2(s)}{D_2(s)}} = \frac{\frac{N_1(s)D_2(s) \mp N_1(s)N_2(s)}{D_1(s)D_2(s)}}{\frac{D_1(s)D_2(s)}{D_1(s)D_2(s)}} \\ &= \frac{N_1(s)D_2(s)}{D_1(s)D_2(s)} \end{split}$$

are rational as well. In other words,

 parallel, cascade, & feedback interconnections of systems with rational transfer functions result in systems with rational transfer functions.

12/40

10/40

Impulse response of continuous-time systems

Let G be an LTI system with a rational proper transfer function of the form

$$G(s) = rac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}, \quad n \ge m$$

Let it have k distinct poles $p_i \in \mathbb{C}$ of order $n_i \in \mathbb{N}$. In this case

$$G(s) = G(\infty) + \sum_{i=1}^{k} \sum_{j=1}^{n_i} \frac{c_{ij}}{(s-p_i)^j}$$

The inverse Laplace transforms g_{ij} of $G_{ij}(s) := c_{ij}/(s - p_i)^j$ are

$$g_{i1}(t) = c_{i1} \mathrm{e}^{p_i t} \mathbb{1}(t)$$
 and $g_{ij}(t) = rac{c_{ij}}{(j-1)!} t^{j-1} \mathrm{e}^{p_i t} \mathbb{1}(t), \quad j > 1$

(by the *t*-modulation property). Therefore, by linearity

$$g(t) = G(\infty) \,\delta(t) + \sum_{i=1}^{\kappa} \Big(c_{i1} + \sum_{j=2}^{n_i} \frac{c_{ij}}{(j-1)!} t^{j-1} \Big) \mathrm{e}^{p_i t} \mathbb{1}(t),$$

i.e. it is a superposition of (*t*-modulated) exponential functions.

Impulse response of continuous-time systems: example
Consider

$$G(s) = \frac{s^2 - 2s + 6}{s^4 + 5s^3 + 8s^2 + 6s} = \frac{s^2 - 2s + 6}{s(s+3)(s^2 + 2s + 2)}$$

$$= \frac{\text{Res}(G, 0)}{s} + \frac{\text{Res}(G, -3)}{s+3} + \frac{\text{Res}(G, -1+j)}{s+1-j} + \frac{\text{Res}(G, -1-j)}{s+1-j}$$

$$= \frac{1}{s} - \frac{1.4}{s+3} + \frac{0.2 + 1.4j}{s+1-j} + \frac{0.2 - 1.4j}{s+1+j}$$

$$= \frac{1}{s} - \frac{1.4}{s+3} + \frac{0.4s - 2.8}{s^2 + 2s + 2} = \frac{1}{s} - \frac{1.4}{s+3} + 2\sqrt{2} \frac{\sqrt{2}}{\frac{10}{(s+1)^2 + 1}} (s+1)^2 + 1$$
Hence, taking into account that $\arccos(-0.7\sqrt{2}) = 2.999695599 \approx 3$,
 $g(t) = 1(t) - 1.4e^{-3t}1(t) + 2\sqrt{2}e^{-t}\sin(t+3)1(t)$

$$= \frac{1}{9} + \frac{1}{$$

Impulse response of continuous-time systems (contd)

lf

13/4

 $\begin{array}{l} - & \operatorname{Re} p_i \geq 0, \text{ then } \sum_{j=1}^{n_i} g_{ij} \notin L_1 \\ - & \operatorname{Re} p_i < 0, \text{ then} \end{array}$ (terms do not decay)

$$\int_0^\infty \left| \frac{c_{ij}}{(j-1)!} t^{j-1} \mathrm{e}^{p_i t} \right| \mathrm{d}t = \frac{|c_{ij}|}{(-\operatorname{Re} p_i)^j} \implies \sum_{j=1}^{n_i} g_{ij} \in L_1$$

