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LTI systems response: from time to Laplace / z domain

We know that if G : u 7→ y is LTI (linear time invariant), then

y = g ∗ u

where g = Gı is the impulse response of G , i.e. its response to ı applied at
t = 0. By the convolution property of the Laplace / z transform,

Y (s) = G (s)U(s) or Y (z) = G (z)U(z);

In other words, (dynamic) LTI systems in the Laplace / z domain act as the
(static) multiplication of the transformed impulse response and input. The
function

G (s) = (L{g})(s) or G (z) = (Z{g})(z)
is called the transfer function of G . Transfer function may also be viewed as

− the ratio of the Laplace / z transforms of the output and input signals,

G (s) =
Y (s)

U(s)
or G (z) =

Y (z)

U(z)
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Transfer functions: examples

Gain: its impulse response g = kı, so G (s) = k and G (z) = k .

Delay: its impulse response g = S−�ı, so G (s) = e−�s and G (z) = z−� .

Integrator: its impulse response gint = 1, so

Gint(s) =
1

s
and Gint(z) =

z

z − 1
:

has a single pole at s = 0 and z = 1, respectively.

Finite-memory integrator: its impulse response gfmi;� = S−�=2rect�, so

Gfmi;�(s) =
1− e−�s

s
=

∫ �

0
e−st dt

is an entire function.
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Transfer function description

The fact that dynamic LTI systems can be described by algebraic relations,

Y (s) = G (s)U(s) or Y (z) = G (z)U(z);

is a handy property, having a potential of greatly simplifying the analysis. It
has no counterparts in the realm of general time-varying/nonlinear systems,
making the class of LTI systems so special and sought after.

Still, we yet to know how to

− express properties of LTI systems in terms of their transfer functions,

without which algebraic relations are not more than a curiosity.
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System interconnections via transfer functions

Parallel: If G =
G1

G2

uy , then G (s) = G1(s) + G2(s) sum

Cascade: If G =

G1G2
uy

, then G (s) = G2(s)G1(s) product

Feedback: If G =

G2

G1
uy

±

, then G (s) =
G1(s)

1∓ G1(s)G2(s)

by
Y = G1(U ± G2Y ) ⇐⇒ (1∓ G1G2)Y = G1U
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Causality via transfer functions: discrete systems

Theorem
Let G be an LTI discrete-time system, whose transfer function G (z) has its
RoC ⊂ {z ∈ C | |z | > ˛g} for some ˛g ∈ R+. Such G is causal iff

lim sup
|z|→∞

|G (z)| <∞:

Proof (outline) : G is causal iff supp(g) ⊂ Z+. The transfer function

G (z) = (Z{g})(z) =
∑

t∈Z

g [t]z−t =
−1∑

t=−∞
g [t]z−t +

∞∑

t=0

g [t]z−t

If |z | → ∞, then |z−t | → ∞ for every t ∈ Z \Z+ as well and the first term
above remains bounded only if supp(g) ⊂ Z+. If supp(g) ⊂ Z+, then the
second term is in the RoC, so |G (z)| is bounded, if |z | is large enough.

Remark: There is no similar result for continuous-time systems. For example, se−s is not
bounded if Re s → +∞, but it corresponds to the causal system acting as y(t) = u̇(t−1).
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L2 / `2 stability via transfer functions

Theorem
A continuous-time LTI system is causal and L2-stable iff its transfer function
is holomorphic and bounded in C0 ··= {s ∈ C | Re s > 0}.

Theorem
A discrete-time LTI system is causal and `2-stable iff its transfer function is
holomorphic and bounded in {z ∈ C | |z | > 1}.

Example 1: we know that Gfmi;�(s) =
∫ �
0 e−st dt, which is entire. Now,

|Gfmi;�(s)| =
∣∣∣
∫ �

0
e−st dt

∣∣∣ ≤
∫ �

0
|e−st |dt =

∫ �

0
e−Re s t dt <

∫ �

0
dt = �

for all Re s > 0. Thus, Gfmi;�(s) is not only holomorphic, but also bounded
in C0, meaning that Gfmi;� is L2-stable.