If Im $p_{i_1} \neq 0$, then $\exists i_2 \neq i_1$ such that $p_{i_2} = \overline{p_{i_1}}$ and also $c_{i_21} = \overline{c_{i_11}}$. Then

$$\frac{c_{i_11}}{s - p_{i_1}} + \frac{c_{i_21}}{s - p_{i_2}} = \frac{c_{i_11}}{s - p_{i_1}} + \frac{\overline{c_{i_11}}}{s - \overline{p_{i_1}}} = \frac{c_{i_11}(s - \overline{p_{i_1}}) + \overline{c_{i_11}}(s - p_{i_1})}{(s - p_{i_1})(s - \overline{p_{i_1}})}$$
$$= \frac{2\operatorname{Re} c_{i_11}(s - \operatorname{Re} p_{i_1}) - 2\operatorname{Im} c_{i_11}\operatorname{Im} p_{i_1}}{(s - \operatorname{Re} p_{i_1})^2 + (\operatorname{Im} p_{i_1})^2}$$

Thus, if all poles are simple, then we can always end up with an alternative partial fraction expansion with 1- and 2-order real-rational terms only. And we know that they correspond to exponentials and (modulated) sine waves.

4/40

Impulse response of discrete-time systems

Rational transfer functions in the *z*-domain are also decomposed to partial fractions. Time responses are then also superposition of exponential terms. However, discrete-time responses of corresponding terms are

way messier than their continuous-time counterparts and less intuitive,
 with some additional properties, like possibly oscillatory response of 1-order
 terms. For those reasons we won't discuss details.

I/O stability via transfer functions

Theorem

If the transfer function G(s) of a continuous-time LTI system G is rational, then G is causal and I/O stable iff

- G(s) is proper and has no poles in $\overline{\mathbb{C}}_0 := \{s \in \mathbb{C} \mid \operatorname{Re} s \ge 0\}$

Theorem

If the transfer function G(z) of a discrete-time LTI system G is rational, then

- G is causal iff G(z) is proper and

 $- \ \ \textit{G is I/O stable iff } \ \textit{G}(z) \ \textit{has no poles in } \mathbb{C} \setminus \mathbb{D}_1 = \{z \in \mathbb{C} \ | \ |z| \geq 1\}$

Example 2 (contd): The differentiator $y(t) = \dot{u}(t)$ has the rational transfer function G(s) = s. But it is not proper, attesting to what we already saw.

Example 3: The discrete system $G: u \mapsto y$ acting as y[t] = u[t+4] - u[t] has the (rational) transfer function $G(z) = z^4 - 1$. This G(z) is non-proper and has no poles. Hence, G is not causal, but is stable.

Persistent test signals

Responses of systems obviously vary depending on inputs. It is not realistic to have a universal understanding of responses of dynamic systems to every possible input. Instead, we shall try to understand responses to (relatively) simple signals, which may nevertheless be *representative* in many situations (unlike the impulse). Such signals, termed test signals, normally

- have support in \mathbb{R}_+ (so the action starts at t = 0)
- are persistent (i.e. do not decay)
- have some regularity (like convergent or periodic)

Some commonly used test signals:

- step $u(t) = \mathbb{1}(t)$

represents a quick change of an otherwise constant or slowly varying environment

- sine wave $u(t) = \sin(\omega_u t + \phi_u)\mathbb{1}(t)$
- *T*-periodic

with only pure imaginary poles as singularities of their Laplace transforms.

Outline

Transfer functions of LTI systems

LTI systems with rational transfer functions

Steady-state and transient responses

Step responses of stable 1-order systems

Step responses of stable 2-order systems

Steady-state and transients of the step responses

Consider a continuous-time LTI G with a rational transfer function. If G is stable, all poles of G(s) are in $\{s \in \mathbb{C} \mid \text{Re } s < 0\}$, so that it is holomorphic and bounded at s = 0. The Laplace transform of the step response is

$$Y(s) = rac{G(s)}{s} = rac{G(s) - G(0)}{s} + rac{G(0)}{s} =: Y_{tr}(s) + Y_{ss}(s).$$

Transient response is the signal y_{tr} . Its Laplace transform $Y_{tr}(s)$ is rational, proper $(Y_{tr}(\infty) = Y(\infty) = 0)$, and its singularity at s = 0 is removable, as

$$\lim_{s\to 0} Y_{\rm tr}(s) = \lim_{s\to 0} \frac{G(s)-G(0)}{s} = G'(0).$$

Hence, y_{tr} is a superposition of *decaying* exponents and $\lim_{t\to\infty} y_{tr}(t) = 0$, meaning that

- the transient response vanishes asymptotically.