Example 2: Consider G : u 7→ y acting as y(t) = u̇(t). Its transfer function
G (s) = s is entire, but not bounded in C0, meaning that G is not L2-stable.
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LTI systems described by ODE

Let G : u 7→ y be an analog LTI system described as

y (n)(t) + an−1y
(n−1)(t) + · · ·+ a1ẏ(t) + a0y(t)

= bmu
(m)(t) + bm−1u

(m−1)(t) + · · ·+ b1u̇(t) + b0u(t)

for some ai ; bi ∈ R. In the Laplace domain this relation reads

Y (s) =
bms

m + bm−1s
m−1 + · · ·+ b1s + b0

sn + an−1sn−1 + · · ·+ a1s + a0
U(s):

Hence, the transfer function of this system is

G (s) =
bms

m + bm−1s
m−1 + · · ·+ b1s + b0

sn + an−1sn−1 + · · ·+ a1s + a0
:

In other words,

− transfer functions of LTI systems described by ODE are always rational

(actually, real-rational if the coefficients are real).
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LTI systems described by difference equations

Let G : u 7→ y be a discrete LTI system described as

y [t + n] + an−1y [t + n − 1] + · · ·+ a1y [t + 1] + a0y [t]

= bm[t +m] + bm−1u[t +m − 1] + · · ·+ b1u[t + 1] + b0u[t]

for some ai ; bi ∈ R. In the Laplace domain this relation reads

Y (z) =
bmz

m + bm−1z
m−1 + · · ·+ b1z + b0

zn + an−1zn−1 + · · ·+ a1z + a0
U(z):

Hence, the transfer function of this system is

G (z) =
bmz

m + bm−1z
m−1 + · · ·+ b1z + b0

zn + an−1zn−1 + · · ·+ a1z + a0

again real-rational.
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Interconnections

If

G1(s) =
N1(s)

D1(s)
and G2(s) =

N2(s)

D2(s)
;

then

G1(s) + G2(s) =
N1(s)

D1(s)
+

N2(s)

D2(s)
=

N1(s)D2(s) + N2(s)D1(s)

D1(s)D2(s)

G2(s)G1(s) =
N2(s)

D2(s)

N1(s)

D1(s)
=

N2(s)N1(s)

D2(s)D1(s)

G1(s)

1∓ G1(s)G2(s)
=

N1(s)
D1(s)

1∓ N1(s)
D1(s)

N2(s)
D2(s)

=

N1(s)
D1(s)

D1(s)D2(s)∓N1(s)N2(s)
D1(s)D2(s)

=
N1(s)D2(s)

D1(s)D2(s)∓ N1(s)N2(s)

are rational as well. In other words,

− parallel, cascade, & feedback interconnections of systems with rational
transfer functions result in systems with rational transfer functions.
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Impulse response of continuous-time systems

Let G be an LTI system with a rational proper transfer function of the form

G (s) =
bms

m + bm−1s
m−1 + · · ·+ b1s + b0

sn + an−1sn−1 + · · ·+ a1s + a0
; n ≥ m

Let it have k distinct poles pi ∈ C of order ni ∈ N. In this case

G (s) = G (∞) +
k∑

i=1

ni∑

j=1

cij
(s − pi )j

The inverse Laplace transforms gij of Gij(s) ··= cij=(s − pi )
j are

gi1(t) = ci1e
pi t1(t) and gij(t) =

cij
(j − 1)!

t j−1epi t1(t); j > 1

(by the t-modulation property). Therefore, by linearity

g(t) = G (∞) ı(t) +
k∑

i=1

(
ci1 +

ni∑

j=2

cij
(j − 1)!

t j−1
)
epi t1(t);

i.e. it is a superposition of (t-modulated) exponential functions.
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Impulse response of continuous-time systems (contd)

If

− Re pi ≥ 0, then
∑ni

j=1 gij ̸∈ L1 (terms do not decay)

− Re pi < 0, then

∫ ∞

0

∣∣∣ cij
(j − 1)!

t j−1epi t
∣∣∣dt = |cij |

(−Re pi )j
=⇒

ni∑

j=1

gij ∈ L1

If Im pi1 ̸= 0, then ∃ i2 ̸= i1 such that pi2 = pi1 and also ci21 = ci11. Then

ci11
s − pi1

+
ci21

s − pi2
=

ci11
s − pi1

+
ci11

s − pi1
=

ci11(s − pi1) + ci11(s − pi1)

(s − pi1)(s − pi1)

=
2Re ci11(s − Re pi1)− 2 Im ci11 Im pi1

(s − Re pi1)
2 + (Im pi1)

2

Thus, if all poles are simple, then we can always end up with an alternative
partial fraction expansion with 1- and 2-order real-rational terms only. And
we know that they correspond to exponentials and (modulated) sine waves.
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Impulse response of continuous-time systems: example

Consider

G (s) =
s2 − 2s + 6

s4 + 5s3 + 8s2 + 6s
=

s2 − 2s + 6

s(s + 3)(s2 + 2s + 2)

=
Res(G ; 0)

s
+

Res(G ;−3)

s + 3
+

Res(G ;−1 + j)

s + 1− j
+

Res(G ;−1− j)

s + 1 + j

=
1

s
− 1:4

s + 3
+

0:2 + 1:4j

s + 1− j
+

0:2− 1:4j

s + 1 + j

=
1

s
− 1:4

s + 3
+

0:4s − 2:8

s2 + 2s + 2
=

1

s
− 1:4

s + 3
+ 2

√
2

√
2

10 (s + 1)− 7
√
2

10

(s + 1)2 + 1

Hence, taking into account that arccos(−0:7
√
2) = 2:999695599 ≈ 3,

g(t) = 1(t)− 1:4e−3t1(t) + 2
√
2 e−t sin(t + 3)1(t)

=

t0
+

t0
+

t0
=

t0

1
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0:4s − 2:8

s2 + 2s + 2
=

1

s
− 1:4

s + 3
+ 2

√
2

√
2

10 (s + 1)− 7
√
2

10

(s + 1)2 + 1

Hence, taking into account that arccos(−0:7
√
2) = 2:999695599 ≈ 3,

g(t) = 1(t)− 1:4e−3t1(t) + 2
√
2 e−t sin(t + 3)1(t)

=
t0
+

t0
+

t0
=

t0

1
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Impulse response of discrete-time systems

Rational transfer functions in the z-domain are also decomposed to partial
fractions. Time responses are then also superposition of exponential terms.
However, discrete-time responses of corresponding terms are

− way messier than their continuous-time counterparts and less intuitive,

with some additional properties, like possibly oscillatory response of 1-order
terms. For those reasons we won’t discuss details.
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I/O stability via transfer functions

Theorem
If the transfer function G (s) of a continuous-time LTI system G is rational,
then G is causal and I/O stable iff

− G (s) is proper and has no poles in C̄0 ··= {s ∈ C | Re s ≥ 0}

Theorem
If the transfer function G (z) of a discrete-time LTI system G is rational, then

− G is causal iff G (z) is proper and

− G is I/O stable iff G (z) has no poles in C \ D1 = {z ∈ C | |z | ≥ 1}

Example 2 (contd): The differentiator y(t) = u̇(t) has the rational transfer
function G (s) = s. But it is not proper, attesting to what we already saw.

Example 3: The discrete system G : u 7→ y acting as y [t] = u[t + 4]− u[t]
has the (rational) transfer function G (z) = z4 − 1. This G (z) is non-proper
and has no poles. Hence, G is not causal, but is stable.
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Outline

Transfer functions of LTI systems

LTI systems with rational transfer functions

Steady-state and transient responses

Step responses of stable 1-order systems

Step responses of stable 2-order systems
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Persistent test signals

Responses of systems obviously vary depending on inputs. It is not realistic
to have a universal understanding of responses of dynamic systems to every
possible input. Instead, we shall try to understand responses to (relatively)
simple signals, which may nevertheless be representative in many situations
(unlike the impulse). Such signals, termed test signals, normally

− have support in R+ (so the action starts at t = 0)

− are persistent (i.e. do not decay)

− have some regularity (like convergent or periodic)

Some commonly used test signals:

− step u(t) = 1(t)
represents a quick change of an otherwise constant or slowly varying environment

− sine wave u(t) = sin(!ut + �u)1(t)

− T-periodic

with only pure imaginary poles as singularities of their Laplace transforms.
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Steady-state and transients of the step responses