Steady-state and transients of the step responses (contd)

Consider a continuous-time LTI G with a rational transfer function. If G is stable, all poles of G(s) are in $\{s \in \mathbb{C} \mid \text{Re} s < 0\}$, so that it is holomorphic and bounded at s = 0. The Laplace transform of the step response is

$$Y(s) = \frac{G(s)}{s} = \frac{G(s) - G(0)}{s} + \frac{G(0)}{s} =: Y_{\mathsf{tr}}(s) + Y_{\mathsf{ss}}(s).$$

Stead-state response is the scaled step $y_{ss} = G(0)1$. The constant

- G(0) is called the static gain of G.

Thus, the step response of a stable LTI system G converges asymptotically to the step signal scaled by its static gain G(0).

Remark: We refer to G(0) as the static gain of G in the unstable case as well. If G(0) is finite, then we may still think of $y_{ss} = G(0)1$ as the steady-state response of an unstable system. However, the transients do not decay then (might even diverge).

where y_{us} is the highest peak against the direction of y_{ss} .

Steady-state and transients of the step responses (contd)

Practically,

- steady-state response shows what the response will eventually be
 - what is the mercury temperature in a thermometer
 - what floor an elevator reaches
 - what position the pointer of a spring scale stops
 - ...

21/40

- transient response shows how the steady state is reached
 - how fast a thermometer catch the ambient temperature
 - how fast and smooth (comfortable) an elevator moves between floors
 - how fast the pointer of a spring scale stops
 - $-\,$ how smooth a vehicle responds to road bumps
 - $-\,$ how large an electromagnetic pulse is on switching electrical circuits

Step response

If u = 1, then

$$Y(s) = \frac{k_{\rm st}}{\tau s + 1} \frac{1}{s} = k_{\rm st} \left(\frac{1}{s} - \frac{1}{s + 1/\tau}\right)$$

and

$$y(t) = k_{\rm st}(1 - \mathrm{e}^{-t/\tau})\mathbb{1}(t),$$

i.e.

$$\begin{array}{ll} - & y_{\rm ss} = k_{\rm st} \mathbb{1} \text{ is shaped by } k_{\rm st} \\ - & y_{\rm tr} = -k_{\rm st} (\mathbb{P}_{1/\tau} \exp_{-1}) \mathbb{1} \text{ is shaped mainly by } \tau & k_{\rm st} \end{array}$$

k_{st} only scales it

By the initial value theorem,

$$\dot{y}(0) = \lim_{s \to \infty} s \cdot sY(s) = \lim_{s \to \infty} \frac{k_{\mathrm{st}}s}{\tau s + 1} = \frac{k_{\mathrm{st}}}{\tau} \neq 0$$

Fundamental 1-order system

An LTI system $G: u \mapsto y$ with the transfer function

$$G(s) = rac{k_{\mathrm{st}}}{\tau s + 1},$$

where

 $- \ k_{\rm st} \neq 0 \ {\rm is \ its \ static \ gain \ } (k_{\rm st} = G(0))$

 $- \tau > 0$ is its time constant

Examples:

- spring-damper, \overleftarrow{t} , with $c\dot{x}(t) + kx(t) = f(t)$ has $\tau = \frac{c}{k} \& k_{st} = \frac{1}{k}$;
- mercury thermometer, , with $\tau \dot{\theta}(t) = \theta_{amb}(t) \theta(t)$ has τ as its time constant and $k_{st} = 1$;

- *RL*-circuit, $t_{i}(t) + Ri(t) = v(t)$ has $\tau = \frac{L}{R} \& k_{st} = \frac{1}{R}$.

Qualitatively, the speed and duration of transients in first-order systems are proportional to the time constant τ , viz.

- the larger τ is, the slower transients are.