Consider a continuous-time LTI G with a rational transfer function. If G is
stable, all poles of G (s) are in {s ∈ C | Re s < 0}, so that it is holomorphic
and bounded at s = 0. The Laplace transform of the step response is

Y (s) =
G (s)

s
=

G (s)− G (0)

s
+

G (0)

s
=·· Ytr(s) + Yss(s):

Transient response is the signal ytr. Its Laplace transform Ytr(s) is rational,
proper (Ytr(∞) = Y (∞) = 0), and its singularity at s = 0 is removable, as

lim
s→0

Ytr(s) = lim
s→0

G (s)− G (0)

s
= G ′(0):

Hence, ytr is a superposition of decaying exponents and limt→∞ ytr(t) = 0,
meaning that

− the transient response vanishes asymptotically.
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Steady-state and transients of the step responses (contd)

Consider a continuous-time LTI G with a rational transfer function. If G is
stable, all poles of G (s) are in {s ∈ C | Re s < 0}, so that it is holomorphic
and bounded at s = 0. The Laplace transform of the step response is

Y (s) =
G (s)

s
=

G (s)− G (0)

s
+

G (0)

s
=·· Ytr(s) + Yss(s):

Stead-state response is the scaled step yss = G (0)1. The constant

− G (0) is called the static gain of G .

Thus, the step response of a stable LTI system G converges asymptotically
to the step signal scaled by its static gain G (0).

Remark: We refer to G(0) as the static gain of G in the unstable case as well. If G(0) is
finite, then we may still think of yss = G(0)1 as the steady-state response of an unstable
system. However, the transients do not decay then (might even diverge).
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Steady-state and transients of the step responses (contd)

Practically,

− steady-state response shows what the response will eventually be

− what is the mercury temperature in a thermometer
− what floor an elevator reaches
− what position the pointer of a spring scale stops
− . . .

− transient response shows how the steady state is reached

− how fast a thermometer catch the ambient temperature
− how fast and smooth (comfortable) an elevator moves between floors
− how fast the pointer of a spring scale stops
− how smooth a vehicle responds to road bumps
− how large an electromagnetic pulse is on switching electrical circuits
− . . .



Transfer functions Rational transfer functions Steady-state and transient responses 1-order systems 2-order systems

Transients: important characteristics

y (t)

t0

yss

tp

ypeak

yus

2y
ı

ts

tr

10%

90%

Smoothness of transients may be measured by the

− overshoot,

OS ··=
ypeak − yss

yss
> 0 (in %),

where ypeak is the highest peak in the direction of yss,

− undershoot,

US ··= −yus
yss

> 0 (in %),

where yus is the highest peak against the direction of yss.
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Transients: important characteristics (contd)

y (t)

t0

yss

tp

ypeak

yus

2y
ı

ts

tr

10%

90%

Speed of transients may be measured by the

− rise time, tr (time that takes y to rise from 0:1yss to 0:9yss)

− peak time, tp (time that takes y to reach its highest peak)

Duration of transients may be measured by the

− settling time, ts (the smallest ts such that

∣∣∣∣
y(t)

yss
− 1

∣∣∣∣ ≤
ı

100
, ∀t ≥ ts)

for a given

− settling level ı ··=
∣∣∣∣
yı
yss

∣∣∣∣ (in %, most common ı = 2% and ı = 5%)
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LTI systems with rational transfer functions

Steady-state and transient responses
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Fundamental 1-order system

An LTI system G : u 7→ y with the transfer function

G (s) =
kst

�s + 1
;

where

− kst ̸= 0 is its static gain (kst = G (0))

− � > 0 is its time constant

Examples:

− spring-damper,

k

c
x

f

, with cẋ(t) + kx(t) = f (t) has � = c
k & kst =

1
k ;

− mercury thermometer, , with ��̇(t) = �amb(t)− �(t) has � as its
time constant and kst = 1;

− RL-circuit,

v +
–

R

L

i

, with Li̇(t) + Ri(t) = v(t) has � = L
R & kst =

1
R .
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Step response

If u = 1, then

Y (s) =
kst

�s + 1

1

s
= kst

(1
s
− 1

s + 1=�

)

and
y(t) = kst(1− e−t=� )1(t);

i.e.