Step response

If u = 1, then

$$Y(s) = \frac{k_{\rm st}\omega_{\rm n}^2}{s^2 + 2\zeta\omega_{\rm n}s + \omega_{\rm n}^2} \frac{1}{s}$$

and the roots of its denominator are

$$s_1=0$$
 and $s_{2,3}=ig(-\zeta\pm\sqrt{\zeta^2-1}ig)\omega_{
m r}$

Three cases shall be studied separately

1. if $\zeta > 1$, then $s_{2,3}$ are real and simple	overdamped
2. if $\zeta = 1$, then $s_{2,3}$ are real and equal	critically damped
3. if $\zeta < 1$, then $s_{2,3}$ are complex conjugate	underdamped

if $\zeta = 0$, then we say that the system is *undamped*; no need in a separate analysis

In all cases,

$$\dot{\psi}(0) = \lim_{s \to \infty} s \cdot sY(s) = \lim_{s \to \infty} \frac{k_{st}\omega_n^2 s}{s^2 + 2\zeta\omega_n s + \omega_n^2} = 0$$

Fundamental 2-order system

An LTI system $G: u \mapsto y$ with the transfer function

$$G(s) = \frac{k_{\rm st}\omega_{\rm n}^2}{s^2 + 2\zeta\omega_{\rm n}s + \omega_{\rm n}^2}$$

where

- $-k_{st} \neq 0$ is its static gain $(k_{st} = G(0))$
- $-\omega_n > 0$ is its natural frequency
- $-\zeta \geq 0$ is its damping factor

Examples:

- mass-spring-damper, with $m\ddot{x}(t) + c\dot{x}(t) + kx(t) = f(t)$ has $\omega_n = \sqrt{k/m}, \zeta = 0.5c/\sqrt{km}$, and $k_{st} = 1/k$; - *RLC*-circuit, , with $L\ddot{q}(t) + R\dot{q}(t) + Cq(t) = v(t)$, where *q* is the charge, has $\omega_n = \sqrt{C/L}, \zeta = 0.5R/\sqrt{LC}$, and $k_{st} = 1/C$.

Step response of overdamped systems

If $\zeta > 1$, then $Y(s) = k_{st} \left(\frac{1}{s} - \frac{\beta}{s - \lambda_1} + \frac{\beta - 1}{s - \lambda_2} \right)$

.

$$\lambda_{1,2}=-(\zeta\mp\sqrt{\zeta^2-1})\omega_{\mathsf{n}}<\mathsf{0} \quad \mathsf{and} \quad eta=rac{1}{2}igg(rac{\zeta}{\sqrt{\zeta^2-1}}+1igg)>1$$

In the time domain

$$y(t) = k_{\mathsf{st}} \left(1 - \beta e^{\lambda_1 t} + (\beta - 1) e^{\lambda_2 t} \right) \mathbb{1}(t)$$

with

where

$$\dot{y}(t) = k_{\mathrm{st}} \frac{\mathrm{e}^{\lambda_1 t} - \mathrm{e}^{\lambda_2 t}}{2\sqrt{\zeta^2 - 1}} \mathbb{1}(t) > 0, \quad \forall t > 0$$

(because $\lambda_1 > \lambda_2$), meaning that y is monotonically increasing.

The transient response, $y_{tr}(t) = -k_{st}\beta e^{\lambda_1 t} \mathbb{1}(t) + k_{st}(\beta - 1)e^{\lambda_2 t} \mathbb{1}(t)$, is the superposition of transient responses of 1-order systems.

32/4

30/40

Step response of overdamped systems (contd) $V_{4+1}(t)$

Rewrite

$$y_{\rm tr}(t) = -k_{\rm st}\beta e^{-t/\tau_1} \mathbb{1}(t) + k_{\rm st}(\beta - 1) e^{-t/\tau_2} \mathbb{1}(t)$$

 $V_{t=2}(t)$

where the time constants and gains are

$$\tau_{1,2} = \frac{\zeta \pm \sqrt{\zeta^2 - 1}}{\omega_{n}} = \frac{\frac{2}{1-\frac{1}{1-\frac{1}{1-1}}}}{\frac{2}{1-\frac{1}{1-\frac{1}{1-1}}}} \text{ and } \beta = \frac{\zeta + \sqrt{\zeta^2 - 1}}{2\sqrt{\zeta^2 - 1}} = \frac{\beta}{\frac{1}{1-\frac{1}{1-\frac{1}{1-1}}}}$$

As ζ grows,

 $-\tau_1$ grows with respect to $\tau_2 \implies y_{tr2}$ decays faster than y_{tr1}

 β grows with respect to $\beta - 1 \implies y_{tr2}$ becomes smaller than y_{tr1} like in

This response has

- overshoot OS = 0% and undershot US = 0%_
- raise time t_r _
 - monotonically increases with ζ
 - is inversely proportional to ω_n
- settling time t_s _
 - monotonically increases with ζ
 - is inversely proportional to ω_n