− yss = kst1 is shaped by kst

− ytr = −kst(P1=� exp−1)1 is shaped mainly by � kst only scales it

By the initial value theorem,

ẏ(0) = lim
s→∞

s · sY (s) = lim
s→∞

ksts

�s + 1
=

kst
�

̸= 0
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Step response: transients

t0

10%

90%

2.2�

2
×

5%

3�

2
×

2%

3.9�

kst

This response has

− overshoot OS = 0% and undershot US = 0% monotonic

− raise time tr = (ln 9)� ≈ 2:2 �

− settling time ts = (ln 100
ı
)� ytr(ts) = − ı

100 kst

Qualitatively, the speed and duration of transients in first-order systems are
proportional to the time constant � , viz.

− the larger � is, the slower transients are.
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Fundamental 2-order system

An LTI system G : u 7→ y with the transfer function

G (s) =
kst!

2
n

s2 + 2�!ns + !2
n

;

where

− kst ̸= 0 is its static gain (kst = G (0))

− !n > 0 is its natural frequency

− � ≥ 0 is its damping factor

Examples:

− mass-spring-damper,

m

k

c
x

f

, with mẍ(t) + cẋ(t) + kx(t) = f (t) has

!n =
√
k=m, � = 0:5c=

√
km , and kst = 1=k ;

− RLC -circuit,

v +
–

R
L

C

i = q̇

, with Lq̈(t) + Rq̇(t) + Cq(t) = v(t), where q is

the charge, has !n =
√
C=L, � = 0:5R=

√
LC , and kst = 1=C .
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Step response

If u = 1, then

Y (s) =
kst!

2
n

s2 + 2�!ns + !2
n

1

s

and the roots of its denominator are

s1 = 0 and s2;3 =
(
−� ±

√
�2 − 1

)
!n

Three cases shall be studied separately

1. if � > 1, then s2;3 are real and simple overdamped

2. if � = 1, then s2;3 are real and equal critically damped

3. if � < 1, then s2;3 are complex conjugate underdamped
if � = 0, then we say that the system is undamped; no need in a separate analysis

In all cases,

ẏ(0) = lim
s→∞

s · sY (s) = lim
s→∞

kst!
2
ns

s2 + 2�!ns + !2
n

= 0
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Step response of overdamped systems

If � > 1, then
Y (s) = kst

(1
s
− ˇ

s − �1
+
ˇ − 1

s − �2

)

where

�1;2 = −(� ∓
√
�2 − 1)!n < 0 and ˇ =

1

2

(
�√
�2 − 1

+ 1

)
> 1

In the time domain

y(t) = kst
(
1− ˇe�1t + (ˇ − 1)e�2t

)
1(t)

with
ẏ(t) = kst

e�1t − e�2t

2
√
�2 − 1

1(t) > 0; ∀t > 0

(because �1 > �2), meaning that y is monotonically increasing.

The transient response, ytr(t) = −kstˇe
�1t1(t) + kst(ˇ − 1)e�2t1(t), is the

superposition of transient responses of 1-order systems.
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Step response of overdamped systems (contd)

Rewrite

ytr(t) =

ytr1(t)︷ ︸︸ ︷
−kstˇe

−t=�11(t) +

ytr2(t)︷ ︸︸ ︷
kst(ˇ − 1)e−t=�21(t);

where the time constants and gains are

�1;2 =
� ±

√
�2 − 1

!n
=

�1,2 !n

�1 1.5
0

1

2

and ˇ =
� +

√
�2 − 1

2
√
�2 − 1

=

ˇ

�1 1.5
1

As � grows,

− �1 grows with respect to �2 =⇒ ytr2 decays faster than ytr1

− ˇ grows with respect to ˇ − 1 =⇒ ytr2 becomes smaller than ytr1

like in

ytr1,2(t)

t0

kst

� = 1.01 ytr1,2(t)

t0

kst

� = 1.25 ytr1,2(t)

t0

kst

� = 1.5

meaning that ytr2 may be neglected for large �’s, say for � ≥ 1:25.
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Step response of critically damped systems

If � = 1, then

Y (s) = kst
(1
s
− 1

s + !n
− !n

(s + !n)2

)

In the time domain

y(t) = kst
(
1− (1 + !nt)e

−!nt
)
1(t);

with
ẏ(t) = kst!