Step response of critically damped systems

If $\zeta = 1$, then

$$Y(s) = k_{
m st} \Big(rac{1}{s} - rac{1}{s+\omega_{
m n}} - rac{\omega_{
m n}}{(s+\omega_{
m n})^2} \Big)$$

In the time domain

$$y(t) = k_{\mathsf{st}} \left(1 - (1 + \omega_{\mathsf{n}} t) \mathsf{e}^{-\omega_{\mathsf{n}} t} \right) \mathbb{I}(t),$$

with

$$\dot{y}(t) = k_{\mathrm{st}}\omega_{\mathrm{n}}^{2}t\mathrm{e}^{-\omega_{\mathrm{n}}t}\mathbb{1}(t) > 0, \quad \forall t > 0,$$

meaning that y is monotonically increasing in this case as well.

Step response of underdamped systems If $0 < \zeta < 1$, then $Y(s) = k_{\rm st} \left(\frac{1}{s} - \frac{s + 2\zeta\omega_{\rm n}}{s^2 + 2\zeta\omega_{\rm n}s + \omega_{\rm n}^2}\right) = k_{\rm st} \left(\frac{1}{s} - \frac{(s + \zeta\omega_{\rm n}) + \zeta\omega_{\rm n}}{(s + \zeta\omega_{\rm n})^2 + (1 - \zeta^2)\omega_{\rm n}^2}\right)$ $=k_{\rm st}\Big(\frac{1}{s}-\frac{1}{\sqrt{1-\zeta^2}}\frac{\sqrt{1-\zeta^2}(s+\zeta\omega_{\rm n})+\zeta\omega_{\rm d}}{(s+\zeta\omega_{\rm n})^2+\omega_{\rm d}^2}\Big)$

where $\omega_{\rm d} := \sqrt{1-\zeta^2} \omega_{\rm n}$ is the damped natural frequency. Hence,

$$y(t) = k_{st} \left(1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_d t + \arccos \zeta) \right) \mathbb{I}(t)$$

and it is always within the envelope

$$k_{\mathsf{st}}\left(1-\frac{1}{\sqrt{1-\zeta^2}}\mathsf{e}^{-\zeta\omega_{\mathsf{n}}t}\right)\mathbb{I}(t) \leq y(t) \leq k_{\mathsf{st}}\left(1+\frac{1}{\sqrt{1-\zeta^2}}\mathsf{e}^{-\zeta\omega_{\mathsf{n}}t}\right)\mathbb{I}(t).$$

monotonic

(larger overshoot, up to OS = 100% for
$$\zeta = 0$$
, and longer t_s).

- the raise time t_r decreases
- the settling time t_s increases

Step response of underdamped systems: effect of zeros

Let

$$G_{\alpha}(s) = \frac{k_{\rm st}(\alpha\omega_{\rm n}s + \omega_{\rm n}^2)}{s^2 + 2\zeta\omega_{\rm n}s + \omega_{\rm n}^2}$$

for $\alpha \in \mathbb{R}$. This transfer function is said to have a zero at $s = -\omega_n/\alpha$ since $G_\alpha(-\omega_n/\alpha) = 0$. In this case

$$Y_{lpha}(s) = rac{k_{
m st}(lpha \omega_{
m n} s + \omega_{
m n}^2)}{s^2 + 2\zeta \omega_{
m n} s + \omega_{
m n}^2} rac{1}{s} = Y_0(s) + rac{lpha}{\omega_{
m n}} s Y_0(s)$$

and

$$y_{\alpha}(t) = y_0(t) + \frac{lpha}{\omega_{\mathsf{n}}} \dot{y}_0(t),$$

where y_0 is the response with $\alpha = 0$ (no zeros) and

$$\frac{\alpha}{\omega_{n}}\dot{y}_{0}(t) = \frac{\alpha}{\sqrt{1-\zeta^{2}}}\sin(\omega_{d}t).$$

Step response of underdamped systems: $\alpha < 0$ $\int_{k_{st}} \frac{\alpha = 0}{\alpha = -0.5}$ $\frac{\alpha = -1}{\alpha = -1.5}$ As α decreases, - the overshoot OS increases - the undershoot US increases

- the raise time t_r decreases
- the settling time t_s increases