2
nte

−!nt1(t) > 0; ∀t > 0;

meaning that y is monotonically increasing in this case as well.
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Step response of over- and critically damped systems

t0

kst

tr
10%

90%

2
×
5%

ts,5

2
×

2%

ts,2

tr ≈
1

!n

{
4.9� − 1.5 if 1 ≤ � < 2

4.4� − 0.5 if � ≥ 2

ts,5 ≈
1

!n

{
−0.6�2 + 8.5� − 3.1 if 1 ≤ � < 2

6� − 0.5 if � ≥ 2

ts,2 ≈
1

!n

{
−1.1�2 + 12.3� − 5.3 if 1 ≤ � < 2

7.9� − 0.9 if � ≥ 2

This response has

− overshoot OS = 0% and undershot US = 0% monotonic

− raise time tr
− monotonically increases with �
− is inversely proportional to !n

− settling time ts
− monotonically increases with �
− is inversely proportional to !n
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Step response of underdamped systems

If 0 ≤ � < 1, then

Y (s) = kst
(1
s
− s + 2�!n

s2 + 2�!ns + !2
n

)
= kst

(1
s
− (s + �!n) + �!n

(s + �!n)2 + (1− �2)!2
n

)

= kst
(1
s
− 1√

1− �2

√
1− �2(s + �!n) + �!d

(s + �!n)2 + !2
d

)

where !d ··=
√
1− �2!n is the damped natural frequency. Hence,

y(t) = kst

(
1− 1√

1− �2
e−�!nt sin(!dt + arccos �)

)
1(t)

and it is always within the envelope

kst

(
1− 1√

1− �2
e−�!nt

)
1(t) ≤ y(t) ≤ kst

(
1 +

1√
1− �2

e−�!nt

)
1(t):
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Step response of underdamped systems: transients

t0

tr
10%

90%

2
×

2%

ts,2

2
×

5%

ts,5

tr ≈
1.6�3 − 0.17�2 + 0.92� + 1.02

!n

ts,5 ≈
2.88

(−�2 + 0.64� + 0.96) �!n

ts,2 ≈
6.49

(−�2 + 0.45� + 1.65) �!n

kst

10%

90%

kst
(
1 + e−��=

√
1−�2 )

tp = �=!d

kst
(
1− e−�!nt=

√
1− �2

)

kst
(
1 + e−�!nt=

√
1− �2

)

This response has

− overshoot OS = e−��=
√
1−�2 · 100% and undershot US = 0%

− raise time tr is inversely proportional to !n

− settling time ts is inversely proportional to !n

Qualitatively,

− the smaller � is, the more oscillatory the response is

(larger overshoot, up to OS = 100% for � = 0, and longer ts).
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Step response of underdamped systems: effect of zeros

Let

G˛(s) =
kst(˛!ns + !

2
n)

s2 + 2�!ns + !2
n

;

for ˛ ∈ R. This transfer function is said to have a zero at s = −!n=˛ since
G˛(−!n=˛) = 0. In this case

Y˛(s) =
kst(˛!ns + !

2
n)

s2 + 2�!ns + !2
n

1

s
= Y0(s) +

˛

!n
sY0(s)

and
y˛(t) = y0(t) +

˛

!n
ẏ0(t);

where y0 is the response with ˛ = 0 (no zeros) and

˛

!n
ẏ0(t) =

˛√
1− �2

sin(!dt):
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Step response of underdamped systems: ˛ > 0

t

kst

0 �=!d 2�=!d 3�=!d

˛ = 0
˛ = 0.5
˛ = 1
˛ = 1.5

As ˛ grows,

− the overshoot OS increases

− the raise time tr decreases

− the settling time ts increases
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Step response of underdamped systems: ˛ < 0

t

kst

0 �=!d 2�=!d 3�=!d

˛ = 0
˛ = −0.5

˛ = −1

˛ = −1.5

As ˛ decreases,

− the overshoot OS increases

− the undershoot US increases

− the raise time tr decreases

− the settling time ts increases
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